내신을 철저하게

대비해 주는

교과서 쌍둥이 문제

정답과 해설

エースート人 ヘーコーニー		
지수함수와 로그함~	ニ ノ	

- 1 지수
- 2 로그
- 3 지수함수와 로그함수의 뜻과 그래프

삼각함수

- 1 삼각함수의 뜻과 그래프
- 2 사인법칙과 코사인법칙

TTT 수열

- 1 등차수열과 등비수열
- 2 수열의 합
- 3 수학적 귀납법

권말 부록

22

중간고사 기말고사 대단원 기출 모의고사 60

38

Ⅰ. 지수함수와 로그함수

1. 지수

1-1 거듭제곱과 거듭제곱근

내신 대비 쌍둥이 문제

28~30쪽

- 1-1 $\frac{1}{ab}$
- **2-1** (1) 2, -2

(2) 3,
$$\frac{-3+3\sqrt{3}i}{2}$$
, $\frac{-3-3\sqrt{3}i}{2}$

- (3) -4, $2+2\sqrt{3}i$, $2-2\sqrt{3}i$
- (4) 1. -1. i. -i
- **3-1** (1) -3 (2) 2 (3) -1 (4) 3
- 4-1 풀이 참조
- **5-1** (1) 7 (2) 2 (3) 27 (4) 2
- **6-1** (1) $6\sqrt[3]{2}$ (2) $\sqrt[3]{2}$
- **7-1** 109

1-1
$$(a^3b)^3 \times \left(\frac{a}{b^2}\right)^2 \div (a \times a^2)^4 = a^9b^3 \times \frac{a^2}{b^4} \times \frac{1}{(a^3)^4}$$

$$= a^{9+2} \times \frac{1}{b^{4-3}} \times \frac{1}{a^{12}}$$

$$= \frac{1}{a^{12-11} \times b}$$

$$= \frac{1}{ab}$$

2-1 (1) 4의 제곱근을 x라고 하면 $x^2 = 4$ 이므로

$$x^2-4=0, x=2$$
 또는 $x=-2$

따라서 4의 제곱근은 2. -2이다.

(2) 27의 세제곱근을 x라고 하면 $x^3 = 27$ 이므로

$$x^3-27=0$$
, $(x-3)(x^2+3x+9)=0$

$$x=3$$
 또는 $x=\frac{-3\pm 3\sqrt{3}i}{2}$

따라서 27의 세제곱근은

$$3, \frac{-3+3\sqrt{3}i}{2}, \frac{-3-3\sqrt{3}i}{2}$$
이다.

(3) - 64의 세제곱근을 x라고 하면 $x^3 = -64$ 이므로

$$x^3+64=0$$
, $(x+4)(x^2-4x+16)=0$

$$x = -4$$
 또는 $x = 2 \pm 2\sqrt{3}i$

따라서 -64의 세제곱근은 $-4.2+2\sqrt{3}i.2-2\sqrt{3}i$ 이다.

$$x=\pm 1$$
 또는 $x=\pm i$

따라서 1의 네제곱근은 1. -1. i. -i이다.

(4) 1의 네제곱근을 x라고 하면 $x^4=1$ 이므로 $x^4-1=0$, $(x^2-1)(x^2+1)=0$

- **3-1** (1) $-\sqrt[3]{27} = -\sqrt[3]{3^3} = -3$
 - (2) $\sqrt[4]{16} = \sqrt[4]{2^4} = 2$
 - (3) $\sqrt[5]{-1} = \sqrt[5]{(-1)^5} = -1$
 - $(4) \sqrt[6]{729} = \sqrt[6]{3^6} = 3$
- **4-1** $({}^{n}\sqrt[p]{a^{mp}})^n = ({}^{n}\sqrt[p]{a^{mp}})^n = {}^{p}\sqrt[p]{a^{mp}} = {}^{p}\sqrt[p]{(a^m)^p} = ({}^{p}\sqrt[p]{a^m})^p = a^m$ 이때 $n^p \sqrt{a^{mp}} > 0$ 이므로 $n^p \sqrt{a^{mp}}$ 는 a^m 의 양의 n제곱근이다. 즉 $n \sqrt{a^{mp}} = \sqrt{a^m}$ 이다
- **5-1** (1) $\sqrt[4]{7} \times \sqrt[4]{343} = \sqrt[4]{7} \times 343 = \sqrt[4]{7} \times 7^3$ $=\sqrt[4]{7^4}=(\sqrt[4]{7})^4=7$

$$(2) \frac{\sqrt[3]{16}}{\sqrt[3]{2}} = \sqrt[3]{\frac{16}{2}} = \sqrt[3]{8} = \sqrt[3]{2} = (\sqrt[3]{2})^3 = 2$$

- (3) $(\sqrt[5]{243})^3 = (\sqrt[5]{3^5})^3 = \{(\sqrt[5]{3})^5\}^3 = 3^3 = 27$
- $(4) \sqrt[4]{\sqrt{256}} = \sqrt[4 \times 2]{2^8} = \sqrt[8]{2^8} = (\sqrt[8]{2})^8 = 2$
- **6-1** (1) $\sqrt[3]{2} + \sqrt[3]{25} \times \sqrt[3]{10} = \sqrt[3]{2} + \sqrt[3]{25 \times 10}$

$$=\sqrt[3]{2}+\sqrt[3]{2\times5^3}$$

$$=\sqrt[3]{2}+5\sqrt[3]{2}$$

$$=6\sqrt[3]{2}$$

$$(2) \sqrt[3]{54} - \frac{4}{\sqrt[3]{16}} = \sqrt[3]{2 \times 3^3} - \frac{4}{\sqrt[6]{2^4}}$$

$$= 3\sqrt[3]{2} - \frac{4 \times \sqrt[3]{2}}{\sqrt[3]{2^2} \times \sqrt[3]{2}}$$

$$= 3\sqrt[3]{2} - 2\sqrt[3]{2}$$

$$= \sqrt[3]{2}$$

$$= \sqrt[3]{2}$$

7-1 가로의 길이와 세로의 길이가 각각 $\sqrt{3}$. $\sqrt[3]{9}$ 이고. 높이가 $\sqrt[4]{27}$ 인 직육면체의 부피는

$$\sqrt{3} \times \sqrt[3]{9} \times \sqrt[4]{\sqrt{27}} = 3^{\frac{1}{2}} \times \sqrt[3]{3^{\frac{2}{3}}} \times \sqrt[8]{3^{\frac{3}{3}}}$$

$$= 3^{\frac{1}{2} + \frac{2}{3} + \frac{3}{8}}$$

$$= 3^{\frac{37}{24}}$$

이므로 정육면체의 한 모서리의 길이를 $\sqrt[m]{3^n}$ 이라고 할 때 $3\frac{37}{24} = (m\sqrt{3^n})^3 = 3\frac{3n}{m}$

따라서
$$\frac{n}{m} = \frac{37}{72}$$
이므로 $m+n=109$

소단원 확인 문제

31~32쪽

1-1 ⑤

2-1 (1) 9 (2) 2 (3) 49 (4) $\sqrt{3}$

3-1 $3\sqrt[3]{3}$

4-1 $3^2 \times 5^{\frac{2}{5}}$

1-1 ① -27의 세제곱근을 x라고 하면 $x^3=-27$ 이므로 $x^3+27=0, \ (x+3)(x^2-3x+9)=0$ $x=-3 \ \mathrm{ 또는 } \ x=\frac{3\pm3\sqrt{3}\,i}{2}$

따라서 -3은 -27의 세제곱근 중 하나이다.

② 125의 세제곱근을 x라고 하면 x^3 =125이므로 $x^3-125=0,\ (x-5)(x^2+5x+25)=0$ x=5 또는 $x=\frac{-5\pm 5\sqrt{3}\,i}{2}$

따라서 125의 세제곱근 중에서 실수인 것은 5뿐이다

③ 16의 네제곱근을 x라고 하면 $x^4=16$ 이므로 $x^4-16=0, \ (x^2-2^2)(x^2+2^2)=0$ $x=\pm 2 \ \text{또는 } x=\pm 2i$

따라서 -2는 16의 네제곱근 중 하나이다.

④ 81의 네제곱근을 x라고 하면 $x^4=81$ 이므로 $x^4-81=0, \ (x^2-3^2)(x^2+3^2)=0$ $x=\pm 3 \ \text{또는} \ x=\pm 3i$

따라서 81의 네제곱근은 3, -3, 3i, -3i이다.

⑤ 256의 네제곱근을 x라고 하면 x^4 =256이므로 $x^4-256=0, \ (x^2-4^2)(x^2+4^2)=0$ $x=\pm 4 \ \text{또는} \ x=\pm 4i$

따라서 256의 네제곱근 중에서 실수인 것은 4, -4이다.

따라서 옳지 않은 것은 ⑤이다.

2-1 (1) $\sqrt[3]{9} \times \sqrt[3]{81} = \sqrt[3]{9 \times 81} = \sqrt[3]{9} = (\sqrt[3]{9})^3 = 9$

(2)
$$\frac{\sqrt[5]{160}}{\sqrt[5]{5}} = \sqrt[5]{\frac{160}{5}} = \sqrt[5]{32} = \sqrt[5]{2^5} = (\sqrt[5]{2})^5 = 2$$

$$(3) \left(\sqrt[4]{7}\right)^8 = 7^{\frac{8}{4}} = 7^2 = 49$$

(4)
$$\sqrt[5]{243} = \sqrt[5]{3^5} = \sqrt{(\sqrt[5]{3})^5} = \sqrt{3}$$

- **3-1** $\sqrt[3]{9^2} + \sqrt[4]{3} \sqrt[4]{27} \sqrt[3]{729} = \sqrt[3]{3^4} + \sqrt[4]{3^4} 2 \times \sqrt[3]{3^6}$ = $3\sqrt[3]{3} + 3 - 3$ = $3\sqrt[3]{3}$
- **4-1** $b^5 = \sqrt{5}$ 에서 $b = {}^{5 \times 2}\sqrt{5} = {}^{10}\sqrt{5}$ 이므로 $(ab)^4 = a^4b^4 = (\sqrt{3})^4({}^{10}\sqrt{5})^4 = 3^2 \times 5^{\frac{2}{5}}$

1-2 지수의 확장

내신 대비 쌍둥이 문제

33~36쪽

- **1-1** (1) $\frac{1}{9}$ (2) $\frac{7}{5}$ (3) 1 (4) $-\frac{1}{64}$
- **3-1** (1) 4 (2) 5 (3) a^9 (4) a^6b^{-3}
- **4-1** (1) 125 (2) 16 (3) 7 (4) $\frac{1}{3}$
- **6-1** (1) 2 (2) 216 (3) a^2 (4) $a^{-5}b^2$
- **7-1** (1) $2^{2\sqrt{3}}$ (2) $5^{\sqrt{2}}$ (3) 81 (4) 21^{π}
- **1-1** (1) $3^{-2} = \frac{1}{3^2} = \frac{1}{9}$
 - $(2)\left(\frac{5}{7}\right)^{-1} = \frac{7}{5}$
 - (3) $(-2)^0 = 1$
 - $(4) (-4)^{-3} = \frac{1}{(-4)^3} = -\frac{1}{64}$
- **3-1** (1) $16^2 \times (2^3)^{-2} = 2^{4 \times 2} \times 2^{-6}$

$$=2^{8-6}=2^2=4$$

- (2) $5^2 \div 5^{-3} \times 5^{-4} = 5^{2-(-3)+(-4)} = 5^1 = 5$
- (3) $(a^2 \div a^{-1})^3 = (a^2 \times a)^3$

$$=a^{(2+1)\times 3}=a^9$$

- (4) $(a^{-2}b)^{-3} = a^{(-2)\times(-3)}b^{-3}$ = a^6b^{-3}
- **4-1** (1) $25^{\frac{3}{2}} = (5^2)^{\frac{3}{2}} = (\sqrt{5^2})^3 = 5^3 = 125$

(2)
$$8^{\frac{4}{3}} = (2^3)^{\frac{4}{3}} = (\sqrt[3]{2^3})^4 = 2^4 = 16$$

(3)
$$49^{0.5} = (7^2)^{0.5} = (\sqrt{7^2})^1 = 7^1 = 7$$

$$(4) 9^{-\frac{1}{2}} = (3^2)^{-\frac{1}{2}} = (\sqrt{3^2})^{-1} = 3^{-1} = \frac{1}{3}$$

- **6-1** (1) $4^{0.1} \times 4^{\frac{2}{5}} = 4^{0.1+0.4} = 4^{0.5} = (2^2)^{0.5} = 2^1 = 2$
 - (2) $6^{\frac{3}{2}} \times 6^{\frac{1}{4}} \div 6^{-\frac{5}{4}} = 6^{\frac{3}{2} + \frac{1}{4} \left(-\frac{5}{4}\right)} = 6^3 = 216$
 - (3) $\left(a^{\frac{4}{7}}\right)^{\frac{7}{2}} = a^{\frac{4}{7} \times \frac{7}{2}} = a^2$
 - (4) $(a^2b^4)^{\frac{1}{2}} \div (a^{\frac{3}{2}})^4 = ab^2 \div a^6 = a^{1-6}b^2 = a^{-5}b^2$
- **7-1** (1) $8^{\sqrt{3}} \times 8^{-\frac{\sqrt{3}}{3}} = 8^{\sqrt{3} \frac{\sqrt{3}}{3}} = 8^{\frac{2\sqrt{3}}{3}} = 2^{3 \times \frac{2\sqrt{3}}{3}} = 2^{2\sqrt{3}}$
 - (2) $5^{\sqrt{8}} \div 5^{\sqrt{2}} = 5^{\sqrt{8}-\sqrt{2}} = 5^{2\sqrt{2}-\sqrt{2}} = 5^{\sqrt{2}}$
 - (3) $(3^{\sqrt{2}})^{\sqrt{8}} = 3^{\sqrt{2} \times \sqrt{8}} = 3^{\sqrt{16}} = 3^4 = 81$
 - (4) $7^{\pi} \times 9^{\frac{\pi}{2}} = 7^{\pi} \times 3^{2 \times \frac{\pi}{2}} = (7 \times 3)^{\pi} = 21^{\pi}$

37~38쪽

1-1 (1)
$$\frac{1}{729}$$
 (2) 1 (3) 4 (4) 9

2-1 (1) 2 (2)
$$\frac{3}{2}$$
 (3) $2^{\frac{5}{2}}3^{\frac{11}{6}}$ (4) 1

3-1
$$\frac{17}{4}$$

4-1
$$-\frac{1}{2}$$

1-1 (1)
$$9^{-3} = \frac{1}{9^3} = \frac{1}{729}$$

(2)
$$7^0 = 1$$

(3)
$$(-8)^{\frac{2}{3}} = (-2)^{3 \times \frac{2}{3}} = (-2)^2 = 4$$

(4)
$$81^{0.5} = 9^{2 \times 0.5} = 9^1 = 9$$

2-1 (1)
$$2^{\frac{2}{3}} \times 4^{\frac{3}{2}} \div 8^{\frac{8}{9}} = 2^{\frac{2}{3}} \times 2^{2 \times \frac{3}{2}} \div 2^{3 \times \frac{8}{9}} = 2^{\frac{2}{3} + 3 - \frac{8}{3}} = 2$$

(2)
$$2 \times 27^{\frac{1}{3}} \div 8^{\frac{2}{3}} = 2 \times 3^{3 \times \frac{1}{3}} \div 2^{3 \times \frac{2}{3}} = 2^{1-2} \times 3 = \frac{3}{2}$$

$$(3)\ 2^{\frac{1}{2}}\times 9^{\frac{2}{3}}\times \big(4^{\frac{1}{3}}\times 3^{\frac{1}{6}}\big)^3 = 2^{\frac{1}{2}}\times 3^{2\times \frac{2}{3}}\times 4\times 3^{\frac{1}{2}}$$

$$= 2^{\frac{1}{2}+2} \times 3^{\frac{4}{3}+\frac{1}{2}} = 2^{\frac{5}{2}} 3^{\frac{11}{6}}$$

(4)
$$3^{\sqrt{3}+1} \times 3^{\sqrt{3}-1} \div 9^{\sqrt{3}} = 3^{2\sqrt{3}-2\sqrt{3}} = 3^0 = 1$$

3-1
$$(a^{\frac{1}{2}} - a^{-\frac{1}{2}})^2 = a + a^{-1} - 2$$
이므로

$$a+a^{-1}=(a^{\frac{1}{2}}-a^{-\frac{1}{2}})^2+2$$

$$=\left(\frac{3}{2}\right)^2+2=\frac{17}{4}$$

4-1
$$4^{-\frac{1}{4}} \times 8^{\frac{1}{6}} \div 16^{\frac{1}{8}} = 2^{-\frac{2}{4} + \frac{3}{6} - \frac{4}{8}} = 2^{-\frac{1}{2}} = 2^m$$
이므로

$$m = -\frac{1}{2}$$

중단원 연습 문제

40~44쪽

1-1
$$a=7, b=1$$

2-1 (1) 9 (2)
$$2^{\frac{5}{3}}$$

4-1 (1)
$$2^{\frac{1}{4}}$$
 (2) $5^{\frac{5}{12}}$ (3) 1 (4) $5^{\frac{1}{2}}$

5-1 (1) 3 (2)
$$\frac{3}{8}$$
 (3) $-\frac{8}{3}$

6-1 (1) 1 (2) 6

$$-\frac{0}{2}$$

9-1
$$24\sqrt{3}$$
 cm³

11-1
$$\frac{24}{5}$$

1-1
$$(2^2)^3 \times 10^5 \div (20^2 \times 25)$$

= $2^6 \times (2 \times 5)^5 \div \{(2^2 \times 5)^2 \times 5^2\}$
= $2^6 \times (2^5 \times 5^5) \div (2^4 \times 5^2 \times 5^2)$
= $2^{6+5-4} \times 5^{5-(2+2)} = 2^7 \times 5$
∴ $a=7$, $b=1$

2-1 (1)
$$\sqrt[5]{(-3)^{10}} = (-3)^2 = 9$$

$$(2) \sqrt{4\sqrt[3]{8\sqrt[4]{16}}} = 4^{\frac{1}{2}} \times 8^{\frac{1}{6}} \times 16^{\frac{1}{24}}$$
$$= 2^{2 \times \frac{1}{2}} \times 2^{3 \times \frac{1}{6}} \times 2^{4 \times \frac{1}{24}}$$
$$= 2^{1 + \frac{1}{2} + \frac{1}{6}} = 2^{\frac{10}{6}} = 2^{\frac{5}{3}}$$

3-1
$$\neg . (-4)^0 = 1$$

$$-\left(\frac{1}{4}\right)^{-2}=2^{(-2)\times(-2)}=2^4=16$$

$$rac{6\sqrt{4^2}}{4^2} = 4\frac{2}{6} = 2^{2 \times \frac{2}{6}} = 2^{\frac{2}{3}}$$

$$=.9^{-\frac{1}{2}}=3^{2\times\left(-\frac{1}{2}\right)}=3^{-1}=\frac{1}{3}$$

따라서 옳은 것은 ㄴ, ㄷ이다.

4-1 (1)
$$\sqrt[3]{2} \times \sqrt[6]{16} \div \sqrt[4]{8} = 2^{\frac{1}{3}} \times 2^{\frac{4}{6}} \div 2^{\frac{3}{4}}$$

$$=2^{\frac{1}{3}+\frac{2}{3}-\frac{3}{4}}=2^{\frac{1}{4}}$$

(2)
$$\sqrt[4]{5\sqrt{5}\sqrt[3]{5}} = 5^{\frac{1}{4} + \frac{1}{8} + \frac{1}{24}} = 5^{\frac{10}{24}} = 5^{\frac{5}{12}}$$

(3)
$$\frac{\left(3^{2}\right)^{-3} \times \left(3^{-4}\right)^{-2}}{3^{3} \times 3^{-1}} = \frac{3^{-6+8}}{3^{2}} = \frac{3^{2}}{3^{2}} = 1$$

$$(4) \ 15^{\frac{4}{3}} \times 3^{-\frac{4}{3}} \times 5^{-\frac{5}{6}} = (5 \times 3)^{\frac{4}{3}} \times 3^{-\frac{4}{3}} \times 5^{-\frac{5}{6}}$$

$$=5^{\frac{4}{3}-\frac{5}{6}} \times 3^{\frac{4}{3}-\frac{4}{3}} = 5^{\frac{3}{6}} = 5^{\frac{1}{2}}$$

5-1 (1)
$$(2\sqrt[3]{16})^k = 2^7$$
의 좌변을 정리하면

$$(2\sqrt[3]{16})^k = (2 \times 2^{\frac{4}{3}})^k = 2^{\frac{7}{3}k}$$

$$2^{\frac{7}{3}k} = 2^{7}$$
에서 $\frac{7}{3}k = 7$ 이므로 $k = 3$

 $(2)\sqrt{3}^{6}\sqrt{27}=3^{2k}$ 의 좌변을 정리하면

$$\sqrt{3^6\sqrt{27}} = 3^{\frac{1}{2}} \times 3^{3 \times \frac{1}{12}} = 3^{\frac{3}{4}}$$

$$3^{\frac{3}{4}} = 3^{2k}$$
에서 $\frac{3}{4} = 2k$ 이므로 $k = \frac{3}{8}$

$$(3)$$
 $\sqrt[3]{5^{-3} \times \sqrt{5\sqrt{5}}} = \sqrt[4]{\frac{5^k}{3/5}}$ 의 양변을 각각 정리하면

$$\sqrt[3]{5^{-3} \times \sqrt{5\sqrt{5}}} = 5^{-1} \times 5^{\frac{1}{6}} \times 5^{\frac{1}{12}} = 5^{-\frac{3}{4}}$$

$$\sqrt[4]{\frac{5^k}{\sqrt[3]{5}}} = \sqrt[4]{\frac{5^k}{5^{\frac{1}{3}}}} = 5^{\frac{k}{4} - \frac{1}{12}}$$

$$5^{-\frac{3}{4}} = 5^{\frac{k}{4} - \frac{1}{12}}$$
에서 $-\frac{3}{4} = \frac{k}{4} - \frac{1}{12}$ 이므로 $k = -\frac{8}{3}$

6-1 (1)
$$(3^{\frac{1}{4}} - 2^{\frac{1}{4}})(3^{\frac{1}{4}} + 2^{\frac{1}{4}})(3^{\frac{1}{2}} + 2^{\frac{1}{2}}) = (3^{\frac{1}{2}} - 2^{\frac{1}{2}})(3^{\frac{1}{2}} + 2^{\frac{1}{2}})$$

 $= 3 - 2 = 1$
(2) $(\sqrt[3]{5} + 1)(\sqrt[3]{25} - \sqrt[3]{5} + 1) = (\sqrt[3]{5})^3 + 1^3$
 $= 5 + 1 = 6$

- **7-1** 4^a : 4^b =16 : 1에서 2^{2a} = 16×2^{2b} = 2^{2b+4} 따라서 2a=2b+4이므로 a-b=2
- 8-1 $2^{2x}+2^{-2x}=(2^x-2^{-x})^2+2\times 2^x\times 2^{-x}$ 이므로 $2^{2x}+2^{-2x}=3^2+2=9+2=11$
- **9-1** 밑면의 넓이가 12 cm^2 인 정육면체의 한 모서리의 길이를 a cm라고 하면

$$a^2 = 12$$
 $\therefore a = \sqrt{12} = 2\sqrt{3}$
따라서 이 정육면체의 부피는 $a^3 = (2\sqrt{3})^3 = 24\sqrt{3}$ (cm³)

10-181의 네제곱근을 x라고 하면 x^4 =81이므로

$$x^4 - 81 = (x^2 - 3^2)(x^2 + 3^2) = 0$$

 $x = \pm 3 \, \pm \pm x = \pm 3i$

따라서 81의 네제곱근 중에서 실수인 것은 3, -3이므로 a=3 또는 a=-3

또,
$$-8$$
의 세제곱근을 x 라고 하면 $x^3 = -8$ 이므로
$$x^3 + 8 = (x+2)(x^2 - 2x + 4) = 0$$

$$x = -2$$
 또는 $x = 1 \pm \sqrt{3}i$

따라서 -8의 세제곱근 중에서 실수인 것은 -2이므로 b=-2

이때 a-b의 최댓값은 a=3일 때이므로 3-(-2)=5에서 5이다.

11-1 a^{2x} =5이므로 $\frac{a^{3x}-a^{-3x}+a^x-a^{-x}}{a^x+a^{-x}}$ 의 분자, 분모에 a^x 을

곱하여 정리하면

$$\frac{a^{3x} - a^{-3x} + a^x - a^{-x}}{a^x + a^{-x}} = \frac{a^{4x} - a^{-2x} + a^{2x} - 1}{a^{2x} + 1}$$
$$= \frac{5^2 - 5^{-1} + 5 - 1}{5 + 1}$$
$$= \frac{24}{5}$$

2. 로그

2-1 로그의 뜻과 성질

내신 대비 쌍둥이 문제

46~49쪽

1-1 (1)
$$\frac{7}{2} = \log_4 128$$
 (2) $-2 = \log_{\frac{1}{95}} 625$

2-1 (1)
$$8^{\frac{1}{2}} = 2\sqrt{2}$$
 (2) $\left(\frac{1}{3}\right)^{-4} = 81$

3-1 (1) 0 (2) 2 (3)
$$-2$$
 (4) $\frac{1}{2}$

6-1 (1) 2 (2) 1 (3) 1 (4)
$$-3$$

7-1 (1)
$$2 + 2\log_3 2$$
 (2) $-\frac{1}{2}$ (3) 1 (4) $\frac{3}{2}$

8-1 (1)
$$\log_5 \sqrt{3}$$
 (2) $\log_5 \frac{1}{8}$

9-1 풀이 참조 10-1 (1)
$$\frac{2a+b}{2a}$$
 (2) $\frac{4b}{a}$

1-1 (1)
$$\frac{7}{2} = \log_4 128$$

(2)
$$-2 = \log_{\frac{1}{25}} 625$$

2-1 (1)
$$8^{\frac{1}{2}} = 2\sqrt{2}$$

$$(2)\left(\frac{1}{3}\right)^{-4} = 81$$

3-1 (1) log₇ 1=x라고 하면 로그의 정의에 의하여 7^x =1= 7^0 ∴ x=0

(2)
$$\log_3 9 = x$$
라고 하면 로그의 정의에 의하여 $3^x = 9 = 3^2$ $\therefore x = 2$

 $(3)\log_{\frac{1}{5}}25{=}x$ 라고 하면 로그의 정의에 의하여

$$\left(\frac{1}{5}\right)^x = 25 = \left(\frac{1}{5}\right)^{-2}$$
 $\therefore x = -2$

 $^{(4)}\log_{3}\sqrt{3}{=}x$ 라고 하면 로그의 정의에 의하여

$$3^x = \sqrt{3} = 3^{\frac{1}{2}}$$
 $\therefore x = \frac{1}{2}$

4-1 (1)
$$\log_{\frac{1}{4}}N = -3$$
에서 $N = \left(\frac{1}{4}\right)^{-3} = 64$

$$(2) \log_5 N = 2$$
에서 $N = 5^2 = 25$

5-1 $\log_{a^m} b = x$ 라고 하면 로그의 정의에 의하여 $(a^m)^x = b$, 즉 $a^{mx} = b$

따라서
$$mx = \log_a b$$
이고 $x = \frac{1}{m} \log_a b$ 이므로

$$\log_{a^m} b = \frac{1}{m} \log_a b$$
이다.

6-1 (1)
$$\log_6 1 + \log_6 36 = \log_6 (1 \times 36)$$

$$=\log_{6}6^{2}=2$$

(2)
$$\log_{15} 5 + \log_{15} 3 = \log_{15} (5 \times 3)$$

$$=\log_{15}15=1$$

(3)
$$\log_2 10 - \log_2 5 = \log_2 \frac{10}{5}$$

$$=\log_{2}2=1$$

(4)
$$\log_4 \frac{1}{64} = \log_4 4^{-3} = -3$$

7-1 (1)
$$\log_3 \frac{9}{2} + \log_3 8 = \log_3 \left(\frac{9}{2} \times 8\right) = \log_3 (9 \times 4)$$

$$= \log_3 9 + \log_3 4$$

$$=2+2\log_3 2$$

(2)
$$2\log_5\sqrt{3} - \log_5\sqrt{45} = \log_5\frac{(\sqrt{3})^2}{\sqrt{45}} = \log_5\frac{3}{3\sqrt{5}}$$

$$=\log_5\frac{1}{\sqrt{5}}=-\frac{1}{2}$$

(3)
$$\log_6 \sqrt[3]{16} + \frac{1}{3} \log_6 \frac{27}{2} = \log_6 16^{\frac{1}{3}} + \log_6 \left(\frac{27}{2}\right)^{\frac{1}{3}}$$

$$=\log_6\left(16\times\frac{27}{2}\right)^{\frac{1}{3}}$$

$$=\log_{6}216^{\frac{1}{3}}$$

$$=\log_6 6^{3\times\frac{1}{3}}$$

$$=\log_{6}6=1$$

(4)
$$3\log_2\sqrt{10} + \frac{1}{2}\log_2 5 - \log_2 25$$

$$=\log_2(\sqrt{10})^3 + \log_2 5^{\frac{1}{2}} - \log_2 25$$

$$=\log_2\left(\frac{10^{\frac{3}{2}}\times 5^{\frac{1}{2}}}{25}\right)$$

$$=\log_2\left(\frac{10\sqrt{10}\times\sqrt{5}}{25}\right)$$

$$=\log_2\frac{50\sqrt{2}}{25}$$

$$=\log_2 2^{\frac{3}{2}} = \frac{3}{2}$$

8-1 (1)
$$\log_{25} 3 = \frac{\log_5 3}{\log_5 25} = \frac{1}{2} \log_5 3 = \log_5 \sqrt{3}$$

(2)
$$\log_{\frac{1}{5}} 8 = \frac{\log_5 8}{\log_5 \frac{1}{5}} = -\log_5 8 = \log_5 \frac{1}{8}$$

9-1 1이 아닌 양수 *d* 에 대하여

$$\log_a b = \frac{\log_d b}{\log_d a}$$
, $\log_b c = \frac{\log_d c}{\log_d b}$, $\log_c a = \frac{\log_d a}{\log_d c}$

가 성립하므로

$$\log_a b \cdot \log_b c \cdot \log_c a$$

$$= \frac{\log_d b}{\log_d a} \cdot \frac{\log_d c}{\log_d b} \cdot \frac{\log_d a}{\log_d c} = 1$$

즉, $\log_a b \cdot \log_b c \cdot \log_c a = 1$ 이 성립한다.

$$\mathbf{10-1} \text{(1) } \log_4 12 = \frac{\log_{10} 12}{\log_{10} 4} = \frac{\log_{10} \left(2^2 \times 3\right)}{\log_{10} 2^2}$$

$$=\frac{2\log_{10}2+\log_{10}3}{2\log_{10}2}=\frac{2a+b}{2a}$$

(2)
$$\log_2 81 = \frac{\log_{10} 81}{\log_{10} 2} = \frac{\log_{10} 3^4}{\log_{10} 2} = \frac{4\log_{10} 3}{\log_{10} 2} = \frac{4b}{a}$$

소단원 확인 문제

50~51쪽

1-1 (1)
$$- \bigcirc$$
, (2) $- \bigcirc$, (3) $- \bigcirc$, (4) $- \bigcirc$

2-1 (1)
$$\frac{4}{3}$$
 (2) $-\frac{3}{2}$ (3) $\frac{4}{3}$ (4) -3

3-1 (1) 3 (2) 3 (3) 4 (4)
$$\frac{5}{2}$$

4-1 (1)
$$a+2b$$
 (2) $\frac{3a-b+2}{2a+1}$

1-1 (1)
$$3^{\frac{3}{2}} = 3\sqrt{3} \iff \frac{3}{2} = \log_3 3\sqrt{3}$$
 (©)

(2)
$$6^3 = 216 \iff 3 = \log_6 216 \ (\textcircled{2})$$

$$(3)\left(\frac{1}{5}\right)^{-1} = 5 \iff -1 = \log_{\frac{1}{5}} 5 \left(\bigcirc\right)$$

(4)
$$2^{\frac{3}{2}} = \sqrt{8} \iff \frac{3}{2} = \log_2 \sqrt{8} \ (\bigcirc)$$

$$\therefore$$
 (1) $- \bigcirc$, (2) $- \bigcirc$, (3) $- \bigcirc$, (4) $- \bigcirc$

2-1 (1)
$$\log_5 \sqrt[3]{625} = \log_5 (5^4)^{\frac{1}{3}} = \frac{4}{3}$$

(2)
$$\log_{10} \frac{1}{10\sqrt{10}} = \log_{10} 10^{-\frac{3}{2}} = -\frac{3}{2}$$

(3)
$$\log_8 16 = \log_{2^9} 2^4 = \frac{4}{3} \log_2 2 = \frac{4}{3}$$

(4)
$$\log_3 \frac{1}{27} = \log_3 3^{-3} = -3$$

3-1 (1)
$$2\log_5 3 + \log_5 \frac{125}{9} = \log_5 \left(3^2 \times \frac{125}{9}\right)$$

$$=\log_5 125 = \log_5 5^3 = 3$$

(2)
$$3\log_2 18 - 6\log_2 \sqrt[4]{81} = \log_2 18^3 - 6\log_2 3^{4 \times \frac{1}{4}}$$

= $\log_2 \left(\frac{18^3}{2^6}\right)$

$$=\log_2 2^3 = 3$$

(3)
$$\log_2 5 \times \log_5 16 = \log_2 5 \times \frac{\log_2 16}{\log_2 5}$$

$$=\log_2 16 = \log_2 2^4 = 4$$

(4)
$$4\log_3\sqrt{6} + \frac{1}{2}\log_312 - \log_38$$

$$= \log_3\left(\frac{6^2 \times \sqrt{12}}{8}\right) = \log_3 9\sqrt{3} = \log_3 3^{\frac{5}{2}} = \frac{5}{2}$$

4-1 (1)
$$\log_3 50 = \log_3 (2 \times 5^2) = \log_3 2 + 2 \log_3 5$$

= $a + 2b$

(2)
$$\log_{12} \frac{72}{5} = \log_{12} \frac{144}{10} = \log_{12} 12^2 - \log_{12} 10$$

 $= 2 - \frac{\log_3 10}{\log_3 12} = 2 - \frac{\log_3 (2 \times 5)}{\log_3 (2^2 \times 3)}$
 $= 2 - \frac{\log_3 2 + \log_3 5}{2 \log_3 2 + 1}$
 $= 2 - \frac{a + b}{2a + 1}$
 $= \frac{3a - b + 2}{2a + 1}$

2-2 상용로그

내신 대비 쌍둥이 문제

53~54쪽

1-1 (1)
$$-2$$
 (2) $\frac{2}{5}$

3-1 (1) **1.045**3 (2) **4.045**3 (3)
$$-1.9547$$
 (4) -2.9547

4-1
$$\frac{1}{2}$$
 배

1-1 (1)
$$\log 0.01 = \log 10^{-2} = -2$$

(2)
$$\log \sqrt[5]{100} = \log 10^{\frac{2}{5}} = \frac{2}{5}$$

- **2-1** (1) log 2.03=0.3075
 - $(2) \log 9.85 = 0.9934$
 - (3) $\log 4.67 = 0.6693$
 - (4) $\log 7.00 = 0.8451$
- **3-1** log 1.11=0.0453이므로

(1)
$$\log 11.1 = \log 1.11 + \log 10$$

$$=0.0453+1$$

$$=1.0453$$

(2)
$$\log 11100 = \log 1.11 + \log 10000$$

$$=0.0453+4$$

$$=4.0453$$

(3)
$$\log 0.0111 = \log 1.11 + \log 10^{-2}$$

$$=0.0453-2$$

$$=-1.9547$$

(4)
$$\log 0.00111 = \log 1.11 + \log 10^{-3}$$

$$=0.0453-3$$

$$=-2.9547$$

4-1 전파감쇄비가 -3데시벨인 벽을 투과할 때

$$-3=10\log\frac{B}{A}$$

$$=\frac{3}{10} = \log \frac{B}{A}$$
 에서 $\frac{B}{A} = 10^{-\frac{3}{10}}$

이때 $10^{\frac{7}{10}}$ =5이므로

$$\frac{B}{A} = 10^{-\frac{3}{10}} = 10^{\frac{7}{10}-1} = \frac{5}{10} = \frac{1}{2}$$

따라서 벽을 투과한 전파의 세기는 투과하기 전 세기의 $\frac{1}{2}$ 배이다.

확인 문제

55~56쪽

- **1-1** (1) 2
- $(2)\frac{4}{2}$ (3)-4
- **2-1** (1) **0.7**810 (2) **0.1**492
- - (3) 0.5038 (4) 0.9881
- **3-1** (1) 2.9133 (2) -1.0867 (3) 0.45665 (4) -0.9133
- **4-1** 683
- **1-1** (1) $\log 100 = \log 10^2 = 2$

(2)
$$\log 10\sqrt[3]{10} = \log 10^{\frac{4}{3}} = \frac{4}{2}$$

(3)
$$\log 0.0001 = \log 10^{-4} = -4$$

정답과 해설

- **2-1** (1) log 6.04 = 0.7810
 - (2) $\log 1.41 = 0.1492$
 - (3) $\log 3.19 = 0.5038$
 - (4) $\log 9.73 = 0.9881$
- **3-1** log 8.19=0.9133이므로
 - (1) $\log 819 = \log 8.19 + \log 100$

$$=0.9133+2$$

- =2.9133
- (2) $\log 0.0819 = \log 8.19 + \log 10^{-2}$

$$=0.9133-2$$

$$=-1.0867$$

- (3) $\log \sqrt{8.19} = \frac{1}{2} \log 8.19 = \frac{1}{2} \times 0.9133 = 0.45665$
- (4) $\log \frac{1}{8.10} = -\log 8.19 = -0.9133$
- **4-1** log 6.83=0.8344이므로

$$\log N = 2.8344 = 2 + 0.8344$$

$$=2 + \log 6.83$$

$$=\log 10^2 + \log 6.83$$

$$=\log(100 \times 6.83)$$

$$= \log 683$$

58~62쪽

- **1-1** (1) 0
- $(2) \ 3$
- $(3)\ 3$
- (4) 7

- **2-1** (1) 32
- (2) $\sqrt{7}$
- (3) 5
- (4) 3

- **3-1** (1) 1
- $(2)\frac{9}{2}$
- (3) 2
- $(4) \ 3$
- **4-1** (1) **0.6990** (2) **-0.5687** (3) **1.6532** (4) **2.2552**

- **5-1** 0
- **6-1** (1) 2 (2) 1 (3) $\frac{21}{4}$
- **7-1** -2a-b **8-1** 15
- 9-1 0.00379
- **10-1** $\frac{2a+ab}{ab}$ **11-1** 7
- **1-1** (1) $\log_4 1 = 0$
 - (2) $\log_5 125 = \log_5 5^3 = 3$
 - (3) $\log_{\frac{1}{2}} \frac{1}{27} = \log_{\frac{1}{2}} \left(\frac{1}{3}\right)^3 = 3$
 - (4) $\log_{\frac{1}{2}} 128 = \log_{2^{-1}} 2^7 = -7$

- **2-1** (1) $\log_2 x = 5$ 에서 $x = 2^5 = 32$
 - $(2) \log_{r} 7 = 2$ 에서 $x^{2} = 7$ 이므로

$$x=\sqrt{7}$$
 ($:: x$ 는 양수)

- (3) $\log_{\frac{1}{5}} x = -1$ M/A $x = \left(\frac{1}{5}\right)^{-1} = 5$
- (4) $\log_x 9\sqrt{3} = \frac{5}{2}$ 에서 $x^{\frac{5}{2}} = 9\sqrt{3} = 3^{\frac{5}{2}}$ 이므로

$$x=3$$

- **3-1** (1) $\log_5 3\sqrt{5} \log_5 \frac{3}{\sqrt{5}} = \log_5 \left(3\sqrt{5} \div \frac{3}{\sqrt{5}}\right)$
 - (2) $\log_2 9 \times \log_3 4 + \log_6 \sqrt{6} = 2 \log_2 3 \times 2 \log_3 2 + \frac{1}{2}$

$$=2\log_2 3 \times \frac{2}{\log_2 3} + \frac{1}{2}$$
$$=4 + \frac{1}{2} = \frac{9}{2}$$

(3) $\log 25 - \log 15 + \log 60 = \log (25 \div 15 \times 60)$

$$=\log 100=2$$

(4) $\log_5 6 \times \log_{36} 49 \times \log_7 125$

$$=\!log_{\scriptscriptstyle{5}}6\!\times\!\frac{2}{2}log_{\scriptscriptstyle{6}}7\!\times\!log_{\scriptscriptstyle{7}}5^{\scriptscriptstyle{3}}$$

$$=3\log_56\times\log_67\times\log_75$$

$$= 3 \times \frac{\log 6}{\log 5} \times \frac{\log 7}{\log 6} \times \frac{\log 5}{\log 7}$$

=3

4-1 (1) $\log 5 = \log \frac{10}{2} = \log 10 - \log 2$

$$=1-0.3010=0.6990$$

(2) $\log 0.27 = \log \frac{27}{100} = \log 27 - \log 100$

$$=3\log 3-2=3\times 0.4771-2$$

$$=-0.5687$$

(3) $\log 45 = \log (3^2 \times 5) = 2 \log 3 + \log 5$

$$=2\log 3 + (1-\log 2)$$

$$=2\times0.4771+(1-0.3010)$$

$$=1.6532$$

(4) $\log 180 = \log (2 \times 3^2 \times 10)$

$$=\log 2 + 2\log 3 + \log 10$$

$$=0.3010+2\times0.4771+1$$

$$=2.2552$$

5-1 $\log_{|a-2|}(7-2a)$ 가 정의되려면 로그의 밑과 진수의 조건에 의하여 |a-2|>0, $|a-2|\ne 1$ 이고 7-2a>0이어야 하다

따라서 $a \neq 2$, $a \neq 3$, $a \neq 1$ 이고 $a < \frac{7}{2}$ 이므로 음이 아닌 정수 a의 값은 0이다.

6-1 (1) $\log_2 \frac{5}{3} + \log_2 \frac{7}{5} + \log_2 \frac{12}{7} = \log_2 \left(\frac{5}{3} \times \frac{7}{5} \times \frac{12}{7}\right)$ = $\log_2 4 = 2$

(2)
$$\frac{1}{\log_2 70} + \frac{1}{\log_5 70} + \frac{1}{\log_7 70}$$
$$= \log_{70} 2 + \log_{70} 5 + \log_{70} 7$$
$$= \log_{70} (2 \times 5 \times 7)$$
$$= \log_{70} 70 = 1$$

- (3) $(\log_3 7 + \log_9 7)(\log_7 9 + \log_{49} 27)$ $= \log_3 7 \times \log_7 9 + \log_9 7 \times \log_7 9$ $+ \log_3 7 \times \log_{49} 27 + \log_9 7 \times \log_{49} 27$ $= 2 + 1 + \frac{3}{2} + \frac{3}{4} = \frac{21}{4}$
- 7-1 $\log_{\frac{1}{2}} 175 = -\log_2 175 = -\log_2 (5^2 \times 7)$ = $-(2\log_2 5 + \log_2 7)$ = -(2a+b)= -2a-b
- 8-1 $\log_3(x-y) = 1$ 에서 x-y=3 $\log_3 x + \log_3 y = \log_3 xy = 1$ 에서 xy=3 $\therefore x^2 + y^2 = (x-y)^2 + 2xy$ $= 3^2 + 2 \times 3 = 15$
- 9-1 $\log x = -2.4214 = -3 + (1 0.4214) = -3 + 0.5786$ = $\log 10^{-3} + \log 3.79 = \log (10^{-3} \times 3.79)$ = $\log 0.00379$ $\therefore x = 0.00379$
- 10-1 $\log_3 5 = a$, $\log_5 7 = b$ 이므로 $\log_3 7 = \log_3 5 \times \log_5 7 = ab$ $\therefore \log_7 175 = \frac{\log_3 175}{\log_3 7} = \frac{\log_3 (5^2 \times 7)}{\log_3 7}$ $= \frac{2\log_3 5 + \log_3 7}{\log_3 7}$ $= \frac{2a + ab}{ab}$

11-1 신호잡음전력비가 a일 때의 최대 전송 속도를 C_1 , 신호잡음전력비가 73a일 때의 최대 전송 속도를 C_2 라고 하면 각각 다음이 성립한다.

$$C_1 = B imes \log_2{(1+a)}$$
①
 $C_2 = B imes \log_2{(1+73a)}$ ②
이때 $C_2 = 3C_1$ 이므로 ①, ②에서
 $B imes \log_2{(1+73a)} = 3B imes \log_2{(1+a)}$
 $1 + 73a = (1+a)^3, \ a^3 + 3a^2 - 70a = 0$
 $a(a+10)(a-7) = 0$
 $\therefore a = 7 \ (\because a > 0)$

3. 지수함수와 로그함수의 뜻과 그래프

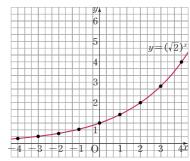
3-1 지수함수의 뜻과 그래프

내신 대비 생동이 문제 1-1 풀이 참조 2-1 풀이 참조 3-1 (1) 그래프는 풀이 참조, 점근선: y=−1 (2) 그래프는 풀이 참조, 점근선: y=2 4-1 (1) 5√5 > ⁵√625 (2) 1/25² < 1/5³

1-1 함수 $y=(\sqrt{2})^x$ 에서 실수 x의 값에 대응하는 y의 값을 나타 내면 다음 표와 같다.

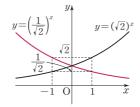
	x	 -4	-3	-2	-1	0	1	2	3	4	
(,	$\sqrt{2}$) ^x	 $\frac{1}{4}$	$\frac{1}{2\sqrt{2}}$	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	1	$\sqrt{2}$	2	$2\sqrt{2}$	4	

위 표에서 얻은 순서쌍 (x, y)를 좌표로 하는 점을 좌표 평면 위에 나타내고, 매끄러운 곡선으로 연결하면 다음 그림과 같은 함수 $y=(\sqrt{2})^x$ 의 그래프를 그릴 수 있다.



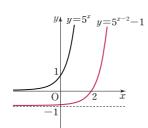
2-1 함수 $y=\left(\frac{1}{\sqrt{2}}\right)^x$ 에서 $\left(\frac{1}{\sqrt{2}}\right)^x=(\sqrt{2})^{-x}$ 이므로 함수 $y=\left(\frac{1}{\sqrt{2}}\right)^x$ 의 그래프는 함수 $y=(\sqrt{2})^x$ 의 그래프를 y축에 대하여 대칭이동한 것이다.

따라서 함수 $y = \left(\frac{1}{\sqrt{2}}\right)^x$ 의 그래프는 다음 그림과 같다.

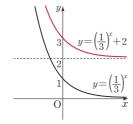


3-1 (1) 함수 $y=5^{x-2}-1$ 의 그래프는 함수 $y=5^x$ 의 그래프를 x축의 방향으로 2만큼, y축의 방향으로 -1만큼 평행 이동한 것이다.

따라서 그 그래프는 다음 그림과 같고, 이때 점근선의 방정식은 y=-1이다.

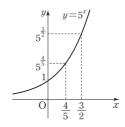


(2) 함수 $y = \left(\frac{1}{3}\right)^x + 2$ 의 그래프는 함수 $y = \left(\frac{1}{3}\right)^x$ 의 그래 프를 y축의 방향으로 2만큼 평행이동한 것이다. 따라서 그 그래프는 다음 그림과 같고, 이때 점근선의



방정식은 y=2이다.

4-1 (1) 주어진 두 수를 5를 밑으로 하는 지수로 나타내면 $5\sqrt{5}=5^{\frac{3}{2}},\ ^{5}\sqrt{625}=5^{\frac{4}{5}}$ 이때 함수 $y=5^x$ 의 그래프는 다음 그림과 같으므로 $5^{\frac{3}{2}}>5^{\frac{4}{5}},\ 즉 5\sqrt{5}>^{5}\sqrt{625}$

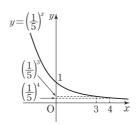


(2) 주어진 두 수를 $\frac{1}{5}$ 을 밑으로 하는 지수로 나타내면

$$\frac{1}{25^2} = \left(\frac{1}{5}\right)^4, \ \frac{1}{5^3} = \left(\frac{1}{5}\right)^3$$

이때 함수 $y = \left(\frac{1}{5}\right)^x$ 의 그래프는 다음 그림과 같으므로

$$\left(\frac{1}{5}\right)^4 < \left(\frac{1}{5}\right)^3, \stackrel{2}{\rightarrow} \frac{1}{25^2} < \frac{1}{5^3}$$



소단원 확인 문제

67~69쪽

- **1-1** (1) \bigcirc , (2) \bigcirc , (3) \bigcirc , (4) \bigcirc
- **2-1** (1) $27^3 < 9^7$ (2) $\frac{1}{\sqrt[5]{64}} > \frac{1}{\sqrt{32}}$
- **3-1** (1) 그래프는 풀이 참조, 점근선: y=-1
 - (2) 그래프는 풀이 참조, 점근선: y=3
 - (3) 그래프는 풀이 참조, 점근선: y=0
 - (4) 그래프는 풀이 참조, 점근선: y=1
- **4-1** $y = \frac{7}{4}$
- **1-1** 함수 $y=a^x (a>0, a\neq 1)$ 의 그래프는
 - (i) a>1일 때, x>0에서는 a의 값이 클수록 y축에 가까 우므로 함수와 그래프를 짝 지으면

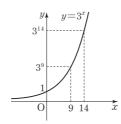
$$(1) - \Box$$
, $(2) - \Box$

(ii) 0 < a < 1일 때, x < 0에서는 a의 값이 작을수록 y축에 가까우므로 함수와 그래프를 짝 지으면

$$(3) - \bigcirc, (4) - \bigcirc$$

2-1 (1) 주어진 두 수를 3을 밑으로 하는 지수로 나타내면 $27^3 = 3^9, \ 9^7 = 3^{14}$

이때 함수 $y=3^x$ 의 그래프는 다음 그림과 같으므로 $3^9<3^{14}$, 즉 $27^3<9^7$

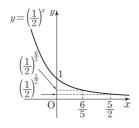


(2) 주어진 두 수를 $\frac{1}{2}$ 을 밑으로 하는 지수로 나타내면

$$\frac{1}{\sqrt[5]{64}} = \left(\frac{1}{2}\right)^{\frac{6}{5}}, \ \frac{1}{\sqrt{32}} = \left(\frac{1}{2}\right)^{\frac{5}{2}}$$

이때 함수 $y = \left(\frac{1}{2}\right)^x$ 의 그래프는 다음 그림과 같으므로

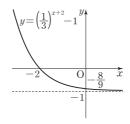
$$\left(\frac{1}{2}\right)^{\frac{6}{5}} > \left(\frac{1}{2}\right)^{\frac{5}{2}}, \stackrel{2}{\rightleftharpoons} \frac{1}{\sqrt[5]{64}} > \frac{1}{\sqrt{32}}$$



3-1 (1) 함수 $y = \left(\frac{1}{3}\right)^{x+2} - 1$ 의 그래프는 함수 $y = \left(\frac{1}{3}\right)^x$ 의 그래

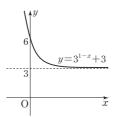
프를 x축의 방향으로 -2만큼, y축의 방향으로 -1만큼 평행이동한 것이다.

따라서 그 그래프는 다음 그림과 같고, 이때 점근선의 방정식은 y=-1이다.



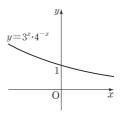
(2) 함수 $y=3^{1-x}+3$ 의 그래프는 함수 $y=3^{-x}=\left(\frac{1}{3}\right)^x$ 의 그래프를 x축의 방향으로 1만큼, y축의 방향으로 3만큼 평행이동한 것이다.

따라서 그 그래프는 다음 그림과 같고, 이때 점근선의 방정식은 y=3이다.



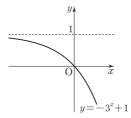
(3) 함수 $y=3^x\times 4^{-x}$ 의 그래프는 함수 $y=\left(\frac{3}{4}\right)^x$ 의 그래프 와 같다.

따라서 그 그래프는 다음 그림과 같고, 이때 점근선의 방정식은 y=0이다.



(4) 함수 $y = -3^x + 1$ 의 그래프는 함수 $y = 3^x$ 의 그래프를 x축에 대하여 대칭이동한 후 y축의 방향으로 1만큼 평행이동한 것이다.

따라서 그 그래프는 다음 그림과 같고, 이때 점근선의 방정식은 y=1이다.



4-1 주어진 그래프가 점 $\left(0, \frac{11}{4}\right)$ 을 지나므로

$$\frac{11}{4} = \left(\frac{1}{3}\right)^0 + b \qquad \therefore b = \frac{7}{4}$$

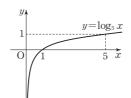
따라서 함수 $y=\left(\frac{1}{3}\right)^x+\frac{7}{4}$ 의 그래프에서 점근선의 방정식 은 $y=\frac{7}{4}$ 이다.

3-2 로그함수의 뜻과 그래프

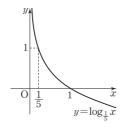
내신 대비 쌍둥이 문제

70~71쪽

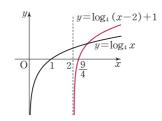
- 1-1 풀이 참조
- **2-1** (1) 그래프는 풀이 참조, 점근선: x=2
 - (2) 그래프는 풀이 참조, 점근선: x=0
- **3-1** (1) $\log_2 9 > \log_{\frac{1}{2}} 3$ (2) $\log_3 15 < \log_{\sqrt{3}} 4$
- **1-1** (1) 함수 $y = \log_5 x$ 는 함수 $y = 5^x$ 의 역함수이므로 그 그 래프는 다음 그림과 같다.



(2) 함수 $y = \log_{\frac{1}{5}} x$ 는 함수 $y = \left(\frac{1}{5}\right)^x$ 의 역함수이므로 그 그래프는 다음 그림과 같다.

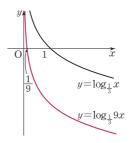


- **2-1** (1) 함수 $y = \log_4(x-2) + 1$ 의 그래프는 함수 $y = \log_4 x$ 의 그래프를 x축의 방향으로 2만큼, y축의 방향으로 1만큼 평행이동한 것이다.
 - 따라서 그 그래프는 다음 그림과 같고, 이때 점근선의 방정식은 x=2이다.



(2) $y = \log_{\frac{1}{3}} 9x = \log_{\frac{1}{3}} x - 2$ 이므로 함수 $y = \log_{\frac{1}{3}} 9x$ 의 그 래프는 함수 $y = \log_{\frac{1}{3}} x$ 의 그래프를 y축의 방향으로 -2만큼 평행이동한 것이다.

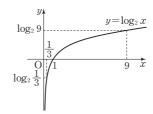
따라서 그 그래프는 다음 그림과 같고, 이때 점근선의 방정식은 x=0이다.



3-1 (1) 로그의 성질을 이용하면

$$\log_{\frac{1}{2}} 3 = -\log_2 3 = \log_2 \frac{1}{3}$$

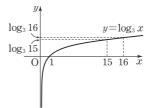
이때 함수 $y = \log_2 x$ 의 그래프는 다음 그림과 같으므로 $\log_2 9 > \log_2 \frac{1}{3}$, 즉 $\log_2 9 > \log_{\frac{1}{2}} 3$



(2) 로그의 성질을 이용하면

 $\log_{\sqrt{3}} 4 = 2\log_3 4 = \log_3 16$

이때 함수 $y = \log_3 x$ 의 그래프는 다음 그림과 같으므로 $\log_3 15 < \log_3 16$, 즉 $\log_3 15 < \log_{\sqrt{3}} 4$



소단위 확인 문제

73~74쪽

- **1-1** (1) \bigcirc , (2) \bigcirc , (3) \bigcirc , (4) \bigcirc
- **2-1** (1) $\log_4 7 < \log_2 3$ (2) $\log_{0.5} 3 < \log_{0.5} \frac{1}{4}$
- **3-1** (1) 그래프는 풀이 참조, 점근선: x=-1
 - (2) 그래프는 풀이 참조, 점근선: x=0
 - (3) 그래프는 풀이 참조, 점근선: x=0
 - (4) 그래프는 풀이 참조, 점근선: x=1
- **4-1** a=1, b=-1

- **1-1** 함수 $y = \log_a x \ (a > 0, \ a \neq 1)$ 의 그래프는
 - (i) a>1일 때, x>0에서는 a의 값이 클수록 x축에 가까 우므로 함수와 그래프를 짝 지으면

$$(1) - \bigcirc$$
, $(3) - \bigcirc$

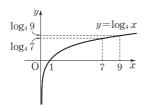
(ii) 0 < a < 1일 때, x > 0에서는 a의 값이 작을수록 x축에 가까우므로 함수와 그래프를 짝 지으면

$$(2) - (2) (4) - (2)$$

2-1 (1) 로그의 성질을 이용하면

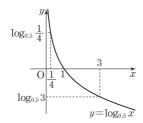
 $\log_2 3 = \log_{2^2} 3^2 = \log_4 9$

이때 함수 $y = \log_4 x$ 의 그래프는 다음 그림과 같으므로 $\log_4 7 < \log_4 9$, 즉 $\log_4 7 < \log_2 3$

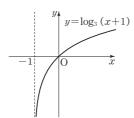


(2) 함수 $y = \log_{0.5} x$ 의 그래프는 다음 그림과 같으므로

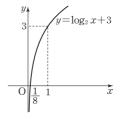
$$\log_{0.5} 3 < \log_{0.5} \frac{1}{4}$$



3-1 (1) 함수 $y = \log_3(x+1)$ 의 그래프는 함수 $y = \log_3 x$ 의 그래프를 x축의 방향으로 -1만큼 평행이동한 것이다. 따라서 그 그래프는 다음 그림과 같고, 이때 점근선의 방정식은 x = -1이다.

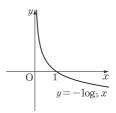


(2) 함수 $y = \log_2 x + 3$ 의 그래프는 함수 $y = \log_2 x$ 의 그래프를 y축의 방향으로 3만큼 평행이동한 것이다. 따라서 그 그래프는 다음 그림과 같고, 이때 점근선의 방정식은 x = 0이다.



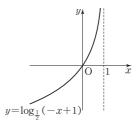
(3) 함수 $y=-\log_5 x$ 의 그래프는 함수 $y=\log_5 x$ 의 그래프를 x축에 대하여 대칭이동한 것이다.

따라서 그 그래프는 다음 그림과 같고, 이때 점근선의 방정식은 x=0이다.



(4) 함수 $y = \log_{\frac{1}{2}}(-x+1)$ 의 그래프는 함수 $y = \log_{\frac{1}{2}}x$ 의 그래프를 y축에 대하여 대칭이동한 후 x축의 방향으로 1만큼 평행이동한 것이다.

따라서 그 그래프는 다음 그림과 같고, 이때 점근선의 방정식은 x=1이다.



4-1 함수 $y=\log_2{(x-a)}+b$ 의 그래프의 점근선은 x=a이 므로

$$a=1$$

함수 $y=\log_2(x-1)+b$ 의 그래프가 점 (3, 0)을 지나므로

$$0 = \log_2(3-1) + b$$
 : $b = -1$

3-3 지수함수와 로그함수의 활용

내신 대비 쌍둥이 문제

76~80₹

- **1-1** (1) $x = \frac{7}{4}$ (2) $x = \frac{1}{2}$ (3) $x = \frac{19}{12}$ (4) x = 2
- **2-1** (1) x < 5 (2) $x \le 2$ (3) x > 1 (4) $x \le \frac{5}{2}$
- 3-1 2590마리
- 4-1 9년 후
- **5-1** (1) x=4 (2) $x=\frac{\sqrt{5}}{2}$ (3) x=3
 - $(4) x = \frac{1}{1000}$ 또는 x = 100
- **6-1** (1) $x > \sqrt{3}$ (2) $x > \frac{7}{3}$ (3) $\frac{5}{4} < x \le 3$ (4) $-1 < x \le 1$
- **7-1** 15
- 8-1 10개월 후
- **1-1** (1) $2^{x-1}=\sqrt[4]{8}$ 에서 우변을 밑이 2인 식으로 변형하면 $2^{x-1}=\sqrt[4]{8}=2^{\frac{3}{4}}$ 이므로
 - $x-1=\frac{3}{4} \quad \therefore x=\frac{7}{4}$
 - (2) $3^{4-2x} = 9\sqrt{9}$ 의 양변을 밑이 9인 식으로 변형하면 $9^{2-x} = 9^{\frac{3}{2}}$ 이므로

$$2 - x = \frac{3}{2} \qquad \therefore \ x = \frac{1}{2}$$

 $(3)\left(\frac{1}{4}\right)^{3x-2} = \left(\frac{1}{8}\right)^{5-2x}$ 의 양변을 밑이 $\frac{1}{2}$ 인 식으로

변형하면
$$\left(\frac{1}{2}\right)^{6x-4} = \left(\frac{1}{2}\right)^{15-6x}$$
이므로

$$6x-4=15-6x$$
 : $x=\frac{19}{12}$

(4) $9^{2x-1}=27^x$ 의 양변을 밑이 3인 식으로 변형하면 $3^{4x-2}=3^{3x}$ 이므로

$$4x-2=3x$$
 $\therefore x=2$

2-1 (1) $3^{x-2} < 27$ 에서 우변을 밑이 3인 식으로 변형하면 $3^{x-2} < 3^3$ 이므로

$$x-2 < 3$$
 $\therefore x < 5$

$$(2)\left(\frac{1}{2}\right)^x \leq \left(\frac{1}{2}\right)^{3x-4}$$
에서

$$x \ge 3x - 4$$
 $\therefore x \le 2$

(3) $3^{3x-5} > 9^{x-2}$ 에서 우변을 밑이 3인 식으로 변형하면 $3^{3x-5} > 3^{2x-4}$ 이므로

$$3x-5 > 2x-4$$
 : $x > 1$

 $^{(4)} \left(rac{1}{36}
ight)^{x-1} \! \geq \! rac{1}{216}$ 의 양변을 밑이 $rac{1}{6}$ 인 식으로 변형하면

$$\left(\frac{1}{6}\right)^{2x-2}$$
≥ $\left(\frac{1}{6}\right)^3$ 이므로

$$2x-2 \le 3$$
 $\therefore x \le \frac{5}{2}$

3-1 3*n*일 후의 플랑크톤의 개체 수는

따라서 30일 후의 개체 수는

1000×1.1¹⁰=1000×2.59=2590(마리)

4-1 투자액과 이익금의 합이 3410만 원 이상이 되는 것이 x년 후라고 하면

이 성립한다.

$$1250 \times \left(\frac{6}{5}\right)^{\frac{x}{3}} \ge 2160$$
에서 $\left(\frac{6}{5}\right)^{\frac{x}{3}} \ge \frac{216}{125}$

그런데
$$\frac{216}{125}$$
= $\left(\frac{6}{5}\right)^3$ 이므로 $\frac{x}{3}$ \geq 3에서 $x\geq$ 9

따라서 최소 9년 후이다.

5-1 $(1) \log_3(x-1) = 1$ 에서 우변을 변형하면

$$\log_3(x-1) = \log_3 3$$
이므로

$$x-1=3$$
 $\therefore x=4$

 $\log_2(2x+1) + \log_2(2x-1) = 2$ 의 양변을 변형하면

$$\log_2(2x+1)(2x-1) = \log_24$$
이므로

$$(2x+1)(2x-1)=4$$
, $4x^2-1=4$

$$\therefore x = \frac{\sqrt{5}}{2}$$
 또는 $x = -\frac{\sqrt{5}}{2}$

그런데 로그의 진수는 양수이므로

$$2x+1>0, 2x-1>0$$
에서 $x>\frac{1}{2}$

$$\therefore x = \frac{\sqrt{5}}{2}$$

(3) $\log_5(6-x) = \log_{\frac{1}{5}} \frac{1}{x}$ 에서 우변을 변형하면

$$\log_5(6-x) = \log_5 x$$
이므로

$$6-x=x$$
 $\therefore x=3$

 $(4) (\log x + 3)(\log x - 2) = 0$ 에서

$$\log x = -3$$
 또는 $\log x = 2$

∴
$$x = 10^{-3}$$
 또는 $x = 10^{2}$

즉,
$$x = \frac{1}{1000}$$
 또는 $x = 100$

6-1 (1) $\log_3 x > \frac{1}{2}$ 을 변형하면

그런데 로그의 진수는 양수이므로

$$x>0$$
2

따라서 ①, ②를 동시에 만족시키는 x의 값의 범위는 $x>\sqrt{3}$

 $(2) \log_{\frac{1}{2}}(3x-4) < -1$ 을 변형하면

$$\log_{\frac{1}{3}}(3x-4) < \log_{\frac{1}{3}}3$$

$$3x-4>3, 3x>7$$
 : $x>\frac{7}{3}$ (1)

그런데 로그의 진수는 양수이므로

$$3x-4>0$$
에서 $x>\frac{4}{3}$ ②

따라서 ①, ②를 동시에 만족시키는 x의 값의 범위는 $x>\frac{7}{3}$

 $(3) \log (x+4) \ge \log (4x-5)$ 이므로

$$x+4 \ge 4x-5$$
, $3x \le 9$

그런데 로그의 진수는 양수이므로

$$x+4>0, 4x-5>0$$
 에서 $x>\frac{5}{4}$ ②

따라서 ①, ②를 동시에 만족시키는 x의 값의 범위는

$$\frac{5}{4} < x \le 3$$

 $(4) \log_{\sqrt{3}}(x+1) \le \log_3(x+3)$ 을 변형하면

$$\log_3(x+1)^2 \le \log_3(x+3)$$

$$(x+1)^2 \le x+3$$
, $x^2+x-2 \le 0$

 $(x+2)(x-1) \le 0$

$$\therefore -2 \le x \le 1$$
(

그런데 로그의 진수는 양수이므로

$$x+1>0, x+3>0$$
에서 $x>-1$ (2)

따라서 ①, ②를 동시에 만족시키는 x의 값의 범위는 $-1 {<} x {\le} 1$

7-1 6개월 후의 처리 속도를 y_1 , 30개월 후의 처리 속도를 y_2 라고 하면

$$\log y_1 = \log y_0 + \frac{6}{h} \log 2 \qquad \qquad \dots$$

$$\log y_2 = \log y_0 + \frac{30}{b} \log 2 \qquad \qquad \dots \dots 2$$

그런데 30개월 후의 처리 속도는 6개월 후의 처리 속도의 $2^{\frac{8}{5}}$ 배이므로 ②-①에서

$$\log \frac{y_2}{y_1} = \log 2^{\frac{8}{5}} = \frac{24}{k} \log 2 = \log 2^{\frac{24}{k}}$$

따라서
$$\frac{8}{5} = \frac{24}{k}$$
에서 $k = 15$

8-1 닭의 수가 매월 a배만큼 증가하고, 500마리 이상 되는 달이 4x개월 후라고 하면

$$a^4=2$$

$$100 \times (a^4)^x \ge 500, 100 \times 2^x \ge 500$$

$$\therefore 2^x \ge 5$$

위 식의 양변에 상용로그를 취하면

$$\log 2^x \ge \log 5$$
, $x \log 2 \ge 1 - \log 2$

$$0.3x \ge 0.7, 4x \ge \frac{28}{3} = 9.33 \cdots$$

따라서 현재로부터 10개월 후에 500마리 이상이 된다.

소단원 확인 문제

81~83쪽

1-1 (1)
$$x = \frac{5}{4}$$
 (2) $x = 2$ (3) $x = \frac{3}{4}$ (4) $0 < x \le 5$

2-1 (1)
$$x=1$$
 (2) $x=\frac{2}{3}$ (3) $x=\frac{31}{9}$ (4) $x=1$

3-1 (1)
$$x < 5$$
 (2) $x > \frac{7}{4}$ (3) $2 \le x < 7$ (4) $1 \le x \le \frac{3}{2}$

4-1 2033년

1-1 (1) $25^x = 25\sqrt{5}$ 에서

$$25^x = 5^{2x}$$
, $25\sqrt{5} = 5^{\frac{5}{2}}$ 이므로

$$5^{2x} = 5^{\frac{5}{2}}, 2x = \frac{5}{2}$$
 $\therefore x = \frac{5}{4}$

 $(2) \log_2 x = \log_2 (4x - 6)$ 에서

$$x = 4x - 6, 3x = 6$$
 : $x = 2$

 $(3) 36^x \le \sqrt{216}$ 에서

$$36^x = 6^{2x}$$
, $\sqrt{216} = 6^{\frac{3}{2}}$ 이므로

$$6^{2x} = 6^{\frac{3}{2}}, \ 2x = \frac{3}{2} \quad \therefore \ x = \frac{3}{4}$$

- (4) $\log_{\frac{1}{5}} x \ge -1$ 에서 $-1 = \log_{\frac{1}{5}} 5$ 이므로 $x \le 5$
 - 그런데 로그의 진수는 양수이므로

$$x > 0$$
(2)

따라서 ①, ②를 동시에 만족시키는 x의 값의 범위는 $0 < x \le 5$

2-1 (1) 3^{5-x}=9^{x+1}에서 9^{x+1}=3^{2x+2}이므로

$$3^{5-x} = 9^{x+1} = 3^{2x+2}, 5-x = 2x+2$$

$$3x=3$$
 $\therefore x=1$

(2) $10^{2x} = \frac{10}{\sqrt[3]{100}} \times 1000^{1-x}$

$$\frac{10}{\sqrt[3]{100}} \times 1000^{1-x} = 10^{\frac{10}{3}-3x}$$
이므로

$$10^{2x} = \frac{10}{\sqrt[3]{100}} \times 1000^{1-x} = 10^{\frac{10}{3}-3x}$$

$$2x = \frac{10}{3} - 3x$$
, $5x = \frac{10}{3}$ $\therefore x = \frac{2}{3}$

 $(3) \log (x+1) - \log (x-3) = 1$ 에서

$$\log{(x+1)} - \log{(x-3)} = \log{\frac{x+1}{x-3}} = \log{10}$$

이므로
$$\frac{x+1}{x-3}$$
=10, $x+1=10x-30$, $9x=31$

$$\therefore x = \frac{31}{9}$$

그런데 로그의 진수는 양수이므로

$$x+1>0, x-3>0$$
에서 $x>3$...

이때 ①은 ②를 만족시키므로 구하는 방정식의 해는

$$x = \frac{31}{9}$$

 $(4) \log_2(3x-1) = \log_4 x + 1$ 에서

$$\log_2(3x-1) = \log_4(3x-1)^2$$

$$\log_4 x + 1 = \log_4 4x$$

이므로
$$(3x-1)^2 = 4x$$

$$9x^2-10x+1=0$$
, $(x-1)(9x-1)=0$

$$\therefore x=1$$
 또는 $x=\frac{1}{9}$

그런데 로그의 진수는 양수이므로

$$3x-1>0$$
, $x>0$ 에서 $x>\frac{1}{3}$ (2)

이때 ①에서 x=1은 ②를 만족시키므로 구하는 방정식의 해는

$$x=1$$

3-1 (1) $5^{2-x} > \frac{1}{125}$ 에서 $\frac{1}{125} = 5^{-3}$ 이므로

$$5^{2-x} > 5^{-3}, 2-x > -3$$
 : $x < 5$

(2) $3\sqrt{3} < 9^{x-1}$ 에서 $3\sqrt{3} = 3^{\frac{3}{2}}$, $9^{x-1} = 3^{2x-2}$ 이므로

$$3^{\frac{3}{2}} < 3^{2x-2}, \frac{3}{2} < 2x-2, \frac{7}{2} < 2x$$

$$\therefore x > \frac{7}{4}$$

 $(3) \log_2 5x \ge \log_2 (14-2x)$ 에서

$$5x \ge 14 - 2x$$
, $7x \ge 14$

$$\therefore x \ge 2$$
(1)

그런데 로그의 진수는 양수이므로

5x > 0. 14 - 2x > 0에서

$$0 < x < 7$$
2

따라서 ①, ②를 동시에 만족시키는 x의 값의 범위는 $2 \le x \le 7$

 $(4) \log_{\frac{1}{4}}(2-x) \leq \log_{4}(2x-1)$ 에서

$$\log_{\frac{1}{4}}(2-x) = \log_{4}\frac{1}{2-x}$$
이므로

$$\frac{1}{2-x} \le 2x-1$$
, $(2x-3)(x-1) \le 0$

그런데 로그의 진수는 양수이므로

2-x>0, 2x-1>0에서

$$\frac{1}{2} < x < 2$$
(2)

따라서 ①. ②를 동시에 만족시키는 x의 값의 범위는

$$1 \le x \le \frac{3}{2}$$

4-1 2018년의 입장료를 *A*원이라고 하면 *n*년 후 입장료는

$$A \times 1.05^{n}$$
(원)

이 유적지의 입장료가 2018년 입장료의 두 배 이상이 되려면

 $A \times 1.05^{n} \ge 2A$, $\le 1.05^{n} \ge 2$

여야 하므로 양변에 상용로그를 취하면

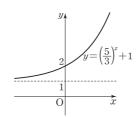
 $\log 1.05^n \ge \log 2$, $n \log 1.05 \ge \log 2$

따라서 $n \times 0.02 \ge 0.3$ 에서 $n \ge 15$ 이므로 2033년부터의 입장료는 2018년 입장료의 2배 이상이 된다.

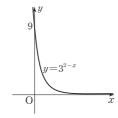
중단원 연습 문제

85~90쪽

- **1-1** (1) 그래프는 풀이 참조. 점근선: y=1
 - (2) 그래프는 풀이 참조, 점근선: y=0
- **2-1** (1) 그래프는 풀이 참조. 점근선: x=1
 - (2) 그래프는 풀이 참조, 점근선: x=-1
- **3-1** (1) x=4 (2) $x=-\frac{2}{9}$ (3) $x=\frac{49}{48}$ (4) $x=\frac{9}{4}$
- **4-1** (1) x > 4 (2) $x < -\frac{4}{5}$ (3) $\frac{1}{9} \le x \le 9$ (4) $x \ge 5$
- **5-1** a = -1, b = -3
- **6-1** c < a < b
- 7-1 9시간
- 8-1 10개월 후
- **9-1** 2
- **10-1** (1) 2 (2) 5
- **1-1** (1) 함수 $y = \left(\frac{5}{3}\right)^x + 1$ 의 그래프는 함수 $y = \left(\frac{5}{3}\right)^x$ 의 그래 프를 y축의 방향으로 1만큼 평행이동한 것이다. 따라서 그 그래프는 다음 그림과 같고. 이때 점근선의 방정식은 y=1이다.

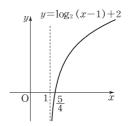


(2) 함수 $y=3^{2-x}$ 의 그래프는 함수 $y=3^{-x}=\left(\frac{1}{3}\right)^x$ 의 그 래프를 x축의 방향으로 2만큼 평행이동한 것이다. 따라서 그 그래프는 다음 그림과 같고, 이때 점근선의 방정식은 y=0이다.

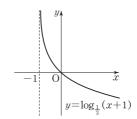


2-1 (1) 함수 $y = \log_2(x-1) + 2$ 의 그래프는 함수 $y = \log_2 x$ 의 그래프를 x축의 방향으로 1만큼, y축의 방향으로 2만큼 평행이동한 것이다.

따라서 그 그래프는 다음 그림과 같고, 이때 점근선의 방정식은 x=1이다.



(2) 함수 $y = \log_{\frac{1}{2}}(x+1)$ 의 그래프는 함수 $y = \log_{\frac{1}{2}}x$ 의 그래프를 x축의 방향으로 -1만큼 평행이동한 것이다. 따라서 그 그래프는 다음 그림과 같고. 이때 점근선의 방정식은 x=-1이다.



3-1 (1) $25^{1-x} = \frac{1}{5^{x+2}}$ 에서

$$25^{1-x} = 5^{2(1-x)}, \frac{1}{5^{x+2}} = 5^{-(x+2)}$$
이므로

$$2(1-x) = -(x+2)$$
 : $x=4$

 $(2) 8^{x+1} = 4 \sqrt[3]{2}$ 에서

$$8^{x+1}=2^{3(x+1)}$$
, $4\sqrt[3]{2}=2^{\frac{7}{3}}$ 이므로

$$3(x+1) = \frac{7}{3}$$
 : $x = -\frac{2}{9}$

 $(3) \log_7(x-1) + 2 = \log_7 x$ 에서

$$\log_7 49(x-1) = \log_7 x$$

$$49x - 49 = x$$

$$\therefore x = \frac{49}{48} \qquad \dots \dots \oplus$$

그런데 로그의 진수는 양수이므로

$$x-1>0$$
, $x>0에서 $x>1$$

....(2)

이때 ①은 ②를 만족시키므로 구하는 방정식의 해는

$$x = \frac{49}{48}$$

 $(4) \log_9 x = \log_3 (2x-3)$ 에서

$$\log_3(2x-3) = \log_9(2x-3)^2$$
이므로

$$x=(2x-3)^2$$
, $4x^2-13x+9=0$

$$(x-1)(4x-9)=0$$

$$\therefore x=1 \stackrel{\mathbf{\Xi}}{=} x=\frac{9}{4}$$
(

그런데 로그의 진수는 양수이므로

$$x>0, 2x-3>0$$
에서 $x>\frac{3}{2}$ (2)

이때 ①에서 $x=\frac{9}{4}$ 는 ②를 만족시키므로 구하는 방정식

의 해는
$$x=\frac{9}{4}$$

4-1 (1)
$$\left(\frac{5}{4}\right)^x < \left(\frac{16}{25}\right)^{2-x}$$
에서

$$\left(\frac{16}{25}\right)^{2-x} = \left(\frac{5}{4}\right)^{2x-4}$$
이므로

$$x < 2x - 4$$
 $\therefore x > 4$

$$(2) \left(\frac{1}{4}\right)^{x-1} > 8^{x+2}$$
에서

$$\left(\frac{1}{4}\right)^{x-1} = 2^{2-2x}$$
, $8^{x+2} = 2^{3x+6}$ 이므로

$$2-2x > 3x+6$$
, $5x < -4$

$$\therefore x < -\frac{4}{5}$$

 $(3) (\log_3 x - 2)(\log_3 x + 2) \le 0$ 에서

 $-2 \le \log_3 x \le 2$ 이므로

$$\frac{1}{9} \le x \le 9$$
(

그런데 로그의 진수는 양수이므로

$$r > 0$$
 \Im

따라서 ①, ②를 동시에 만족시키는 x의 값의 범위는

$$\frac{1}{9} \le x \le 9$$

 $(4) \log_3 x \ge \log_9 (4x+5)$ 에서

 $\log_3 x = \log_9 x^2$ 이므로

$$x^2 \ge 4x + 5$$
, $x^2 - 4x - 5 \ge 0$

$$(x-5)(x+1) \ge 0$$

....(1)

그런데 로그의 진수는 양수이므로

$$x > 0.4x + 5 > 0$$
 에서 $x > 0$

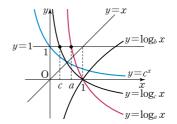
따라서 ①, ②를 동시에 만족시키는 x의 값의 범위는 $x \ge 5$

5-1 함수
$$y = \left(\frac{1}{3}\right)^{x+a} + b$$
의 그래프의 점근선은 $y = b$ 이므로 $b = -3$

이 함수의 그래프가 원점을 지나므로

$$0 = \left(\frac{1}{3}\right)^a - 3 \qquad \therefore a = -1$$

6-1 주어진 그림에서 0 < a < 1, b > 1, 0 < c < 1이다. 또한, $y = c^x$ 의 역함수는 $y = \log_c x$ 이고, 두 함수 $y = \log_c x$, $y = \log_a x$ 의 그래프와 직선 y = 1과의 교점의 x좌표를 차례대로 구하면 c, a이고 이를 그림으로 나타내면 다음과 같다.



따라서 세 양수 a, b, c의 대소를 비교하면 c < a < b이다.

7-1 f(t)=50+30 log (t+1)에서 작품의 성취도가 80일 때, 이 작품을 만드는 데 걸린 시간을 x시간이라고 하면 80=50+30 log (x+1), log (x+1)=1 x+1=10 ∴ x=9

따라서 작품을 만드는 데 걸린 시간은 9시간이다.

8-1 매달 제품 A와 제품 B의 가격이 각각 a, b배로 하락한다고 하면 2x개월 후의 제품 A와 제품 B의 가격은 각각 $48 \times (a^2)^x$ (만 원), $32 \times (b^2)^x$ (만 원)

이때 제품 A를 구입하려면

$$48 \times (a^2)^x - 32 \times (b^2)^x \le 32 \times (b^2)^x \times 0.2$$

즉, $48 \times (a^2)^x \le 32 \times (b^2)^x \times 1.2$ 이므로

$$\frac{3}{2.4} \le \left(\frac{0.95}{0.9}\right)^x, \ \frac{10}{8} \le \left(\frac{9.5}{9}\right)^x$$

양변에 상용로그를 취하면

$$\log \frac{10}{8} \le x \log \frac{9.5}{9}$$

 $(1-3\log 2) \le x(\log 9.5 - 2\log 3)$

 $0.1 \le x \times 0.02$ $\therefore x \ge 5$

따라서 구입할 수 있는 최초의 시기는 10개월 후이다.

9-1 두 점 A(a, f(a)), B(b, f(b))를 이은 선분 AB를 1:3으로 내분하는 점이 y축, 즉 직선 x=0 위에 있으므로

$$\frac{1\times b+3\times a}{1+3}$$
=0에서 $b+3a=0$

$$\therefore 2^{3a+b+1}=2^1=2$$

10-1(1) 3^{2x} $-10 \times 3^x + 9 \le 0$ 에서 $3^x = t(t > 0)$ 라고 하면

$$t^2-10t+9\leq 0$$
, $(t-9)(t-1)\leq 0$

 \therefore 1≤t≤9. $\stackrel{\triangle}{=}$ 1≤3^x≤9

따라서 $0 \le x \le 2$ 이므로 부등식을 만족시키는 자연수 x의 개수는 1, 2의 2이다.

(2) $2\log_2 x \times \log_2 x < 3\log_2 x + 5$ 에서 $\log_2 x = t$ 라고 하면

$$2t^2 < 3t + 5$$
, $(2t - 5)(t + 1) < 0$

∴
$$-1 < t < \frac{5}{2}$$
, $= -1 < \log_2 x < \frac{5}{2}$

따라서 $\frac{1}{2} < x < 4\sqrt{2} = 5.6$ …이므로 부등식을 만족시키는 자연수 x의 개수는 1, 2, 3, 4, 5의 5이다.

대단원 모의	교사			98~101쪽
01 ②	02 ①	03 ⑤	04 ③	05 ④
06 ②	07 ③	08 ⑤	09 ①	10 ⑤
11 ⑤	12 ②	13 ④	14 ①	15 ④
16 ①	17 ⑤	18 ③	19 ⑤	20 ④
21 1000	22 10	23 6	24 45	25 √3

- **01** $\sqrt{8} \times 98^{\frac{1}{2}} = 2\sqrt{2} \times \sqrt{98} = 2\sqrt{2} \times 7\sqrt{2} = 28$
- 02 $9^2 \times 5^2 \div (15 \times 3)^3 = 3^4 \times 5^2 \div (3 \times 5 \times 3)^3$ = $3^4 \times 5^2 \div (3^{2 \times 3} \times 5^3)$ = $3^{4-6} \times 5^{2-3}$ = $3^{-2}5^{-1}$

따라서 a=-2, b=-1이므로 a+b=-3

- ○3 ¬. (a^x)^y=a^{xy}이므로 옳지 않다.
 따라서 옳은 것은 ㄴ, ㄷ이다.
- 04 $\log_2 \frac{21^2}{7} = \log_2 \frac{3^2 \times 7^2}{7} = \log_2 (3^2 \times 7)$ = $2\log_2 3 + \log_2 7$ = 2a + b
- 05 함수 $y=2^x$ 의 그래프를 x축의 방향으로 1만큼, y축의 방

향으로 -3만큼 평행이동하면 $y=2^{x-1}-3$ 이므로 점 (1,-2)를 지나고 점근선의 방정식은 y=-3이다. $\therefore a-b=-2-(-3)=1$

06 함수 $y = \log_3 x$ 의 그래프를 x축에 대하여 대칭이동하면 $y = -\log_3 x$

다시 이 함수의 그래프를 y축의 방향으로 k만큼 평행이 동하면

$$y = -\log_3 x + k$$

- 이 함수의 그래프가 함수 $y=\log_{\frac{1}{3}}x+2$ 의 그래프와 겹 쳐지므로 $y=-\log_{\frac{3}{3}}x+k$ 에서 k=2
- 07 2×2^a=4×4^b=8×log₂4이므로 2^{a+1}=4^{b+1}=8×2=16 따라서 a=3, b=1이므로 a×b=3
- 08 방정식 4^x-5×2^x+4=0에서 2^x=t(t>0)라고 하면 t²-5t+4=0, (t-4)(t-1)=0
 ∴ t=4 또는 t=1
 즉, 2^x=4 또는 2^x=1이므로 x=2 또는 x=0
 따라서 방정식을 만족시키는 x의 값의 함은 2이다.
- 09 주어진 부등식을 변형하면

따라서 이를 만족시키는 정수 x의 개수는 1이다.

10 함수 $y = \log_2 x$ 의 그래프에서 $b = \log_2 a$ $c = \log_2 2a$ $d = \log_2 3a$ $e = \log_2 4a$

이므로

$$\frac{e-d}{c-b} = \frac{\log_2 4a - \log_2 3a}{\log_2 2a - \log_2 a} = \frac{\log_2 \frac{4}{3}}{\log_2 2} = 2 - \log_2 3$$

따라서 $m=2, \ n=3$ 이므로 $m+n=5$

11 정의역이 $\{x | 3 \le x \le 6\}$ 인 함수 $y = 2^{x-a} + 3$ 의 밑이 1보다 크고 최댓값이 7이므로

$$7 = 2^{6-a} + 3$$

따라서 $2^{6-a}=4=2^2$ 이므로 a=4

12 피자 27조각을 데우는 데 걸리는 시간을 t_{27} 이라고 하면 $t_{27} = 1.2 \times 27^{0.5} = 1.2 \times 3\sqrt{3}$

피자 9조각을 데우는 데 걸리는 시간을 t_9 라고 하면 t_9 = $1.2 \times 9^{0.5}$ = 1.2×3

따라서 $t_{27} = \sqrt{3}\,t_9$ 이므로 피자 27조각을 데우는 데 걸리는 시간은 피자 9조각을 데우는 데 걸리는 시간의 $\sqrt{3}\,$ 배 이다

13 $f_3(4)$ 는 4의 세제곱근 중에서 실수인 것의 개수이므로 방정식 x^3 =4의 실근의 개수와 같다.

$$f_3(4) = 1$$

 $f_4(-5)$ 는 방정식 $x^4 = -5$ 의 실근의 개수와 같으므로 $f_4(-5) = 0$

 $f_6(7)$ 은 방정식 $x^6 = 7$ 의 실근의 개수와 같으므로 $f_6(7) = 2$

$$f_3(4) + f_4(-5) + f_6(7) = 1 + 0 + 2 = 3$$

- 14 방정식 $\log_3 |x-2|=1$ 을 풀면 |x-2|=3 ∴ x=5 또는 x=-1 따라서 모든 실근의 곱은 -5이다.
- 15 $\log a = 3.4518 = 3 + 0.4518$ = $\log 10^3 + \log 2.83 = \log 2830$

$$\therefore a = 2830$$

$$\log b = -0.5482 = -1 + 0.4518$$
$$= \log 10^{-1} + \log 2.83$$
$$= \log 0.283$$

- b = 0.283
- $\therefore 100ab = 100 \times 2830 \times 0.283 = 283^{2}$
- **16** $A = \left\{ x \mid 3^{x+2} \ge \frac{1}{9} \right\} = \left\{ x \mid 3^{x+2} \ge 3^{-2} \right\} = \left\{ x \mid x \ge -4 \right\}$

$$B = \{x \mid 8^x < 2 \times \sqrt[5]{2}\} = \{x \mid 2^{3x} < 2^{\frac{6}{5}}\} = \left\{x \mid x < \frac{2}{5}\right\}$$

이므로
$$A \cap B = \left\{ x \left| -4 \le x < \frac{2}{5} \right\} \right\}$$

$$\therefore \frac{\alpha}{\beta} = \frac{-4}{\frac{2}{5}} = -10$$

- 17 $x^3 = y^4 = \sqrt[5]{z}$ 에서 $y = x^{\frac{3}{4}}$, $z = y^{20}$, $x = z^{\frac{1}{15}}$ 이 성립하므로 $\log_x y + \log_y z \times \log_z x = \log_x x^{\frac{3}{4}} + \log_y y^{20} \times \log_z z^{\frac{1}{15}}$ $= \frac{3}{4} + 20 \times \frac{1}{15}$ $= \frac{3}{4} + \frac{4}{3}$ $= \frac{25}{12}$
- **18** 빛의 세기가 수면에서의 빛의 세기의 $\frac{1}{8}$ 이 되는 곳의 수심 을 x m라고 하면

$$I_x = I_0 \times 2^{-\frac{x}{4}} = I_0 \times \frac{1}{8} = I_0 \times 2^{-3}$$

따라서
$$2^{-\frac{x}{4}} = 2^{-3}$$
에서 $-\frac{x}{4} = -3$ 이므로 $x = 12 \text{ (m)}$

19 f(a)=m에서 $m=\log_2 a$ f(b)=n에서 $n=\log_2 b$ 그런데 $a\times b=8$ 이므로 $m+n=\log_2 a+\log_2 b=\log_2 ab$

 $=\log_{2} 8 = 3$

20 ㄱ. 0<a
a < b<1이므로

a b<a^b < a^o ∴ a b<1

ㄴ, ㄸ. 0<b-a<1이고 0<a
 (b-a)^a>(b-a)^b

이때, log_(b-a)a>log_(b-a)b이므로

log_(b-a)a-log_(b-a)b>0

따라서 옳은 것은 ㄱ, ㄸ이다

***** 서술형 문제

② 이때 $2^{a-1} = 2^a \times \frac{1}{2} = 5$, 즉 $2^a = 10$ 이므로

$$2^{3a} = (2^a)^3 = 10^3 = 1000$$

채점 기준	배점
$oldsymbol{0}\left(rac{1}{8} ight)^{-a}$ 을 2^{3a} 으로 변형하기	60 %
$ extbf{2}$ $2^{a-1} = 5$ 를 이용하여 $\left(rac{1}{8} ight)^{-a}$ 의 값 구하기	40 %

- **22** $0 \log x^2 \log \frac{1}{x} = 2 \log x + \log x = 3 \log x$
 - ② $0 \le \log x < 1$ 이므로 $0 \le 3 \log x < 3$ 이다. 따라서 정수는 0, 1, 2의 세 개가 있다.
 - ③ $3 \log x = 0$ 에서 $\log x = 0$ 이므로 x = 1 $3\log x = 1$ 에서 $\log x = \frac{1}{3}$ 이므로 $x = 10^{\frac{1}{3}}$
 - $3\log x = 2$ 에서 $\log x = \frac{2}{3}$ 이므로 $x = 10^{\frac{2}{3}}$
 - ④ 따라서 구하는 모든 x의 값의 곱은 $1 \times 10^{\frac{1}{3}} \times 10^{\frac{2}{3}} = 10$

채점 기준	배점
$0 \log x^2 - \log \frac{1}{x}$ 을 $3 \log x$ 로 변형하기	20 %
${\it 0}$ $3\log x$ 의 범위를 구하여 정수 찾기	20 %
③ x 의 값 구하기	30 %
④ 모든 x 의 값의 곱 구하기	30 %

- 23 ① 정사각형 ABCD의 한 변의 길이가 4이므로 점 D의 좌표는 (4, 2⁴)이다.
 - ② 정사각형 BEFG의 한 변의 길이가 a이므로 점 G의 좌표는 (a, 2^a)이다.
 - ③ 따라서 $2^4-2^a=4$ 이므로 $2^a=12$
 - $2^{a-1} = \frac{2^a}{2} = \frac{12}{2} = 6$

채점 기준	배점
① 점 D의 좌표 구하기	20 %
② 점 G의 좌표 구하기	20 %
③ 2 ^a 의 값 구하기	30 %
④ 2 ^{a-1} 의 값 구하기	30 %

- **24 ①** *y*좌표가 1인 점의 *x*좌표는 3, 4, 5, ···, 27의 25개 y좌표가 2인 점의 x좌표는 9, 10, 11, …, 27의 19개 y좌표가 3인 점의 x좌표는 27의 1개
 - ② 따라서 구하는 점의 개수는 25+19+1=45

1	채점 기준	배점
	$lue{1}$ y 좌표가 $1, 2, 3$ 인 각각의 경우에 대하여 x 좌표의	80 %
	개수 구하기	
	hinspace 2 x 좌표와 y 좌표가 모두 자연수인 점의 개수 구하기	20 %

25 ① $\sqrt{3}H_A = H_B$, $L_A = 3L_B$ 이므로

$$\begin{split} \frac{H_A}{H_B} &= \frac{\frac{k}{L_A} \log \frac{1}{S_A}}{\frac{k}{L_B} \log \frac{1}{S_B}} \\ &= \frac{\frac{k}{3L_B} \log \frac{1}{S_A}}{\frac{k}{L_B} \log \frac{1}{S_B}} \\ &= \frac{1}{3} \times \frac{\log S_A}{\log S_B} \\ &= \frac{1}{\sqrt{3}} \end{split}$$
②
$$\frac{\log S_A}{\log S_B} = \frac{3}{\sqrt{3}} = \sqrt{3} \circ | \text{ PF} \text{ }$$

$$\log_{S_B} S_A = \sqrt{3}, \ S_A = (S_B)^{\sqrt{3}} \\ \therefore \ p = \sqrt{3} \end{split}$$

채점 기준	배점
$oldsymbol{0}\;rac{H_A}{H_B}$ 의 값 구하기	60 %
② p의 값 구하기	40 %

Ⅱ. 삼각함수

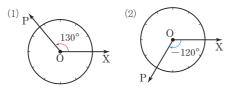
1. 삼각함수의 뜻과 그래프

1-1 일반각과 호도법

내신 대비 쌍둥이 문제

104~107쪽

- **1-1** (1) 풀이 참조 (2) 풀이 참조
- **2-1** (1) 360°×n+35° (n은 정수)
 - (2) $360^{\circ} \times n + 300^{\circ} (n$ 은 정수)
 - (3) $360^{\circ} \times n + 90^{\circ} (n$ 은 정수)
- 3-1 (1) 제1사분면의 각 (2) 제3사분면의 각
 - (3) 제4사분면의 각
- 4-1 풀이 참조
- 5-1 (1) $2n\pi + \pi$ $(n \stackrel{\diamond}{\sim} \ \mbox{정수})$ (2) $2n\pi + \frac{\pi}{3}$ $(n \stackrel{\diamond}{\sim} \ \mbox{정수})$
 - $(3)\ 2n\pi + \frac{5}{6}\pi\ (n$ 은 정수) $(4)\ 2n\pi + \frac{2}{3}\pi\ (n$ 은 정수)
- **6-1** (1) 호의 길이: π, 부채꼴의 넓이: 3π
 - (2) 중심각의 크기: $\frac{2}{3}\pi$, 부채꼴의 넓이: $\frac{100}{3}\pi$
- 7-1 $210\pi \text{ cm}^2$
- 1-1 동경 OP의 위치는 각각 다음 그림과 같다.



2-1 (1) 35°=360°×0+35°이므로

- (2) $-60^{\circ} = 360^{\circ} \times (-1) + 300^{\circ}$ 이므로 $360^{\circ} \times n + 300^{\circ} (n$ 은 정수)
- (3) $450^{\circ} = 360^{\circ} \times 1 + 90^{\circ}$ 이므로 $360^{\circ} \times n + 90^{\circ}$ (*n*은 정수)
- **3-1** (1) 390°=360°×1+30°에서 30°는 제1사분면의 각이다. 따라서 390°는 제1사분면의 각이다.
 - (2) $-510^{\circ} = 360^{\circ} \times (-2) + 210^{\circ}$ 에서 210° 는 제3사분면의 각이다. 따라서 -510° 는 제3사분면의 각이다.
 - (3) $670^{\circ} = 360^{\circ} \times 1 + 310^{\circ}$ 에서 310° 는 제4사분면의 각이다. 따라서 670° 는 제4사분면의 각이다.

4-1
$$\frac{2}{3}\pi = \frac{2}{3}\pi \times \frac{180^{\circ}}{\pi} = 120^{\circ}$$

$$180^{\circ} = 180 \times \frac{\pi}{180} = \pi$$

$$270^{\circ} = 270 \times \frac{\pi}{180} = \frac{3}{2}\pi$$

$$\frac{13}{6}\pi = \frac{13}{6}\pi \times \frac{180^{\circ}}{\pi} = 390^{\circ}$$

따라서 빈칸에 알맞은 값은 다음과 같다

육십분법	120°	180°	270°	390°
호도법	$\frac{2}{3}\pi$	2π	$\frac{3}{2}\pi$	$\frac{13}{6}\pi$

5-1 (1) $9\pi = 2\pi \times 4 + \pi$ 이므로

$$2n\pi + \pi$$
 (n은 정수)

$$(2)$$
 $-\frac{11}{3}\pi = 2\pi \times (-2) + \frac{\pi}{3}$ 이므로 $2n\pi + \frac{\pi}{2} (n \stackrel{\circ}{\sim} \mbox{ 정수})$

$$(3)\frac{17}{6}\pi = 2\pi + \frac{5}{6}\pi$$
이므로

$$2n\pi + \frac{5}{6}\pi (n$$
은 정수)

$$(4) \, -\frac{4}{3} \, \pi \! = \! 2\pi \! \times \! (-1) \! + \! \frac{2}{3} \, \pi \, \mathrm{이므로}$$

$$2n\pi + \frac{2}{3}\pi \ (n$$
은 정수)

6-1 부채꼴의 반지름의 길이를 r, 중심각의 크기를 θ , 호의 길이를 l, 부채꼴의 넓이를 S라고 하면

(1)
$$l = 6 \times \frac{\pi}{6} = \pi$$
, $S = \frac{1}{2} \times 6^2 \times \frac{\pi}{6} = 3\pi$

$$(2)$$
 $10\theta = \frac{20}{3}\pi$ 이므로 $\theta = \frac{2}{3}\pi$

$$S = \frac{1}{2} \times 10 \times \frac{20}{3} \pi = \frac{100}{3} \pi$$

7-1 닦인 유리의 넓이는 반지름의 길이가 40 cm이고, 중심각

의 크기가 $\frac{3}{5}\pi$ 인 부채꼴에서 반지름의 길이가 $30\,\mathrm{cm}$ 이고

중심각의 크기가 $\frac{3}{5}\pi$ 인 부채꼴의 넓이를 뺀 것과 같다.

$$\therefore \frac{1}{2} \times (40^2 - 30^2) \times \frac{3}{5} \pi = 210\pi \text{ (cm}^2)$$

108~109쪽

- **1-1** (1) 220° (2) $\frac{11}{6}\pi$ (3) 72°
- **2-1** (1) $2n\pi + \frac{3}{4}\pi$ (n은 정수), 제2사분면의 각 $(2) 2n\pi + \frac{\pi}{3} (n$ 은 정수), 제1사분면의 각
- **3-1** $\frac{\pi}{4}$ 또는 $\frac{3}{4}\pi$
- **1-1** (1) $\frac{11}{9}\pi = \frac{11}{9}\pi \times \frac{180^{\circ}}{\pi} = 220^{\circ}$
 - (2) $330^{\circ} = 330 \times \frac{\pi}{180} = \frac{11}{6} \pi$
 - (3) $\frac{2}{5}\pi = \frac{2}{5}\pi \times \frac{180^{\circ}}{\pi} = 72^{\circ}$
- **2-1** (1) $\frac{11}{4}\pi = 2\pi + \frac{3}{4}\pi$ 이므로

$$2n\pi + \frac{3}{4}\pi \ (n$$
은 정수)

이때 $\frac{3}{4}\pi$ 는 제2사분면의 각이므로 $\frac{11}{4}\pi$ 는 제2사분면

 $(2) - \frac{11}{2}\pi = 2\pi \times (-2) + \frac{\pi}{2}$ 이므로

$$2n\pi + \frac{\pi}{3} (n$$
은 정수)

이때 $\frac{\pi}{2}$ 는 제1사분면의 각이므로 $-\frac{11}{3}\pi$ 는 제1사분면 의 각이다.

3-1 각 θ 와 3θ 를 나타내는 동경이 y축에 대하여 대칭이므로 $3\theta + \theta = 2n\pi + \pi (n$ 은 정수)

$$4\theta = (2n+1)\pi$$
 $\therefore \theta = \frac{2n+1}{4}\pi$

$$\therefore \theta = \frac{2n+1}{4} \pi$$

 $0\!<\!\theta\!<\!\pi$ 이므로 $0\!<\!rac{2n+1}{4}\pi\!<\!\pi$, $0\!<\!2n\!+\!1\!<\!4$

$$\therefore -\frac{1}{2} < n < \frac{3}{2}$$

n은 정수이므로 n=0, 1

$$\therefore \theta = \frac{\pi}{4} \, \mathbf{E} = \frac{3}{4} \pi$$

1-2 삼각함수의 뜻

내신 대비 쌍둥이 문제

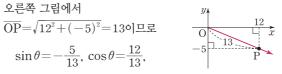
110~112쪽

- 1-1 $\sin \theta = -\frac{5}{13}$, $\cos \theta = \frac{12}{13}$, $\tan \theta = -\frac{5}{12}$
- **2-1** (1) $\frac{\sqrt{3}}{2}$ (2) $-\frac{\sqrt{2}}{2}$ (3) $-\sqrt{3}$
- **3-1** (1) $\sin \frac{7}{4}\pi < 0$ (2) $\cos \left(-\frac{7}{6}\pi \right) < 0$ (3) $\tan \frac{5}{12}\pi > 0$
- **4-1** (1) 제2사분면의 각 (2) 제4사분면의 각
- **6-1** (1) $\frac{12}{25}$ (2) $\frac{15}{12}$
- 1-1 오른쪽 그림에서

$$\overline{OP} = \sqrt{12^2 + (-5)^2} = 13$$
이므로

$$\sin\theta = -\frac{5}{13}, \cos\theta = \frac{12}{13},$$

$$\tan \theta = -\frac{5}{12}$$



2-1 (1) $\frac{2}{3}\pi$ 는 제2사분면의 각이므로 오

른쪽 그림과 같이 각 $\frac{2}{3}\pi$ 를 나타

타내는 동경 위에 x좌표가 -1인

이때
$$\overline{OP} = \sqrt{(-1)^2 + (\sqrt{3})^2} = 2$$
이므로

$$\sin\frac{2}{3}\pi = \frac{\sqrt{3}}{2}$$

 $(2) - \frac{3}{4}\pi$ 는 제3사분면의 각이므로

오른쪽 그림과 같이 각
$$-\frac{3}{4}\pi$$
를

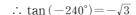
나타내는 동경 위에 *x*좌표가

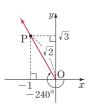
-1인 점을 잡으면 P(-1, -1)

이때
$$\overline{\mathrm{OP}} = \sqrt{(-1)^2 + (-1)^2} = \sqrt{2}$$
이므로

$$\cos\left(-\frac{3}{4}\pi\right) = -\frac{\sqrt{2}}{2}$$

(3) -240°는 제2사분면의 각이므로 오른쪽 그림과 같이 각 -240° 를 나타내는 동경 위에 x좌표가 -1인 점을 잡으면 $P(-1, \sqrt{3})$





3-1 (1) $\frac{7}{4}\pi = 2\pi - \frac{\pi}{4}$ 이므로 제4사분면의 각이다.

$$\therefore \sin \frac{7}{4}\pi < 0$$

$$(2) - \frac{7}{6}\pi = -2\pi + \frac{5}{6}\pi$$
이므로 제2사분면의 각이다.

$$\therefore \cos\left(-\frac{7}{6}\pi\right) < 0$$

$$(3) \frac{5}{12} \pi = \frac{\pi}{2} - \frac{\pi}{12}$$
이므로 제1사분면의 각이다.

$$\therefore \tan \frac{5}{12} \pi > 0$$

- **4-1** (1) $\sin\theta>0$ 인 θ 는 제1사분면 또는 제2사분면의 각이고, $\tan\theta<0$ 인 θ 는 제2사분면 또는 제4사분면의 각이다. 따라서 θ 는 제2사분면의 각이다.
 - (2) $\sin\theta <$ 0인 θ 는 제3사분면 또는 제4사분면의 각이고, $\cos\theta >$ 0인 θ 는 제1사분면 또는 제4사분면의 각이다. 따라서 θ 는 제4사분면의 각이다.
- **5-1** $\sin^2\theta + \cos^2\theta = 1$ 이므로

$$\sin^2\theta = 1 - \left(-\frac{1}{2}\right)^2 = \frac{3}{4}$$

그런데 각 θ 가 제3사분면의 각이므로 $\sin \theta < 0$ 에서

$$\sin\theta = -\frac{\sqrt{3}}{2}$$

또,
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
에서

$$\tan\theta = \left(-\frac{\sqrt{3}}{2}\right) \div \left(-\frac{1}{2}\right) = \sqrt{3}$$

6-1 (1) $\sin \theta - \cos \theta = \frac{1}{5}$ 의 양변을 제곱하면

$$\sin^2\theta - 2\sin\theta\cos\theta + \cos^2\theta = \frac{1}{25}$$

이때 $\sin^2\theta + \cos^2\theta = 1$ 이므로

$$1-2\sin\theta\cos\theta = \frac{1}{25}$$

$$\therefore \sin\theta\cos\theta = \frac{12}{25}$$

(2)
$$\tan \theta + \frac{1}{\tan \theta} = \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}$$
$$= \frac{\sin^2 \theta + \cos^2 \theta}{\cos \theta \sin \theta} = \frac{25}{12}$$

단원 확인 문**저**

114~115쪽

1-1 (1) $\sin \theta = \frac{3}{5}$, $\cos \theta = \frac{4}{5}$, $\tan \theta = \frac{3}{4}$

(2)
$$\sin \theta = \frac{5}{13}$$
, $\cos \theta = -\frac{12}{13}$, $\tan \theta = -\frac{5}{12}$

- 2-1 (1) 제1사분면의 각 또는 제3사분면의 각
 - (2) 제3사분면의 각 또는 제4사분면의 각

4-1
$$\frac{11}{16}$$

1-1 (1) $\overline{OP} = \sqrt{4^2 + 3^2} = 5$ 이므로

$$\sin\theta = \frac{3}{5}$$
, $\cos\theta = \frac{4}{5}$, $\tan\theta = \frac{3}{4}$

(2) $\overline{OP} = \sqrt{(-12)^2 + 5^2} = 13$ 이므로

$$\sin \theta = \frac{5}{13}$$
, $\cos \theta = -\frac{12}{13}$, $\tan \theta = -\frac{5}{12}$

2-1 (1) $\sin\theta\cos\theta > 0$ 에서

 $\sin \theta > 0$, $\cos \theta > 0$ 또는 $\sin \theta < 0$, $\cos \theta < 0$ 이므로 θ 는 제1사분면 또는 제3사분면의 각이다.

이므로 θ 는 제3사분면 또는 제4사분면의 각이다.

 $(2)\cos\theta\tan\theta<0$ 에서 $\cos\theta<0,\,\tan\theta>0$ 또는 $\cos\theta>0,\,\tan\theta<0$

3-1 $\sin^2\theta + \cos^2\theta = 1$ 이므로

$$\cos^2 \theta = 1 - \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{1}{4}$$

그런데 각 θ 가 제1사분면의 각이므로 $\cos \theta > 0$ 에서

$$\cos\theta = \frac{1}{2}$$

또,
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
에서

$$\tan\theta = \frac{\sqrt{3}}{2} \div \frac{1}{2} = \sqrt{3}$$

$$\therefore \frac{1}{1+\tan\theta} + \frac{1}{1-\tan\theta}$$
$$= \frac{1}{1+\sqrt{3}} + \frac{1}{1-\sqrt{3}}$$

$$= \frac{2}{(1+\sqrt{3})(1-\sqrt{3})} = -1$$

4-1 $\sin \theta - \cos \theta = \frac{1}{2}$ 의 양변을 제곱하면

$$\sin^2\theta - 2\sin\theta\cos\theta + \cos^2\theta = \frac{1}{4}$$

이때 $\sin^2\theta + \cos^2\theta = 1$ 이므로

$$1-2\sin\theta\cos\theta = \frac{1}{4}$$
 $\therefore \sin\theta\cos\theta = \frac{3}{8}$

$$\sin^3 \theta - \cos^3 \theta$$

$$= (\sin\theta - \cos\theta)(\sin^2\theta + \sin\theta\cos\theta + \cos^2\theta)$$

$$=(\sin\theta-\cos\theta)(1+\sin\theta\cos\theta)$$

$$=\frac{1}{2}\left(1+\frac{3}{8}\right)=\frac{11}{16}$$

1-3 삼각함수의 그래프와 성질

내신 대비 쌍둥이 문제

118~123쪽

1-1 (1)
$$\frac{\sqrt{2}}{2}$$
 (2) $\frac{1}{2}$

2-1 (1) 치역:
$$\{y \mid -\sqrt{2} \le y \le \sqrt{2}\}$$
, 주기: 2π 그래프는 풀이 참조

(2) 치역:
$$\{y \mid -1 \le y \le 1\}$$
, 주기: $\frac{\pi}{2}$, 그래프는 풀이 참조

3-1 (1) 치역:
$$\{y \mid -4 \le y \le 2\}$$
, 주기: 2π , 그래프는 풀이 참조 (2) 치역: $\{y \mid -2 \le y \le 2\}$, 주기: 2π , 그래프는 풀이 참조

4-1 (1)
$$-\frac{1}{2}$$
 (2) $-\frac{\sqrt{2}}{2}$ **5-1** (1) $\frac{1}{2}$ (2) $-\frac{1}{2}$

6-1 (1)
$$-\sqrt{3}$$
 (2) -1

7-1 주기: 2π , 그래프는 풀이 참조 점근선의 방정식: $x=(2n+1)\pi$ (n은 정수)

8-1 그래프는 풀이 참조, 주기: π 점근선의 방정식: $x\!=\!n\pi\!+\!\frac{\pi}{6}\,(n$ 은 정수)

9-1 (1)
$$-1$$
 (2) $-\sqrt{3}$

10-1 (1)
$$x = \frac{\pi}{6}$$
 또는 $x = \frac{5}{6}\pi$ (2) $x = \frac{\pi}{6}$ 또는 $x = \frac{11}{6}\pi$ (3) $x = \frac{\pi}{4}$ 또는 $x = \frac{5}{4}\pi$

11-1 (1)
$$0 \le x \le \frac{\pi}{6}$$
 또는 $\frac{5}{6}\pi \le x < 2\pi$

(2)
$$0 \le x \le \frac{\pi}{3}$$
 또는 $\frac{5}{3}\pi \le x < 2\pi$

$$\text{(3) } 0 \! \leq \! x \! < \! \frac{\pi}{3} \text{ } \underline{\text{H-}} \frac{\pi}{2} \! < \! x \! < \! \frac{4}{3}\pi \text{ } \underline{\text{H-}} \frac{3}{2}\pi \! < \! x \! < \! 2\pi$$

1-1 (1)
$$\sin \frac{17}{4}\pi = \sin \left(4\pi + \frac{\pi}{4}\right) = \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}$$

(2)
$$\cos\left(-\frac{19}{3}\pi\right) = \cos\frac{19}{3}\pi = \cos\left(6\pi + \frac{\pi}{3}\right)$$

= $\cos\frac{\pi}{3} = \frac{1}{2}$

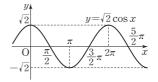
2-1 (1)
$$-\sqrt{2} \le \sqrt{2} \cos x \le \sqrt{2}$$
이므로

치역은
$$\{y \mid -\sqrt{2} \le y \le \sqrt{2}\}$$
이고

$$\sqrt{2}\cos x = \sqrt{2}\cos(x+2n\pi)(n$$
은 정수)

이므로 주기는 2π이다.

따라서 함수 $y=\sqrt{2}\cos x$ 의 그래프는 다음 그림과 같다.

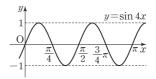


(2) $-1 \le \sin 4x \le 1$ 이므로 치역은 $\{y \mid -1 \le y \le 1\}$ 이고 $\sin 4x = \sin (4x + 2n\pi)$

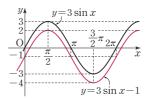
$$=\sin 4\left(x+\frac{n\pi}{2}\right)(n$$
은 정수)

이므로 주기는 $\frac{\pi}{2}$ 이다.

따라서 함수 $y = \sin 4x$ 의 그래프는 다음 그림과 같다.



3-1 (1) 함수 $y=3\sin x-1$ 의 그래프는 함수 $y=3\sin x$ 의 그 래프를 y축의 방향으로 -1만큼 평행이동한 것이다. 따라서 그 그래프는 다음 그림과 같다.

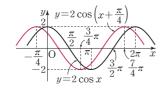


이때 치역은 $\{y \mid -4 \leq y \leq 2\}$ 이고, 주기는 2π 이다.

(2) 함수
$$y=2\cos\left(x+\frac{\pi}{4}\right)$$
의 그래프는 함수

 $y=2\cos x$ 의 그래프를 x축의 방향으로 $-\frac{\pi}{4}$ 만큼 평행이동한 것이다.

따라서 그 그래프는 다음 그림과 같다.



이때 치역은 $\{y \mid -2 \leq y \leq 2\}$ 이고, 주기는 2π 이다.

4-1 (1)
$$\sin \frac{7}{6}\pi = \sin \left(\pi + \frac{\pi}{6}\right) = -\sin \frac{\pi}{6} = -\frac{1}{2}$$
 (2) $\cos \frac{5}{4}\pi = \cos \left(\pi + \frac{\pi}{4}\right) = -\cos \frac{\pi}{4} = -\frac{\sqrt{2}}{2}$

5-1 (1)
$$\sin \frac{5}{6} \pi = \sin \left(\frac{\pi}{2} + \frac{\pi}{3} \right) = \cos \frac{\pi}{3} = \frac{1}{2}$$
 (2) $\cos \left(-\frac{2}{3} \pi \right) = \cos \frac{2}{3} \pi = \cos \left(\frac{\pi}{2} + \frac{\pi}{6} \right)$ $= -\sin \frac{\pi}{6} = -\frac{1}{2}$

6-1 (1)
$$\tan\left(-\frac{\pi}{3}\right) = -\tan\frac{\pi}{3} = -\sqrt{3}$$

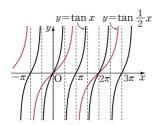
(2) $\tan\frac{15}{4}\pi = \tan\left(4\pi - \frac{\pi}{4}\right) = \tan\left(-\frac{\pi}{4}\right)$
 $= -\tan\frac{\pi}{4} = -1$

7-1
$$\tan \frac{1}{2}x = \tan \left(\frac{1}{2}x + n\pi\right) = \tan \frac{1}{2}(x + 2n\pi)(n$$
은 정수) 이므로 주기는 2π 이다.

또, 함수 $y = \tan \frac{1}{2}x$ 의 정의역은

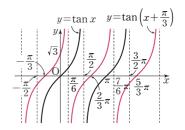
$$\frac{1}{2}x\neq n\pi+\frac{\pi}{2}$$
, 즉 $x\neq (2n+1)\pi$ (n은 정수)

인 실수 전체의 집합이므로 함수 $y = \tan \frac{1}{2} x$ 의 그래프는 다음 그림과 같다.



이때 점근선의 방정식은 $x=(2n+1)\pi$ (n은 정수)이다.

8-1 함수 $y=\tan\left(x+\frac{\pi}{3}\right)$ 의 그래프는 함수 $y=\tan x$ 의 그래 프를 x축의 방향으로 $-\frac{\pi}{3}$ 만큼 평행이동한 것이다. 따라서 그 그래프는 다음 그림과 같다.



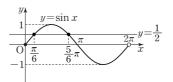
이때 주기는 π 이고, 점근선의 방정식은 $x+\frac{\pi}{3}=n\pi+\frac{\pi}{2},\ \column{4}{c} \ x=n\pi+\frac{\pi}{6}\ (n\mbox{e}\ \mbox{d}\ \mbox{o})\mbox{o}\mbox{r}.$

9-1 (1)
$$\tan\left(-\frac{5}{4}\pi\right) = -\tan\frac{5}{4}\pi = -\tan\left(\pi + \frac{\pi}{4}\right)$$

= $-\tan\frac{\pi}{4} = -1$

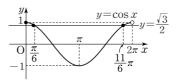
(2)
$$\tan \frac{2}{3} \pi = \tan \left(\frac{\pi}{2} + \frac{\pi}{6} \right) = -\frac{1}{\tan \frac{\pi}{6}} = -\sqrt{3}$$

10-1 (1) $2\sin x = 1$ 에서 $\sin x = \frac{1}{2}$ $0 \le x < 2\pi$ 일 때, 방정식 $\sin x = \frac{1}{2}$ 의 해는 함수 $y = \sin x$ 의 그래프와 직선 $y = \frac{1}{2}$ 의 교점의 x좌표와 같다.



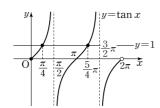
따라서 구하는 해는 $x=\frac{\pi}{6}$ 또는 $x=\frac{5}{6}\pi$

(2) $0 \le x < 2\pi$ 일 때, 방정식 $\cos x = \frac{\sqrt{3}}{2}$ 의 해는 함수 $y = \cos x$ 의 그래프와 직선 $y = \frac{\sqrt{3}}{2}$ 의 교점의 x좌표와 같다.



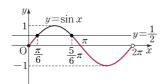
따라서 구하는 해는 $x=\frac{\pi}{6}$ 또는 $x=\frac{11}{6}$ π

(3) $0 \le x < 2\pi$ 일 때, 방정식 $\tan x = 1$ 의 해는 함수 $y = \tan x$ 의 그래프와 직선 y = 1의 교점의 x좌표와 같다.



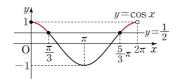
따라서 구하는 해는 $x=\frac{\pi}{4}$ 또는 $x=\frac{5}{4}\pi$

11-1 (1) $0 \le x < 2\pi$ 일 때, 부등식 $\sin x \le \frac{1}{2}$ 의 해는 함수 $y = \sin x$ 의 그래프가 직선 $y = \frac{1}{2}$ 보다 아래쪽 (경계선 포함)에 있는 x의 값의 범위와 같다.



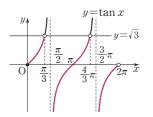
따라서 구하는 해는 $0\!\leq\!x\!\leq\!\frac{\pi}{6}\;\mathtt{E}\!\vdash\!\frac{5}{6}\,\pi\!\leq\!x\!<\!2\pi$

(2) $0 \le x < 2\pi$ 일 때, 부등식 $\cos x \ge \frac{1}{2}$ 의 해는 함수 $y = \cos x$ 의 그래프가 직선 $y = \frac{1}{2}$ 보다 위쪽 (경계선 포함)에 있는 x의 값의 범위와 같다.



따라서 구하는 부등식의 해는 $0{\le}x{\le}\frac{\pi}{2}~{\tt E}{\,\vdash\,}\frac{5}{2}\pi{\le}x{<}2\pi$

(3) $0 \le x < 2\pi$ 일 때, 부등식 $\tan x < \sqrt{3}$ 의 해는 함수 $y = \tan x$ 의 그래프가 직선 $y = \sqrt{3}$ 보다 아래쪽에 있는 x의 값의 범위와 같다.



따라서 구하는 해는

$$0 \le x < \frac{\pi}{3}$$
 또는 $\frac{\pi}{2} < x < \frac{4}{3}\pi$ 또는 $\frac{3}{2}\pi < x < 2\pi$

소단원 확인 문제

125~126쪽

- **1-1** (1) 최댓값: 1, 최솟값: -1, 주기: 4π
 - (2) 최댓값: 2, 최솟값: -2, 주기: 4π
 - (3) 최댓값: 4, 최솟값: 0, 주기: π
- **2-1** (1) 그래프는 풀이 참조, 주기: $\frac{\pi}{2}$

점근선의 방정식: $x=\frac{n}{2}\pi+\frac{\pi}{4}\;(n$ 은 정수)

(2) 그래프는 풀이 참조, 주기: $\frac{\pi}{2}$

점근선의 방정식: $x=\frac{n}{2}\pi+\frac{\pi}{4}$ (n은 정수)

- **3-1** a=1, b=6
- - (2) $\frac{\pi}{4} < x < \frac{3}{4}\pi$ 또는 $\frac{5}{4}\pi < x < \frac{7}{4}\pi$
- **1-1** (1) $-1 \le \sin \frac{x}{2} \le 1$ 이므로 최댓값은 1, 최솟값은 -1이다.

또, 주기는
$$\frac{2\pi}{\frac{1}{2}}$$
= 4π 이다.

(2) $-2 \le 2 \sin\left(\frac{x}{2} - \frac{\pi}{3}\right) \le 2$ 이므로 최댓값은 2, 최솟값

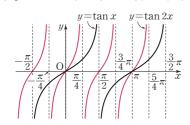
은
$$-2$$
이다. 또, 주기는 $\frac{2\pi}{\frac{1}{2}}$ $=4\pi$ 이다.

(3) $-2 \le 2\cos 2x \le 2$ 에서 $0 \le 2\cos 2x + 2 \le 4$ 이므로 최 댓값은 4, 최솟값은 0이다.

또, 주기는
$$\frac{2\pi}{2}$$
= π 이다.

정답과 해설

2-1 (1) 함수 $y = \tan 2x$ 의 그래프는 다음 그림과 같다.

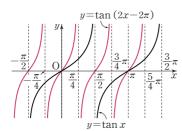


이때 주기는 $\frac{\pi}{2}$ 이고, 점근선의 방정식은

 $2x=n\pi+\frac{\pi}{2}$, 즉 $x=\frac{n}{2}\pi+\frac{\pi}{4}(n$ 은 정수)이다.

(2) 함수 $y=\tan(2x-2\pi)=\tan 2(x-\pi)$ 의 그래프는 $y = \tan 2x$ 의 그래프를 x축의 방향으로 π 만큼 평행이 동한 것이다.

따라서 그 그래프는 다음 그림과 같다.



이때 주기는 $\frac{\pi}{2}$ 이고, $\tan{(2x-2\pi)}$ = $\tan{2x}$ 이므로

점근선의 방정식은 $2x=n\pi+\frac{\pi}{2}$, 즉 $x=\frac{n}{2}\pi+\frac{\pi}{4}$ (n은 정수)이다.

3-1 주어진 함수의 최댓값이 3이고 a > 0이므로

$$a+2=3$$
 $\therefore a=1$

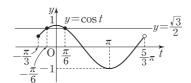
또, 주기가 $\frac{\pi}{3}$ 이고 b>0이므로

$$\frac{2\pi}{b} = \frac{\pi}{2}$$
 $\therefore b = 6$

4-1 (1) $2\cos\left(x-\frac{\pi}{3}\right) = \sqrt{3}$ MH $\cos\left(x-\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$

$$x-\frac{\pi}{3}$$
= t 로 놓으면 $0 \le x < 2\pi$ 에서

 $-\frac{\pi}{3} \le t < \frac{5}{3} \pi$ 이고, 주어진 방정식은 $\cos t = \frac{\sqrt{3}}{2}$



따라서
$$t\!=\!-\frac{\pi}{6}$$
 또는 $t\!=\!\frac{\pi}{6}$ 이므로

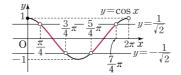
$$x - \frac{\pi}{3} = -\frac{\pi}{6}$$
 또는 $x - \frac{\pi}{3} = \frac{\pi}{6}$

$$\therefore x = \frac{\pi}{6} \text{ } \pm x = \frac{\pi}{2}$$

 $(2) 2 \cos^2 x - 1 < 0$ 에서

$$(\sqrt{2}\cos x + 1)(\sqrt{2}\cos x - 1) < 0$$

$$\therefore -\frac{1}{\sqrt{2}} < \cos x < \frac{1}{\sqrt{2}}$$



따라서 구하는 해는

$$\frac{\pi}{4} < x < \frac{3}{4}\pi$$
 또는 $\frac{5}{4}\pi < x < \frac{7}{4}\pi$

중단원 연습 문제

129~133쪽

2-1
$$2\pi \text{ cm}^2$$

4-1
$$2\pi$$
 5-1 72π **6-1** $\frac{8}{3}\pi$

7-1
$$\frac{64}{55}$$
 8-1 14

10-1
$$x=0$$
 또는 $x=\frac{2}{3}\pi$ 11-1 최댓값: $\frac{\sqrt{3}}{2}$, 최솟값: 0

1-1
$$\neg . -\frac{10}{3}\pi = 2\pi \times (-2) + \frac{2}{3}\pi$$

$$-\frac{4}{3}\pi = 2\pi \times (-1) + \frac{2}{3}\pi$$

$$= \frac{10}{3} \pi = 2\pi + \frac{4}{3} \pi$$

$$= \frac{16}{2}\pi = 2\pi \times 2 + \frac{4}{2}\pi$$

$$\Box \cdot \frac{20}{3}\pi = 2\pi \times 3 + \frac{2}{3}\pi$$

따라서 동경 OP 가 나타내는 한 각의 크기가 $\frac{2}{3}\pi$ 인 각은 ㄱ, ㄴ, ㅁ이다.

2-1 $45^{\circ} = \frac{\pi}{4}$ 이므로 부채꼴의 넓이는

$$\frac{1}{2} \times 4^2 \times \frac{\pi}{4} = 2\pi \text{ (cm}^2)$$

3-1 $\triangle AOB$ 와 $\triangle COD$ 에서 $\frac{\overline{OA}}{\overline{OB}} = \frac{\overline{OC}}{\overline{OD}}$ 이고

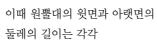
$$\cos \theta = \frac{\overline{OD}}{\overline{OC}} = \frac{1}{\overline{OC}}$$
이므로

$$\overline{OC} = \frac{1}{\cos \theta}$$

4-1 함수 $y=\cos x$ 의 그래프는 직선 $x=\pi$ 에 대하여 대칭이므로

$$\frac{a+b}{2} = \pi \qquad \therefore a+b = 2\pi$$

5-1 원뿔대의 전개도는 오른쪽 그림과 같고, 잘라낸 원뿔의 모선의 길이를 *a*라고 하자.



$$5 \times 2\pi = 10\pi, \ 7 \times 2\pi = 14\pi$$

이고, 원뿔대의 옆면에서

$$a:(a+6)=10\pi:14\pi$$

$$10\pi(a+6) = 14a\pi$$
 : $a=15$

따라서 원뿔대의 옆면의 넓이는

$$\frac{1}{2} \times (15+6) \times 14\pi - \frac{1}{2} \times 15 \times 10\pi = 72\pi$$

6-1 주어진 함수의 최댓값이 2, 최솟값이 -2이고 a>0이므로 a=2

또, 주기는
$$\frac{4}{3}\pi - \frac{\pi}{3} = \pi$$
이고 $b > 0$ 이므로

$$\frac{2\pi}{b} = \pi$$
 $\therefore b = 2$

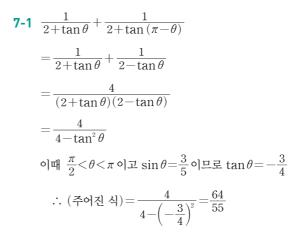
따라서 주어진 함수의 식은 함수 $y=2\sin{(2x-c)}$ 이고,

이 그래프가 점
$$\left(\frac{\pi}{3}, 0\right)$$
을 지나므로

$$2\sin\left(\frac{2}{3}\pi - c\right) = 0$$
, $\sin\left(\frac{2}{3}\pi - c\right) = 0$

$$0 \le c < \pi$$
이므로 $\frac{2}{3}\pi - c = 0$ $\therefore c = \frac{2}{3}\pi$

$$\therefore abc = 2 \times 2 \times \frac{2}{3}\pi = \frac{8}{3}\pi$$

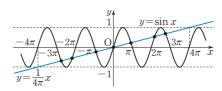


8-1 $\sin \theta + \cos \theta = \frac{\sqrt{2}}{2}$ 의 양변을 제곱하면 $\sin^2 \theta + 2 \sin \theta \cos \theta + \cos^2 \theta = \frac{1}{2}$ $1 + 2 \sin \theta \cos \theta = \frac{1}{2} \qquad \therefore \sin \theta \cos \theta = -\frac{1}{4}$ $\therefore \frac{\sin^2 \theta}{\cos^2 \theta} + \frac{\cos^2 \theta}{\sin^2 \theta}$

$$\begin{split} &= \frac{\sin^4 \theta + \cos^4 \theta}{\sin^2 \theta \cos^2 \theta} \\ &= \frac{(\sin^2 \theta + \cos^2 \theta)^2 - 2\sin^2 \theta \cos^2 \theta}{(\sin \theta \cos \theta)^2} \\ &= \frac{1 - 2(\sin \theta \cos \theta)^2}{(\sin \theta \cos \theta)^2} \\ &= \frac{1 - 2\left(-\frac{1}{4}\right)^2}{(\sin \theta \cos \theta)^2} \end{split}$$

$$=\frac{1-2\left(-\frac{1}{4}\right)^2}{\left(-\frac{1}{4}\right)^2}=14$$

9-1 방정식 $\sin x = \frac{1}{4\pi} x$ 의 실근은 함수 $y = \sin x$ 의 그래프 와 직선 $y = \frac{1}{4\pi} x$ 의 교점의 x좌표이다. 따라서 다음 그림에서 실근의 개수는 7이다.



정답과 해설

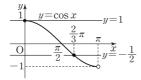
10-1 $2\sin^2 x + \cos x - 1 = 0$ 에서 $\sin^2 x = 1 - \cos^2 x$ 이므로

$$2(1-\cos^2 x) + \cos x - 1 = 0$$

$$2\cos^2 x - \cos x - 1 = 0$$

$$(\cos x - 1)(2\cos x + 1) = 0$$

$$\therefore \cos x = 1 \, \text{\Xi} \, \frac{1}{2} \cos x = -\frac{1}{2}$$



따라서 주어진 방정식의 해는

$$\cos x = 1$$
일 때 $x = 0$

$$\cos x = -\frac{1}{2}$$
일 때 $x = \frac{2}{3}\pi$

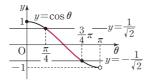
11-1 이차방정식 $x^2-2x\sin\theta+\cos^2\theta=0$ 의 판별식을 D라 고 하면

$$\frac{D}{A} = \sin^2 \theta - \cos^2 \theta \ge 0$$

$$(1-\cos^2\theta)-\cos^2\theta \ge 0, 2\cos^2\theta - 1 \le 0$$

$$(\sqrt{2}\cos\theta+1)(\sqrt{2}\cos\theta-1)\leq 0$$

$$\therefore -\frac{1}{\sqrt{2}} \le \cos \theta \le \frac{1}{\sqrt{2}}$$



 $0 \le \theta < \pi$ 에서 부등식의 해는 $\frac{\pi}{4} \le \theta \le \frac{3}{4}\pi$

$$\therefore \frac{\pi}{6} \leq \frac{2}{3} \theta \leq \frac{\pi}{2}$$

따라서 $0 \le \cos \frac{2}{3} \theta \le \frac{\sqrt{3}}{2}$ 이므로 최댓값은 $\frac{\sqrt{3}}{2}$, 최솟값은 0이다.

2. 사인법칙과 코사인법칙

2-1 사인법칙과 코사인법칙과 그 활용

내신 대비 쌍둥이 문제

135~139쪽

1-1 (1) 2 (2)
$$c=2\sqrt{2}$$
, $R=2\sqrt{2}$

6-1
$$A$$
=90°인 직각삼각형 **7-1** $50\sqrt{7}$ m

7-1
$$50\sqrt{7}$$
 m

8-1 (1) 18 (2)
$$30\sqrt{2}$$
 9-1 $4\sqrt{3}$ $\Xi = 8 + 4\sqrt{3}$

10-1
$$\frac{3\sqrt{3}}{2}$$

1-1 (1) △ABC에서 사인법칙에 의하여

$$\frac{a}{\sin 45^{\circ}} = \frac{\sqrt{2}}{\sin 30^{\circ}}$$

$$\therefore a = \frac{\sqrt{2}}{\sin 30^{\circ}} \times \sin 45^{\circ} = 2$$

(2) △ABC에서 $A=180^{\circ}-(105^{\circ}+30^{\circ})=45^{\circ}$ 이므로 사인법칙에 의하여

$$\frac{4}{\sin 45^\circ} = \frac{c}{\sin 30^\circ} = 2R$$

$$\therefore c = \frac{4}{\sin 45^{\circ}} \times \sin 30^{\circ} = 2\sqrt{2}$$

$$R = \frac{1}{2} \times \frac{4}{\sin 45^{\circ}} = 2\sqrt{2}$$

2-1 \triangle ABC의 외접원의 반지름의 길이를 R라고 하면 사인 법칙에 의하여

$$\sin A = \frac{a}{2R}$$
, $\sin B = \frac{b}{2R}$

위 식을 $\sin^4 A - \sin^4 B = 0$ 에 대입하면

$$\left(\frac{a}{2R}\right)^4 - \left(\frac{b}{2R}\right)^4 = 0$$

$$a^4-b^4=0$$
, $(a^2+b^2)(a^2-b^2)=0$

$$(a^2+b^2)(a+b)(a-b)=0$$

이때 a>0, b>0이므로 a-b=0, 즉 a=b

따라서 \triangle ABC는 a=b인 이등변삼각형이다.

3-1 △ABC에서

$$B=180^{\circ}-46^{\circ}=134^{\circ}$$
, $C=46^{\circ}-29^{\circ}=17^{\circ}$

이므로 사인법칙에 의하여

$$\frac{40}{\sin 134^{\circ}} = \frac{\overline{AB}}{\sin 17^{\circ}}$$

$$\therefore \overline{AB} = \frac{40}{\sin 134^{\circ}} \times \sin 17^{\circ}$$

 $\sin 134^{\circ} = \sin (180^{\circ} - 46^{\circ}) = \sin 46^{\circ}$ 이므로
 $\overline{AB} = \frac{40}{0.7193} \times 0.2924 = 16.260 \cdots$
따라서 두 지점 A, B 사이의 거리는 16.26 m이다.

4-1 △ABC에서 사인법칙에 의하여

$$\frac{5}{\sin 45^{\circ}} = \frac{\overline{BC}}{\sin 30^{\circ}}$$

$$\therefore \overline{BC} = \frac{5}{\sin 45^{\circ}} \times \sin 30^{\circ} = \frac{5\sqrt{2}}{2}$$
이때 지도의 축척이 1:5000이므로
$$\frac{5\sqrt{2}}{2} \times 5000 = 12500\sqrt{2} \text{ (cm)}$$

따라서 두 점 B, C 사이의 실제 거리는 $125\sqrt{2}$ m이다.

- 5-1 (1) \triangle ABC에서 코사인법칙에 의하여 $c^2 = (2\sqrt{3}\,)^2 + 2^2 2 \times 2\sqrt{3} \times 2\cos 30^\circ = 4$ 이때 c > 0이므로 c = 2 (2) \triangle ABC에서 코사인법칙에 의하여 $\cos B = \frac{(2\sqrt{3}\,)^2 + 4^2 2^2}{2 \times 2\sqrt{3} \times 4} = \frac{\sqrt{3}}{2}$ 이때 $0^\circ < B < 180^\circ$ 이므로 $B = 30^\circ$ 이다.
- 6-1 \triangle ABC에서 코사인법칙에 의하여 $\cos B = \frac{c^2 + a^2 b^2}{2ca}, \cos A = \frac{b^2 + c^2 a^2}{2bc}$ 위 식을 $a\cos B b\cos A = c$ 에 대입하면 $a \times \frac{c^2 + a^2 b^2}{2ca} b \times \frac{b^2 + c^2 a^2}{2bc} = c$ $\frac{a^2 b^2}{c} = c, \ a^2 = b^2 + c^2$ 따라서 \triangle ABC는 $A = 90^\circ$ 인 직각삼각형이다.
- 7-1 A와 B의 속력의 비가 2: 3이므로 A가 100 m 이동하였을 때, B가 이동한 거리는 150 m이다.
 △OAB에서 코사인법칙에 의하여
 ĀB²=100²+150²-2×100×150 cos 60°=17500
 ∴ ĀB=50√7
 따라서 A, B 두 사람 사이의 거리는 50√7 m이다.

(1) $S = \frac{1}{2} \times 12 \times 6 \sin 30^{\circ} = 18$ (2) $S = \frac{1}{2} \times 10 \times 12 \sin 45^{\circ} = 30\sqrt{2}$ 9-1 △ABC가 이등변삼각형이므로 $A=B=30^{\circ}$. $C=120^{\circ}$ 또는 $A=C=30^{\circ}$. $B=120^{\circ}$ 또는 $A=30^{\circ}$, $B=C=75^{\circ}$ 이다. (i) $A = B = 30^{\circ}$. $C = 120^{\circ}$ 일 때 사인법칙에 의하여 $\frac{b}{\sin 30^{\circ}} = 8$ $\therefore b=8\times\sin 30^{\circ}=4$ 따라서 a=4. b=4이므로 \triangle ABC의 넓이는 $\frac{1}{2} \times 4 \times 4 \sin 120^{\circ} = 4\sqrt{3}$ (ii) $A = C = 30^{\circ}$, $B = 120^{\circ}$ 일 때 사인법칙에 의하여 $\frac{c}{\sin 30^{\circ}} = 8$ $\therefore c = 8 \times \sin 30^{\circ} = 4$ 따라서 a=4. c=4이므로 \triangle ABC의 넓이는 $\frac{1}{2} \times 4 \times 4 \sin 120^\circ = 4\sqrt{3}$ (iii) $A = 30^{\circ}$, $B = C = 75^{\circ}$ 일 때

8-1 △ABC의 넓이를 *S*라고 하면

- 사인법칙에 의하여 $\frac{b}{\sin 75^\circ} = 8$ $\therefore b = 8 \times \sin 75^\circ = 2\sqrt{6} + 2\sqrt{2}$ 따라서 $b = 2\sqrt{6} + 2\sqrt{2}$, $c = 2\sqrt{6} + 2\sqrt{2}$ 이므로 \triangle ABC의 넓이는 $\frac{1}{2} \times (2\sqrt{6} + 2\sqrt{2})^2 \times \sin 30^\circ = 8 + 4\sqrt{3}$
- (i), (ii), (iii)에서 $\triangle AB$ C의 넓이는 $4\sqrt{3}$ 또는 $8+4\sqrt{3}$
- 10-1 \triangle ABC에서 코사인법칙에 의하여 $(\sqrt{19}\,)^2 = b^2 + 2^2 2 \times b \times 2\cos 120^\circ$ $b^2 + 2b 15 = 0, \ (b+5)(b-3) = 0$ 이때 b > 0이므로 b = 3 따라서 \triangle ABC의 넓이는 $\frac{1}{2} \times 2 \times 3\sin 120^\circ = \frac{3\sqrt{3}}{2}$

- **1-1** (1) $3\sqrt{2}$ (2) 7
- **2-1** 120° **3-1** $\frac{\sqrt{3}}{2}$
- **4-1** (1) A = 90°인 직각삼각형
 - (2) A=90°인 직각삼각형 또는 B=90°인 직각삼각형
- **1-1** (1) △ABC에서 사인법칙에 의하여

$$\frac{a}{\sin 30^{\circ}} = \frac{6}{\sin 45^{\circ}}$$

$$\therefore a = \frac{6}{\sin 45^{\circ}} \times \sin 30^{\circ} = 3\sqrt{2}$$

(2) △ABC에서 코사인법칙에 의하여

$$c^2 = 5^2 + 3^2 - 2 \times 5 \times 3\cos 120^\circ = 49$$

이때 c>0이므로 c=7

2-1 △ABC에서 사인법칙에 의하여

 $a:b:c=\sin A:\sin B:\sin C=3:5:7$

이므로 최대각은 *C*이다.

a=3k, b=5k, c=7k (k는 양수)라고 하면 코사인법칙 에 의하여

$$\cos C = \frac{(3k)^2 + (5k)^2 - (7k)^2}{2 \times 3k \times 5k} = -\frac{1}{2}$$

이때 0°< C< 180°이므로 C=120°

따라서 최대각의 크기는 120°이다.

3-1 △ABC에서 사인법칙에 의하여

$$\frac{9\sqrt{3}}{1} = 18$$

$$\frac{9\sqrt{3}}{\sin A} = 18 \qquad \therefore \sin A = \frac{\sqrt{3}}{2}$$

이때 $B+C=180^{\circ}-A$ 이므로

$$\sin(B+C) = \sin(180^{\circ} - A) = \sin A = \frac{\sqrt{3}}{2}$$

4-1 (1) \triangle ABC의 외접원의 반지름의 길이를 R라고 하면 사 인법칙에 의하여

$$\sin A = \frac{a}{2R}$$
, $\sin C = \frac{c}{2R}$

코사인법칙에 의하여

$$\cos B = \frac{c^2 + a^2 - b^2}{2ca}$$

위 식을 $\sin A \cos B = \sin C$ 에 대입하면

$$\frac{a}{2R} \times \frac{c^2 + a^2 - b^2}{2ca} = \frac{c}{2R}$$

$$c^2+a^2-b^2=2c^2$$
, $a^2=b^2+c^2$

따라서 \triangle ABC는 A=90°인 직각삼각형이다.

(2) △ABC에서 코사인법칙에 의하여

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}, \cos B = \frac{c^2 + a^2 - b^2}{2ca}$$

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

위 식을 $a\cos A + b\cos B = c\cos C$ 에 대입하면

$$a \times \frac{b^2 + c^2 - a^2}{2bc} + b \times \frac{c^2 + a^2 - b^2}{2ca}$$

$$=c\times\frac{a^2+b^2-c^2}{2ab}$$

양변에 2abc를 곱하여 정리하면

$$a^{2}(b^{2}+c^{2}-a^{2})+b^{2}(c^{2}+a^{2}-b^{2})$$

$$=c^2(a^2+b^2-c^2)$$

$$a^4-2a^2b^2+b^4-c^4=0$$
, $(a^2-b^2)^2-(c^2)^2=0$

$$(a^2-b^2-c^2)(a^2-b^2+c^2)=0$$

$$a^2 = b^2 + c^2$$
 또는 $b^2 = c^2 + a^2$

따라서 $\triangle ABC$ 는 A=90°인 직각삼각형 또는 B=90°인 직각삼각형이다.

중단원 연습 문제

145~149쪽

- 1-1 $2\sqrt{6}$ 4-1 $\sqrt{2}$
 - **2-1** 0
- **3-1** 4

- **5-1** 2

- **7-1** $\frac{5}{2}$ **8-1** 10 km **9-1** $\frac{\sqrt{2}+\sqrt{6}}{4}$
- **10-1** 24
- **1-1** \triangle ABC에서 $C=180^{\circ}-(75^{\circ}+45^{\circ})=60^{\circ}$ 이므로 사인법칙에 의하여

$$\frac{4}{\sin 45^{\circ}} = \frac{c}{\sin 60^{\circ}}$$

$$\therefore c = \frac{4}{\sin 45^{\circ}} \times \sin 60^{\circ} = 2\sqrt{6}$$

2-1 △ABC에서 코사인법칙에 의하여

$$c^2 = a^2 + b^2 - 2ab\cos C$$

$$=(2b)^2+b^2-2\times 2b\times b\times \cos\frac{\pi}{3}=3b^2$$

이때 b>0, c>0이므로 $c=\sqrt{3}b$

$$\therefore \cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{b^2 + (\sqrt{3}b)^2 - (2b)^2}{2 \times b \times \sqrt{3}b} = 0$$

3-1 △ABC의 넓이가 3√2 이므로

$$3\sqrt{2} = \frac{1}{2} \times 3 \times b \times \sin\frac{\pi}{4}, \ 3\sqrt{2} = \frac{3\sqrt{2}}{4}b$$

$$\therefore b = 4$$

4-1 정팔각형의 내각의 총합은 $180^{\circ} \times (8-2) = 1080^{\circ}$ 이므로

$$\angle ABC = \frac{1080^{\circ}}{8} = 135^{\circ}$$

따라서 △ABC의 넓이는

$$\frac{1}{2} \times 2 \times 2 \sin 135^{\circ} = \sqrt{2}$$

5-1 $\cos C = \frac{\sqrt{2}}{2}$ 에서 $0^{\circ} < C < 180^{\circ}$ 이므로 $C = 45^{\circ}$

 \triangle ABC에서 $B=180^{\circ}-(75^{\circ}+45^{\circ})=60^{\circ}$ 이므로 사인법칙에 의하여

$$\frac{2\sqrt{3}}{\sin 60^{\circ}} = 2R \qquad \therefore R = \frac{1}{2} \times \frac{2\sqrt{3}}{\sin 60^{\circ}} = 2$$

6-1 $\triangle {
m ABC}$ 에서 $\overline{
m AC}{=}a$ 라고 하면 코사인법칙에 의하여

$$a^2 = 3^2 + 1^2 - 2 \times 3 \times 1 \times \cos 120^\circ = 13$$

이때 a > 0이므로 $a = \sqrt{13}$

한편, □ABCD는 원에 내접하

므로

$$\angle {
m ADC}{=}180^{\circ}{-}120^{\circ}{=}60^{\circ}$$
 $\triangle {
m ADC}$ 에서 $\overline{
m CD}{=}b$ 라고 하면

코사인법칙에 의하여

$$(\sqrt{13})^2 = 3^2 + b^2 - 2 \times 3 \times b \times \cos 60^\circ$$

$$b^2-3b-4=0$$
, $(b-4)(b+1)=0$

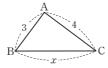
이때 b>0이므로 b=4

따라서 선분 CD의 길이는 4이다.

7-1 오른쪽 그림에서 △ABC의 넓이를 *S*라고 하면

$$S = \frac{1}{2} \times 3 \times 4 \sin A$$

 $=6\sin A$



이때 \triangle ABC의 넓이 S가 최대가 되려면 $\sin A$ =1, 즉 A=90°일 때이다.

따라서 피타고라스 정리에 의하여

$$x^2 = 3^2 + 4^2$$
 : $x = 5$

이때 \overline{BC} 는 $\triangle ABC$ 의 외접원의 지름이므로

$$R=\frac{5}{2}$$

8-1 $\overline{PC} = x$ 라고 하면 $\triangle ACP$ 에서

$$\tan 45^{\circ} = \frac{x}{\overline{AC}}$$
 $\therefore \overline{AC} = x$

△BCP에서

$$\tan 30^{\circ} = \frac{x}{\overline{BC}}$$
 $\therefore \overline{BC} = \sqrt{3}x$

 \triangle ACB에서 \angle BAC=120°이므로 코사인법칙에 의하여 $\overline{BC}^2 = \overline{AB}^2 + \overline{AC}^2 - 2\overline{AB} \times \overline{AC} \times \cos{(\angle BAC)}$ 이므로

$$(\sqrt{3}x)^2 = 10^2 + x^2 - 2 \times 10 \times x \times \cos 120^\circ$$

$$x^2-5x-50=0$$
, $(x-10)(x+5)=0$

이때 x>0이므로 x=10

따라서 지면으로부터 로켓이 있는 P 위치까지의 높이는 10 km이다.

9-1 ∠CAD=45°이므로 △CAD는 ĀC=DC인 직각이등 변삼각형이다.

$$\overline{AC} = \overline{DC} = x$$
라고 하면 $\overline{AD} = \sqrt{2}x$

$$\triangle ABC$$
에서 $\sin 30^\circ = \frac{\overline{AC}}{\overline{AB}}$, $\tan 30^\circ = \frac{\overline{AC}}{\overline{BC}}$ 이므로

$$\overline{AB} = \frac{\overline{AC}}{\sin 30^{\circ}} = 2x$$
, $\overline{BC} = \frac{\overline{AC}}{\tan 30^{\circ}} = \sqrt{3}x$

이때 $\overline{BC} = \overline{BD} + \overline{DC}$ 이므로

$$\sqrt{3}x = (10\sqrt{3} - 10) + x$$

$$(\sqrt{3}-1)x=10(\sqrt{3}-1)$$
 : $x=10$

따라서 △ABD에서

 $\overline{AB} = 2x = 20$, $\overline{BD} = 10\sqrt{3} - 10$, $\overline{AD} = \sqrt{2}x = 10\sqrt{2}$

$$\cos(\angle BAD)$$

$$=\frac{\frac{20^2+(10\sqrt{2})^2-(10\sqrt{3}-10)^2}{2\times20\times10\sqrt{2}}}{2\cdot10\sqrt{2}}$$

$$=\frac{1+\sqrt{3}}{2\sqrt{2}}=\frac{\sqrt{2}+\sqrt{6}}{4}$$

10-1 △ABP에서 사인법칙에 의하여

$$\frac{\overline{\mathrm{BP}}}{\sin \theta} = \frac{\overline{\mathrm{AP}}}{\sin 45^{\circ}}$$
이므로 $\frac{\overline{\mathrm{BP}}}{\sin \theta} = \sqrt{2} \times \overline{\mathrm{AP}}$

 $\frac{\overline{BP}}{\sin \theta}$ 는 \overline{AP} 가 최소일 때, 즉

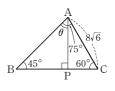
 $\overline{AP} \perp \overline{BC}$ 일 때 최소가 된다.

slπll

$$\angle ACP = 180^{\circ} - (45^{\circ} + 75^{\circ})$$

= 60°

이므로 △APC에서



$$\overline{\mathrm{AP}} = 8\sqrt{6} \times \sin 60^\circ = 12\sqrt{2}$$

따라서 구하는 $\frac{\overline{\mathrm{BP}}}{\sin \theta}$ 의 최솟값은 $\sqrt{2} \times \overline{\mathrm{AP}} = \sqrt{2} \times 12\sqrt{2} = 24$

대단원 모으	고사			158~161쪽
01 ④	02 ⑤	03 ④	04 4	05 ②
06 ⑤	07 ④	08 ③	09 ④	10 ③
11 ④	12 ②	13 ①	14 ⑤	15 ⑤
16 ①	17 ②	18 ④	19 $\frac{4}{5}$	
20 a=2	, b=2, c=	/3	21 $\frac{5}{6}$	22 4
23 √13 -	+3√3			

- **01** ① $-300^{\circ} = 360^{\circ} \times (-1) + 60^{\circ}$
 - (2) $-240^{\circ} = 360^{\circ} \times (-1) + 120^{\circ}$
 - $3420^{\circ} = 360^{\circ} \times 1 + 60^{\circ}$
 - (4) $750^{\circ} = 360^{\circ} \times 2 + 30^{\circ}$
 - $51040^{\circ} = 360^{\circ} \times 2 + 320^{\circ}$

따라서 30°를 나타내는 동경과 일치하는 것은 750°이다.

- 02 구하는 호의 길이는 $6 \times \frac{\pi}{6} = \pi$
- ○3 각 θ가 제3사분면의 각이므로 오른쪽그림과 같이 각 θ를 나타내는 동경위에 좌표가 -1인 점을 잡으면

$$\begin{array}{c|c}
-1 & \theta \\
\hline
 & 0 & x \\
\hline
 & 7 & 7 \\
\hline
 & P & -2
\end{array}$$

$$P(-1, -2)$$

이때 $\overline{OP} = \sqrt{(-1)^2 + (-2)^2} = \sqrt{5}$
이므로

$$\sin\theta = -\frac{2}{\sqrt{5}}, \cos\theta = -\frac{1}{\sqrt{5}}$$

$$\therefore \sin\theta\cos\theta = \frac{2}{5}$$

04 $\cos\left(\frac{\pi}{2} - \theta\right) + \sin(\pi + \theta) + \cos(-\theta)$ = $\sin\theta - \sin\theta + \cos\theta = \cos\theta$

05
$$\cos(\pi+\theta) + \sin(\frac{\pi}{2}-\theta) + \tan(-\theta)$$

= $-\cos\theta + \cos\theta - \tan\theta = -\tan\theta$

직선
$$x-3y+3=0$$
의 기울기는 $\frac{1}{3}$ 이므로
$$\tan\theta=\frac{1}{3}$$
 따라서 구하는 값은 $-\frac{1}{3}$ 이다.

따라서 옳은 것은 ㄱ, ㄴ, ㄷ이다.

07
$$y=3\sin x+\cos\left(x+\frac{3}{2}\pi\right)+2$$
 $=3\sin x+\sin x+2$ $=4\sin x+2$ 이때 $-2\le 4\sin x+2\le 6$ 이므로 최댓값은 6 , 최솟값은 -2 이다. 따라서 $M=6$, $m=-2$ 이므로 $M+m=4$

08 함수 $f(x) = \cos x$ 에 대하여 $g(100) = f\left(\frac{\pi}{3}\right) + f\left(\frac{\pi}{2} + \frac{\pi}{3}\right) + f\left(\pi + \frac{\pi}{3}\right) \\ + \cdots + f\left(\frac{100}{2}\pi + \frac{\pi}{3}\right)$ 이때 $f\left(\frac{\pi}{2}\right) = \cos\frac{\pi}{2} = \frac{1}{9}$

$$\begin{split} f\left(\frac{\pi}{3}\right) &= \cos\frac{\pi}{3} = \frac{1}{2} \\ f\left(\frac{\pi}{2} + \frac{\pi}{3}\right) &= \cos\left(\frac{\pi}{2} + \frac{\pi}{3}\right) = -\sin\frac{\pi}{3} = -\frac{\sqrt{3}}{2} \\ f\left(\pi + \frac{\pi}{3}\right) &= \cos\left(\pi + \frac{\pi}{3}\right) = -\cos\frac{\pi}{3} = -\frac{1}{2} \end{split}$$

$$f\left(\frac{3}{2}\pi + \frac{\pi}{3}\right) = \cos\left(\frac{3}{2}\pi + \frac{\pi}{3}\right) = \sin\frac{\pi}{3} = \frac{\sqrt{3}}{2}$$
이므로
$$f\left(\frac{\pi}{3}\right) + f\left(\frac{\pi}{2} + \frac{\pi}{3}\right) + f\left(\pi + \frac{\pi}{3}\right) + f\left(\frac{3}{2}\pi + \frac{\pi}{3}\right) = 0$$

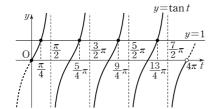
$$\therefore g(100) = f\left(\frac{\pi}{3}\right) + f\left(\frac{\pi}{2} + \frac{\pi}{3}\right) + f\left(\pi + \frac{\pi}{3}\right)$$

$$+ \dots + f\left(\frac{100}{2}\pi + \frac{\pi}{3}\right)$$

$$= f\left(\frac{100}{2}\pi + \frac{\pi}{3}\right)$$

$$= f\left(\frac{\pi}{3}\right) = \cos\frac{\pi}{3} = \frac{1}{2}$$

09 2x=t로 놓으면 $0 \le x < 2\pi$ 에서 $0 \le t < 4\pi$ 이고 주어진 방정식은 tan t=1



따라서

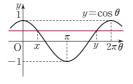
$$t = \frac{\pi}{4}$$
 또는 $t = \frac{5}{4}\pi$ 또는 $t = \frac{9}{4}\pi$ 또는 $t = \frac{13}{4}\pi$

$$x = \frac{\pi}{8}$$
 또는 $x = \frac{5}{8}\pi$ 또는 $x = \frac{9}{8}\pi$ 또는 $x = \frac{13}{8}\pi$

따라서 모든 해의 한은

$$\frac{\pi}{8} + \frac{5}{8}\pi + \frac{9}{8}\pi + \frac{13}{8}\pi = \frac{7}{2}\pi$$

10 함수 $y = \cos \theta$ 의 그래프에서 $0 < x < 2\pi$, $0 < y < 2\pi$ 일 때 $\cos x = \cos y \ (x \neq y)$ 이면 $\frac{x+y}{2} = \pi$



$$\therefore y=2\pi-x$$

따라서 구하는 값은

$$\sin x + \sin y = \sin x + \sin(2\pi - x)$$

$$= \sin x - \sin x = 0$$

11 주어진 함수의 최댓값이 3. 최솟값이 -3이므로 |a|=3

주기는
$$\pi$$
이므로 $\frac{2\pi}{|b|} = \pi$ $\therefore |b| = 2$ $\therefore a^2 + b^2 = 13$

12 함수 y=f(x)의 그래프가 x축과 두 점 (-1, 0), (2, 0)에서 만나므로 방정식 f(x)=0의 해는

$$x=-1$$
 또는 $x=2$

$$f\left(\cos x - \frac{1}{2}\right) = 0$$
에서 $\cos x - \frac{1}{2} = t$ 로 놓으면

$$f(t) = 0$$
이므로 $t = -1$ 또는 $t = 2$ 이다.

그런데
$$-\frac{3}{2} \le \cos x - \frac{1}{2} \le \frac{1}{2}$$
에서 $-\frac{3}{2} \le t \le \frac{1}{2}$ 이므로

즉,
$$\cos x - \frac{1}{2} = -1$$
에서 $\cos x = -\frac{1}{2}$

따라서
$$0 \le x \le 2\pi$$
일 때 $\cos x = -\frac{1}{2}$ 의 해는

$$x = \frac{2}{3}\pi$$
 또는 $x = \frac{4}{3}\pi$

이므로 방정식
$$f(\cos x - \frac{1}{2}) = 0$$
의 모든 해의 합은

$$\frac{2}{3}\pi + \frac{4}{3}\pi = 2\pi$$

13 이차방정식의 근과 계수의 관계에 의하여

$$\frac{1}{\sin \theta} + \frac{1}{\cos \theta} = \sqrt{3} \qquad \dots \dots$$

$$\frac{1}{\sin \theta} \times \frac{1}{\cos \theta} = k, \sin \theta \cos \theta = \frac{1}{k} \qquad \cdots 2$$

 $\sin\theta + \cos\theta = \sqrt{3}\sin\theta\cos\theta$

위 식의 양변을 제곱하여 정리하면

 $1+2\sin\theta\cos\theta=3(\sin\theta\cos\theta)^2$

위 식에 ②를 대입하면

$$1 + \frac{2}{k} = \frac{3}{k^2}, \ k^2 + 2k - 3 = 0$$
$$(k+3)(k-1) = 0 \qquad \therefore k = -3 \ \text{ET} \ k = 1$$

$$(k-1)(k-1)=0$$
 : $k=-3$ 또는 $k=1$

한편,
$$\frac{\pi}{2} < \theta < \pi$$
에서 $\sin \theta \cos \theta < 0$ 이므로

$$k = -3$$

14 △ABC에서 사인법칙에 의하여

$$\frac{\sqrt{7}}{\sin A} = \frac{2}{\sin C}$$

$$\therefore \sin A = \frac{\sin C}{2} \times \sqrt{7} = \frac{\sqrt{3}}{2}$$

 \triangle ABC는 예각삼각형이므로

$$A = 60^{\circ}$$

이때

$$\triangle ABC = \triangle ABD + \triangle ACD$$

이므로 $\overline{\mathrm{AD}} = x$ 라고 하면

$$\frac{1}{2} \times 2 \times 3 \sin 60^{\circ}$$

$$= \frac{1}{2} \times 2 \times x \times \sin 30^{\circ} + \frac{1}{2} \times x \times 3 \sin 30^{\circ}$$

에서

$$\frac{3\sqrt{3}}{2} = \frac{1}{2}x + \frac{3}{4}x$$
 $\therefore x = \frac{6\sqrt{3}}{5}$

따라서 선분 AD의 길이는 $\frac{6\sqrt{3}}{5}$ 이다.

15 ¬. *a*=5이면 △ABC는 직각삼각형이므로 변 BC는 원 의 지름이다.

$$\therefore R = \frac{5}{2} (\texttt{참})$$

ㄴ. 사인법칙에 의하여 R=4이면

$$a=2\times 4\sin A=8\sin A$$
 (참)

ㄷ. $1 < a \le \sqrt{13}$ 에서 $1 < a^2 \le 13$ 이고 코사인법칙에 의하 a

$$\cos A = \frac{4^2 + 3^2 - a^2}{2 \times 4 \times 3} = \frac{25 - a^2}{24}$$

그런데 $\frac{1}{2} \le \cos A < 1$ 이므로 $0^{\circ} < A \le 60^{\circ}$

따라서 A의 최대 크기는 60° 이다. (참) 따라서 옳은 것은 ㄱ, ㄴ, ㄷ이다.

16 △ABC에서 코사인법칙에 의하여

$$(\sqrt{19})^2 = b^2 + 2^2 - 2 \times 2 \times b \times \cos 120^\circ$$

$$b^2 + 2b - 15 = 0$$
, $(b+5)(b-3) = 0$

이때 b>0이므로 b=3

따라서 △ABC의 넓이는

$$\frac{1}{2} \times 2 \times 3 \sin 120^\circ = \frac{3\sqrt{3}}{2}$$

17 정삼각형 ABC의 한 변의 길이를 4*a*라고 하면 △ADF 에서

$$\overline{AD} = 3a$$
, $\overline{AF} = a$, $A = 60^{\circ}$

△ADF에서 코사인법칙에 의하여

$$\overline{\text{DF}}^2 = (3a)^2 + a^2 - 2 \times 3a \times a \times \cos 60^\circ = 7a^2$$

$$\therefore \overline{DF} = \sqrt{7}a$$

이때 △ABC의 넓이는 96이므로

$$\frac{1}{2} \times 4a \times 4a \times \sin 60^{\circ} = 96, \ 4\sqrt{3} a^{2} = 96$$

$$\therefore a^2 = 8\sqrt{3}$$

따라서 △DEF의 넓이는

$$\frac{1}{2} \times \sqrt{7} a \times \sqrt{7} a \times \sin 60^{\circ}$$

$$=\frac{7\sqrt{3}}{4}a^2=\frac{7\sqrt{3}}{4}\times 8\sqrt{3}=42$$

참고 \overline{AB} : $\overline{DF} = 4a : \sqrt{7}a = 4 : \sqrt{7}$ 이므로 두 삼각형의 넓이의 비는 16 : 7이다.

$$\therefore \triangle DEF = \frac{7}{16} \times 96 = 42$$

18 $\angle ADB = \angle DBC = \theta$ 라고 하면 $\triangle ABD$ 에서 코사인법 칙에 의하여

$$\cos\theta = \frac{3^2 + 8^2 - 7^2}{2 \times 3 \times 8} = \frac{1}{2}$$

이때 $0^{\circ} < \theta < 180^{\circ}$ 이므로 $\theta = 60^{\circ}$

$$\therefore \Box ABCD = \triangle ABD + \triangle BCD$$

$$= \frac{1}{2} \times 3 \times 8 \sin 60^{\circ} + \frac{1}{2} \times 8 \times 6 \sin 60^{\circ}$$
$$= 6\sqrt{3} + 12\sqrt{3} = 18\sqrt{3}$$

★ 서술형 문제

$$\cos B = \frac{10^2 + a^2 - 6^2}{2 \times 10 \times a}$$
$$= \frac{a^2 + 64}{20a}$$

$$=\frac{1}{20}\left(a+\frac{64}{a}\right)$$

@a>0이므로 산술평균과 기하평균의 관계에 의하여

$$\begin{split} \frac{1}{20}\Big(a+\frac{64}{a}\Big) \ge &\frac{1}{20} \times 2\sqrt{a \times \frac{64}{a}} \\ = &\frac{4}{5} \; (등호는 \, a = 8$$
일 때 성립)

③ 따라서 a=8일 때, $\cos B$ 는 최솟값 $\frac{4}{5}$ 를 갖는다.

채점 기준	배점
$lacktriangle$ 코사인법칙을 이용하여 $\cos B$ 의 값을 a 로 나타내기	40 %
${\it 0}$ 산술평균과 기하평균의 관계를 이용하여 $\cos B$ 의 값	40 %
의 범위 구하기	
❸ cos B의 최솟값 구하기	20 %

20 ① 함수 $y = \tan x$ 의 그래프가 점 $\left(\frac{\pi}{3}, c\right)$ 를 지나므로

$$\tan\frac{\pi}{3} = c$$
 $\therefore c = \sqrt{3}$

② 함수 $y=a\sin bx$ 의 주기는 π 이고 b>0이므로

$$\frac{2\pi}{b} = \pi$$
 $\therefore b = 2$

③ 주어진 함수의 식은 $y=a\sin 2x$ 이고, 이 그래프가

점
$$\left(\frac{\pi}{3}, \sqrt{3}\right)$$
을 지나므로

$$\sqrt{3} = a \sin \frac{2}{3} \pi$$
, $\frac{\sqrt{3}}{2} a = \sqrt{3}$

$$\therefore a=2$$

채점 기준	배점
$lacksquare$ $rac{\pi}{3},c$)를 $y{=} an x$ 에 대입하여 c 의 값 구하기	40 %
${m arrho}$ 주기를 이용하여 b 의 값 구하기	30 %
$oldsymbol{0}$ $oldsymbol{0}$, $oldsymbol{0}$ 를 이용하여 a 의 값 구하기	30 %
, - =	

 $a:b:c=\sin A:\sin B:\sin C=2:4:5$

- ② $\sin A = 2k$, $\sin B = 4k$, $\sin C = 5k$ (k는 양수)라고 하면

채점 기준	배점
$lue{}$ 사인법칙을 이용하여 $\sin A:\sin B:\sin C$ 구하기	40 %
${\it 0}$ $\sin A$, $\sin B$, $\sin C$ 를 비례상수 k 로 나타내기	20 %
❸ $\dfrac{\sin C}{\sin A + \sin B}$ 의 값 구하기	40 %

$$\frac{\overline{AC}}{\sin B} = 8$$

$$\therefore \overline{AC} = 8 \times \sin \frac{2}{3} \pi = 4\sqrt{3}$$

② $\triangle ABC$ 는 이등변삼각형이고 $\angle ABC = \frac{2}{3}\pi$ 이므로

$$\angle BAC = \angle BCA = \frac{\pi}{6}$$

③ △ABC에서 사인법칙에 의하여

$$\frac{\overline{AB}}{\sin\frac{\pi}{6}} = \frac{4\sqrt{3}}{\sin\frac{2}{3}\pi}$$

$$\therefore \overline{AB} = \frac{4\sqrt{3}}{\sin\frac{2}{3}\pi} \times \sin\frac{\pi}{6} = 4$$

채점 기준	배점
$lue{f 0}$ $\triangle { m ABC}$ 에서 사인법칙을 이용하여 선분 ${ m AC}$ 의 길이	30 %
구하기	
② △ABC에서 ∠BAC의 크기 구하기	30 %
$oldsymbol{3} riangle ABC에서 사인법칙을 이용하여 선분 oldsymbol{A}B의 길이$	40 %
구하기	

23 ● △BCD에서 코사인법칙에 의하여 $\overline{BD}^2 \! = \! 3^2 \! + \! 4^2 \! - \! 2 \! \times \! 3 \! \times \! 4 \cos 60^\circ \! = \! 13$

$$= \triangle ABD + \triangle BCD$$

$$= \frac{1}{2} \times \sqrt{13} \times 4 \sin 30^{\circ} + \frac{1}{2} \times 3 \times 4 \sin 60^{\circ}$$
$$= \sqrt{13} + 3\sqrt{3}$$

채점 기준	배점
코사인법칙을 이용하여 변 BD의 길이 구하기	40 %
② □ABCD의 넓이구하기	60 %

Ⅲ. 수열

1. 등차수열과 등비수열 1-1 수열의 뜻

내신 대비 쌍둥이 문제

- **1-1** (1) 제5항: 20, 제8항: 32 (2) 제5항: $\frac{25}{9}$, 제8항: $\frac{64}{15}$
- **2-1** (1) 1, 4, 7, 10, 13
- (2) -1, 1, 5, 13, 29
- (3) $\frac{1}{2}$, $\frac{1}{6}$, $\frac{1}{12}$, $\frac{1}{20}$, $\frac{1}{30}$ (4) 2, 0, 2, 0, 2
- 1-1 (1) 첫째항부터 시작하여 다섯 번째와 여덟 번째에 있는 항 을 각각 찾으면 제5항은 20이고, 제8항은 32이다.
 - (2) 첫째항부터 시작하여 다섯 번째와 여덟 번째에 있는 항 을 각각 찾으면 제5항은 $\frac{25}{9}$ 이고, 제8항은 $\frac{64}{15}$ 이다.
- **2-1** (1) $a_n = 3n 2$ 에 n = 1, 2, 3, 4, 5 를 차례로 대입하면

$$a_1 = 3 \times 1 - 2 = 1$$

$$a_2 = 3 \times 2 - 2 = 4$$

$$a_3 = 3 \times 3 - 2 = 7$$

$$a_4 = 3 \times 4 - 2 = 10$$

$$a_5 = 3 \times 5 - 2 = 13$$

(2) $a_n = 2^n - 3$ 에 n = 1, 2, 3, 4, 5를 차례로 대입하면

$$a_1 = 2^1 - 3 = -1$$

$$a_2 = 2^2 - 3 = 1$$

$$a_3 = 2^3 - 3 = 5$$

$$a_4 = 2^4 - 3 = 13$$

$$a_5 = 2^5 - 3 = 29$$

(3) $a_n = \frac{1}{n^2 + n}$ 에 n = 1, 2, 3, 4, 5 를 차례로 대입하면

$$a_1 = \frac{1}{1^2 + 1} = \frac{1}{2}$$

$$a_2 = \frac{1}{2^2 + 2} = \frac{1}{6}$$

$$a_3 = \frac{1}{3^2 + 3} = \frac{1}{12}$$

$$a_4 = \frac{1}{4^2 + 4} = \frac{1}{20}$$

$$a_5 = \frac{1}{5^2 + 5} = \frac{1}{30}$$

(4) a_n =1+ $(-1)^{n-1}$ 에 n=1, 2, 3, 4, 5를 차례로 대입

$$a_1 = 1 + (-1)^{1-1} = 1 + (-1)^0 = 2$$

$$a_2 = 1 + (-1)^{2-1} = 1 + (-1)^1 = 0$$

$$a_3 = 1 + (-1)^{3-1} = 1 + (-1)^2 = 2$$

$$a_4 = 1 + (-1)^{4-1} = 1 + (-1)^3 = 0$$

$$a_5 = 1 + (-1)^{5-1} = 1 + (-1)^4 = 2$$

- **1-1** (1) 제6항: 27, 제8항: 243 (2) 제6항: $\frac{1}{6}$, 제8항: $\frac{1}{8}$
- **2-1** (1) 1, log₂ 5, log₂ 10, log₂ 17, log₂ 26

(2)
$$\frac{\sqrt{3}}{2}$$
, $\frac{\sqrt{3}}{2}$, 0, $-\frac{\sqrt{3}}{2}$, $-\frac{\sqrt{3}}{2}$

- **3-1** 9
- 1-1 (1) 첫째항부터 시작하여 여섯 번째와 여덟 번째에 있는 항 을 각각 찾으면 제6항은 27이고, 제8항은 243이다.
 - (2) 첫째항부터 시작하여 여섯 번째와 여덟 번째에 있는 항 을 각각 찾으면 제6항은 $\frac{1}{6}$ 이고, 제8항은 $\frac{1}{8}$ 이다.
- **2-1** (1) $a_n = \log_2(n^2 + 1)$ 에 n = 1, 2, 3, 4, 5를 차례로 대입하면

$$a_1 = \log_2(1^2 + 1) = \log_2 2 = 1$$

$$a_2 = \log_2(2^2 + 1) = \log_2 5$$

$$a_3 = \log_2(3^2 + 1) = \log_2 10$$

$$a_4 = \log_2(4^2 + 1) = \log_2 17$$

$$a_5 = \log_2(5^2 + 1) = \log_2 26$$

 $(2) a_n = \sin \frac{n}{3} \pi$ 에 n=1, 2, 3, 4, 5를 차례로 대입하면

$$a_1 = \sin \frac{1}{3} \pi = \frac{\sqrt{3}}{2}$$

$$a_2 = \sin \frac{2}{3} \pi = \frac{\sqrt{3}}{2}$$

$$a_3 = \sin \frac{3}{3} \pi = \sin \pi = 0$$

$$a_4 = \sin \frac{4}{3} \pi = -\frac{\sqrt{3}}{2}$$

$$a_5 = \sin \frac{5}{3} \pi = -\frac{\sqrt{3}}{2}$$

3-1 $a_1 = (7^1 = 7)$ 을 10으로 나누었을 때의 나머지)=7 $a_4 = (7^4 = 2401 = 100 = 1$ $a_5 = (7^5 = 16807)$ 을 10으로 나누었을 때의 나머지)=7 $a_6 = (7^6 = 117649 = 100$ 로 나누었을 때의 나머지)=9

위에서 수열 $\{a_n\}$ 은 7, 9, 3, 1이 반복하여 나타남을 알 수 있다.

$$\therefore a_{50} = a_{4 \times 12 + 2} = a_2 = 9$$

보충
$$a_{4n+1}$$
=7, a_{4n+2} =9, a_{4n+3} =3, a_{4n} =1

$$\therefore a_{50} = a_{4 \times 12 + 2} = a_2 = 9$$

1-2 등차수열

내신 대비 쌍둥이 문제

- 1-1 (1) 공차: 3, : 8, 14 (2) 공차: -3, : 2, -7
- **2-1** (1) $a_n = 5n 23$ (2) $a_n = -3n + 8$ (3) $a_n = -2n+1$ (4) $a_n = \frac{3}{2}n$
- 3-1 (1) -29 (2) 제17항
- **4-1** $a_n = 4n 1$
- 5-1 제31항
- **6-1** 4

- **7-1** 27
- **8-1** (1) 304 (2) 160
- 9-1 1225
- 10-1 첫째항: 10, 공차: 0
- **1-1** (1) 5-2=3에서 공차가 3이므로

- (2) -4-(-1)=-3에서 공차가 -3이므로 $2 - 1, -4, -7, -10, \cdots$
- **2-1** (1) $a_n = -18 + (n-1) \times 5 = 5n 23$
 - (2) $a_n = 5 + (n-1) \times (-3) = -3n + 8$
 - (3) 주어진 수열은 첫째항이 -1, 공차가 -2인 등차수열 이므로 일반항 a_n 은

$$a_n = -1 + (n-1) \times (-2) = -2n + 1$$

(4) 주어진 수열은 첫째항이 $\frac{3}{2}$, 공차가 $\frac{3}{2}$ 인 등차수열이 므로 일반항 a_v 은

$$a_n = \frac{3}{2} + (n-1) \times \frac{3}{2} = \frac{3}{2}n$$

3-1 (1) 첫째항이 6, 공차가 -5인 등차수열이므로 일반항 a_v 은 $a_n = 6 + (n-1) \times (-5)$

$$=-5n+11$$

$$=-5n+11$$

$$\therefore a_8 = (-5) \times 8 + 11 = -29$$

(2) -5n + 11 = -74에서

$$5n = 85$$
 : $n = 17$

따라서 -74는 제17항이다

4-1 첫째항을 a, 공차를 d라고 하면

$$a_2 = a + d = 7$$
, $a_5 = a + 4d = 19$

위의 두 식을 연립하여 풀면

$$a = 3, d = 4$$

$$\therefore a_n = 3 + (n-1) \times 4 = 4n-1$$

5-1 첫째항을 a. 공차를 d라고 하면

$$a_5 = a + 4d = 76$$
, $a_{10} = a + 9d = 61$

위의 두 식을 연립하여 풀면

$$a = 88, d = -3$$

$$\therefore a_n = 88 + (n-1) \times (-3) = -3n + 91$$

 $a_{\nu} < 0$ 인 n을 구하면 -3n + 91 < 0에서

$$n > \frac{91}{3} = 30.33 \cdots$$

이때 n은 자연수이므로 n의 최솟값은 31이다.

따라서 처음으로 음수가 되는 항은 제31항이다

6-1 a+2가 a^2 과 -a의 등차중항이므로

$$a+2=\frac{a^2+(-a)}{2}$$
 $\Rightarrow a^2-3a-4=0$

$$(a+1)(a-4)=0$$

그런데 a > 0이므로 a = 4

7-1 *y*는 -6과 -12의 등차중항이므로

$$y = \frac{-6 + (-12)}{2} = -9$$

-6은 x와 y의 등차중항이므로

$$-6 = \frac{x+y}{2} = \frac{x+(-9)}{2}$$
 $\therefore x = -3$

$$xy = (-3) \times (-9) = 27$$

- **8-1** (1) $\frac{16\{(-2)+40\}}{2}$ = 304
 - (2) $\frac{16\{2\times25+(16-1)\times(-2)\}}{2}=160$

9-1 100 이하의 자연수 중에서 4로 나누었을 때의 나머지가 1인 수를 작은 것부터 차례로 나열하면

1. 5. 9. 13. 17. 97

이고, 이것은 첫째항이 1, 공차가 4인 등차수열을 이룬 다. 이때 100 이하의 자연수 중에서 가장 큰 수는 97이므 로 97을 이 수열의 제n항이라고 하면

$$1+(n-1)\times 4=97$$
 : $n=25$

$$\therefore n=2$$

즉. 97은 제25항이다.

따라서 구하는 합은 $\frac{25(1+97)}{2}$ =1225

10-1 첫째항을 a, 공차를 d라고 하면

$$\frac{4(2a+3d)}{2} = 40 \qquad \qquad \cdots \cdot (1$$

$$\frac{6(2a+5d)}{2} = 60$$
②

①에서
$$2a+3d=20$$
 ······③

②에서
$$2a+5d=20$$
 ·····④

③. ④를 연립하여 풀면 a=10. d=0따라서 주어진 등차수열의 첫째항은 10. 공차는 0이다.

확인 문제

174~175쪽

- **1-1** (1) $a_n = 4n 5$ (2) $a_n = -2n + 13$
- **2-1** (1) 465 (2) 255
- **3-1** 1800
- 4-1 9
- **1-1** (1) 주어진 등차수열은 첫째항이 -1, 공차가 4이므로 $a_n = -1 + (n-1) \times 4 = 4n - 5$
 - (2) 첫째항을 a, 공차를 d라고 하면 $a_3 = a + 2d = 7$, $a_8 = a + 7d = -3$

위의 두 식을 연립하여 풀면 a=11. d=-2

$$\therefore a_n = 11 + (n-1) \times (-2) = -2n + 13$$

2-1 (1) 첫째항이 3, 공차가 4인 등차수열의 첫째항부터 제15 항까지의 합은

$$\frac{15\{2\times3+(15-1)\times4\}}{2}=465$$

(2) 첫째항을 a. 공차를 d 라고 하면 $a_3 = a + 2d = 7$, $a_6 = a + 5d = 13$ 위의 두 식을 연립하여 풀면 a=3. d=2 따라서 주어진 등차수열 $\{a_n\}$ 의 첫째항부터 제15항까지 의 합은

$$\frac{15\{2\times3+(15-1)\times2\}}{2}=255$$

3-1 집합 A의 모든 원소를 작은 수부터 차례로 나열하면

106, 114, 122, ..., 194

이고, 이것은 첫째항이 106, 공차가 8인 등차수열을 이룬 다. 이때 194를 이 수열의 제n항이라고 하면

$$106 + (n-1) \times 8 = 194$$
 : $n=12$

즉, 194는 제12항이다.

따라서 구하는 합은 $\frac{12(106+194)}{2}$ = 1800

4-1 $f(x) = x^2 + ax + 1$ 로 놓으면 f(x)를 x - 1, x - 2, x-4로 나누었을 때의 나머지는 각각 f(1)=2+a, f(2)=5+2a, f(4)=17+4a

2+a, 5+2a, 17+4a가 이 순서대로 등차수열을 이루

$$2(5+2a) = (2+a) + (17+4a)$$

 $10+4a=5a+19$ $\therefore a=-9$

1-3 등비수열

내신 대비 쌍둥이 문제 1-1 (1) 공비: -3, [: -3, 81

(2) $\frac{3}{6}$ H]: $-\frac{1}{4}$, $\boxed{}$: $\frac{1}{8}$, $-\frac{1}{32}$

2-1 (1) $a_n = 5 \times (-3)^{n-1}$ (2) $a_n = 2 \times (\sqrt{2})^{n-1}$

(3)
$$a_n = \left(\frac{1}{3}\right)^{n-2}$$

(3)
$$a_n = \left(\frac{1}{3}\right)^{n-2}$$
 (4) $a_n = 2 \times (-3)^{n-1}$

- **3-1** (1) $-\frac{1}{2}$ (2) 제7항
- **4-1** $a_n = -3 \times (-2)^{n-1}$
- **5-1** 43
- 6-1 11장
- **7-1** 3
- 8-1 a=4, b=8, c=16 $\pm \frac{1}{6}$ a=-4, b=8, c=-16
- **9-1** (1) $\frac{257}{128}$ (2) -255
- **10-1** $\frac{1}{2}$ 또는 2

- 1-1 (1) $-27 \div 9 = -3$ 에서 공비가 -3이므로 $1 \times (-3) = -3$, $(-27) \times (-3) = 81$ 1, $\overline{-3}$, 9, -27, $\overline{81}$, ...
 - (2) $-8 \div 32 = -\frac{1}{4}$ 에서 공비가 $-\frac{1}{4}$ 이므로 $\left(-\frac{1}{2}\right) \times \left(-\frac{1}{4}\right) = \frac{1}{8}, \frac{1}{8} \times \left(-\frac{1}{4}\right) = -\frac{1}{32}$ $32, -8, 2, -\frac{1}{2}, \left[\frac{1}{8}\right], \left[-\frac{1}{32}\right], \cdots$
- **2-1** (1) $a_n = 5 \times (-3)^{n-1}$ (2) $a_n = 2 \times (\sqrt{2})^{n-1}$
 - (3) 주어진 수열은 첫째항이 3, 공비가 $\frac{1}{3}$ 인 등비수열이므로 일반항 a_v 은

$$a_n = 3\left(\frac{1}{3}\right)^{n-1} = \left(\frac{1}{3}\right)^{n-2}$$

- (4) 주어진 수열은 첫째항이 2, 공비가 -3인 등비수열이 므로 일반항 a_n 은 $a_n = 2 \times (-3)^{n-1}$
- **3-1** (1) 첫째항이 4, 공비가 $-\frac{1}{2}$ 인 등비수열의 일반항 a_n 은

$$a_n = 4 \times \left(-\frac{1}{2}\right)^{n-1}$$

 $\therefore a_4 = 4 \times \left(-\frac{1}{2}\right)^{4-1} = -\frac{1}{2}$

(2) 이 등비수열의 제n항을 $\frac{1}{16}$ 이라고 하면

$$4 \times \left(-\frac{1}{2}\right)^{n-1} = \frac{1}{16}, \left(-\frac{1}{2}\right)^{n-1} = \frac{1}{64}$$
$$\left(-\frac{1}{2}\right)^{n-1} = \left(-\frac{1}{2}\right)^{6}, n-1=6$$

따라서 $\frac{1}{16}$ 은 제7항이다.

4-1 첫째항을 a, 공비를 r라고 하면

$$a_5 = ar^4 = -48$$
① $a_8 = ar^7 = 384$ ② ② \div ①을 하면 $r^3 = -8$ $\therefore r = -2$ ($\because r$ 는 실수) $r = -2$ 를 ①에 대입하면 $16a = -48$ $\therefore a = -3$ $\therefore a_n = -3 \times (-2)^{n-1}$

5-1 첫째항을 a, 공비를 r라고 하면

$$a_3=ar^2=3$$
①

$$a_5 = ar^4 = 9$$
 ②

②÷①을 하면

$$r^2=3$$
 $\therefore r=\sqrt{3} (\because r>0)$

 $r=\sqrt{3}$ 을 ①에 대입하면

$$3a=3$$
 $\therefore a=1$

$$\therefore a_n = 1 \times (\sqrt{3})^{n-1} = 3^{\frac{n-1}{2}}$$

 $3^{\frac{n-1}{2}} > 10^{10}$ 에서 양변에 상용로그를 취하면

$$\log 3^{\frac{n-1}{2}} > \log 10^{10}, \ \frac{n-1}{2} \log 3 > 10$$

$$n-1 > \frac{20}{\log 3} = \frac{20}{0.4771} = 41.91 \cdots$$

 $\therefore n > 42.91 \cdots$

따라서 구하는 자연수 n의 최솟값은 43이다.

6-1 처음 빛의 밝기를 *a*라고 하자.

색유리를 n장 통과한 후의 빛의 밝기를 a_n 이라고 하면

수열
$$\{a_n\}$$
은 첫째항이 $a imes \left(1-rac{20}{100}
ight)=rac{8}{10}\,a$ 이고,

공비가 $\frac{8}{10}$ 인 등비수열이므로 일반항 a_n 은

$$a_n = \frac{8}{10} a \times \left(\frac{8}{10}\right)^{n-1} = \left(\frac{8}{10}\right)^n a$$

$$\left(\frac{8}{10}\right)^n a \leq \frac{1}{10} a$$

$$\left(\frac{8}{10}\right)^n \leq \frac{1}{10} \qquad \cdots \cdots \oplus$$

①의 양변에 상용로그를 취하면

$$n(3\log 2-1) \le -1$$

$$\therefore n \ge \frac{1}{1-3\log 2} = \frac{1}{1-3\times0.3010} = 10.3\cdots$$

이때 n은 자연수이므로 n의 최솟값은 11이다.

따라서 빛의 밝기가 처음의 $\frac{1}{10}$ 이하가 되려면 색유리를 최소한 11장 통과해야 한다.

7-1 x+2가 x-1과 3x+1의 등비중항이므로

$$(x+2)^2 = (x-1)(3x+1)$$
에서

$$x^2 + 4x + 4 = 3x^2 - 2x - 1$$

$$\therefore 2x^2 - 6x - 5 = 0$$

따라서 모든 x의 값의 합은 이차방정식의 근과 계수의 관계에 의하여 $-\frac{-6}{2}$ =3이다.

8-1 2, a, b, c, 32에서 b는 2와 32의 등비중항이므로

 $b^2 = 2 \times 32 = 64$: $b = \pm 8$

(i) b=8일 때, a는 2와 8의 등비중항이므로

$$a^2 = 2 \times 8 = 16$$
 $\therefore a = \pm 4$

이때 a=4이면 c=16이고, a=-4이면 c=-16이다.

(ii) b=-8일 때, a는 2와 -8의 등비중항이므로 $a^2=2\times(-8)=-16$

이것을 만족하는 실수 a의 값은 존재하지 않는다. 따라서 등비수열을 이루도록 하는 $a,\ b,\ c$ 의 값은

a=4, b=8, c=16 또는 a=-4, b=8, c=-16

9-1 (1)
$$\frac{1 \times \left\{1 - \left(\frac{1}{2}\right)^{8}\right\}}{1 - \frac{1}{2}} = 2\left\{1 - \left(\frac{1}{2}\right)^{8}\right\} = \frac{257}{128}$$

(2) 주어진 수열은 첫째항이 3, 공비가 -2인 등비수열이 므로 첫째항부터 제8항까지의 합은

$$\frac{3\{1-(-2)^{8}\}}{1-(-2)} = 1-(-2)^{8}$$

$$=1-256$$

$$=-255$$

10-1 등비수열 $\{a_n\}$ 의 첫째항을 a, 공비를 r라고 하면

$$\frac{a(1-r^4)}{1-r} = 45 \qquad \dots \dots \text{ }$$

 $a_1 + a_4 = a + ar^3 = a(1+r^3) = 27$ ②

①에서

$$\frac{a(1-r^4)}{1-r} = \frac{a(1-r^2)(1+r^2)}{1-r}$$

$$= a(1+r)(1+r^2)$$

$$= 45 \qquad \cdots (3)$$

②에서

$$a(1+r^3) = a(1+r)(1-r+r^2)$$

= 27(4)

③÷4)를 하면

$$\frac{1+r^2}{1-r+r^2} = \frac{5}{3}, \ 3+3r^2 = 5-5r+5r^2$$
$$2r^2-5r+2=0, \ (2r-1)(r-2)=0$$
$$\therefore \ r = \frac{1}{2} \ \text{生} \ r = 2$$

학인 문제

182~183쪽

- **1-1** (1) $a_n = 2 \times (-2)^{n-1}$ (2) $a_n = 2^{2n-5}$
 - (3) $a_n = 2^{n-1}$
- (4) $a_n = 2 \times 3^{n-1}$
- **2-1** (1) $\frac{255}{64}$ (2) -255
- **3-1** 6
- **4-1** 200
- **1-1** (1) $a_n = 2 \times (-2)^{n-1}$
 - (2) 첫째항이 $\frac{1}{8}$, 공비가 4인 등비수열이므로

$$a_n = \frac{1}{8} \times 4^{n-1} = 2^{2n-5}$$

(3) 첫째항을 a, 공비를 r라고 하면

$$a_2 = ar = 2$$

 $a_5 = ar^4 = 16$

위의 두 식을 연립하여 풀면

$$r^3=8$$
 $\therefore r=2 (\because r$ 는 실수)

r=2를 ar=2에 대입하면 a=1

$$\therefore a_n = 1 \times 2^{n-1} = 2^{n-1}$$

(4) 첫째항을 a. 공비를 r라고 하면

$$a_3 = ar^2 = 18$$

$$a_5 = ar^4 = 162$$

위의 두 식을 연립하여 풀면

$$r^2=9$$
 $\therefore r=3 (\because 각 항이 양수)$

r=3을 $ar^2=18$ 에 대입하면 a=2

$$\therefore a_n = 2 \times 3^{n-1}$$

2-1 (1) 첫째항이 2, 공비가 $\frac{1}{2}$ 인 등비수열의 첫째항부터 제8항

까지의 합은

$$\frac{2\left\{1-\left(\frac{1}{2}\right)^{8}\right\}}{1-\frac{1}{2}} = 4\left\{1-\left(\frac{1}{2}\right)^{8}\right\}$$

$$=4-\left(\frac{1}{2}\right)^6=\frac{255}{64}$$

(2) 주어진 수열은 첫째항이 3, 공비가 -2인 등비수열이 므로 첫째항부터 제8항까지의 합은

$$\frac{3\{1-(-2)^8\}}{1-(-2)} = 1-(-2)^8$$
$$= 1-256 = -255$$

- 3-1 2^{n+3} 이 8^{n-1} 과 8^{n-5} 의 등비중항이므로 $(2^{n+3})^2 = 8^{n-1} \times 8^{n-5}$ 에서 $2^{2n+6} = 2^{3n-3} \times 2^{3n-15} = 2^{(3n-3)+(3n-15)} = 2^{6n-18}$ 따라서 2n+6=6n-18이므로 n=6
- **4-1** 첫째항을 a, 공비를 r라고 하면

$$\frac{a(1-r^5)}{1-r} = 5 \qquad \dots \dots$$

$$\frac{a(1-r^{10})}{1-r} = \frac{a(1-r^5)}{1-r} \times (1+r^5) = 20 \qquad \cdots \cdots 2$$

 $②\div①을 하면 <math>1+r^5=4$ 이므로 $r^5=3$

따라서 첫째항부터 제20항까지의 합은

$$\frac{a(1-r^{20})}{1-r} = \frac{a(1-r^{10})(1+r^{10})}{1-r}$$

$$= \frac{a(1-r^{5})}{1-r} \times (1+r^{5})(1+r^{10})$$

$$= 5(1+3)(1+9) = 200$$

중단원 연습 문제

186~191쪽

- **1-1** (1) $\log_5 2$, $\log_5 \frac{3}{2}$, $\log_5 \frac{4}{3}$, $\log_5 \frac{5}{4}$, $\log_5 \frac{6}{5}$
 - (2) 3, 33, 333, 3333, 33333
- **2-1** (1) $a_n = 6n 8$, $a_n = 6n 8$, $a_n = -2n + 37$, a_n
- **3-1** (1) $a_n = 4 \times (-2)^{n-1}$, 합: 684 (2) $a_n = 2^{8-n}$, 합: $\frac{511}{2}$
- **4-1** 10
- **5-1** 16
- **6-1** −286
- **7-1** 4
- **8-1** 6
- **9-1** 108
- **10-1** 45
- **11-1** 1530톤
- **1-1** (1) $a_n = \log_5 \frac{n+1}{n}$ 에 n=1, 2, 3, 4, 5를 차례로 대입하면

$$a_1 = \log_5 \frac{1+1}{1} = \log_5 2$$

$$a_2 = \log_5 \frac{2+1}{2} = \log_5 \frac{3}{2}$$

$$a_3 = \log_5 \frac{3+1}{3} = \log_5 \frac{4}{3}$$

$$a_4 = \log_5 \frac{4+1}{4} = \log_5 \frac{5}{4}$$

$$a_5 = \log_5 \frac{5+1}{5} = \log_5 \frac{6}{5}$$

(2) $a_n = \frac{1}{3}(10^n - 1)$ 에 n = 1, 2, 3, 4, 5를 차례로 대입하면

$$a_1 = \frac{1}{3}(10^1 - 1) = \frac{1}{3} \times 9 = 3$$

$$a_2 = \frac{1}{3}(10^2 - 1) = \frac{1}{3} \times 99 = 33$$

$$a_3 = \frac{1}{3}(10^3 - 1) = \frac{1}{3} \times 999 = 333$$

$$a_4 = \frac{1}{3}(10^4 - 1) = \frac{1}{3} \times 9999 = 3333$$

$$a_5 = \frac{1}{3}(10^5 - 1) = \frac{1}{3} \times 99999 = 33333$$

2-1 (1) 첫째항을 a, 공차를 d라고 하면

$$a_2 = a + d = 4$$
 ①

$$a_5 = a + 4d = 22$$
 ②

①, ②를 연립하여 풀면

$$a = -2, d = 6$$

$$\therefore a_n = -2 + (n-1) \times 6 = 6n - 8$$

따라서 첫째항부터 제12항까지의 합은

$$\frac{12\{2\times(-2)+(12-1)\times6\}}{2}=372$$

(2) 첫째항을 a, 공차를 d라고 하면

$$a_4 = a + 3d = 29$$

$$a_7 = a + 6d = 23$$

①, ②를 연립하여 풀면

$$a=35, d=-2$$

$$\therefore a_n = 35 + (n-1) \times (-2) = -2n + 37$$

따라서 첫째항부터 제12항까지의 합은

$$\frac{12\{2\times35+(12-1)\times(-2)\}}{2}=288$$

3-1 (1) 첫째항을 a, 공비를 r라고 하면

$$a_2 = ar = -8$$

..... 1

$$a_5 = ar^4 = 64$$

..... ②

②÷①을 하면

$$r^3 = -8$$
 $\therefore r = -2 \ (\because 공비는 실수)$

 $\gamma = -2$ 를 ①에 대입하면

$$-2a = -8$$
 $\therefore a = 4$

$$\therefore a_n = 4 \times (-2)^{n-1}$$

따라서 첫째항부터 제9항까지의 합은

$$\frac{4\{1-(-2)^9\}}{1-(-2)} = \frac{4\times513}{3} = 684$$

(2) 첫째항을 a. 공비를 r라고 하면

$$a_3 = ar^2 = 32$$
 (1)

$$a_6 = ar^5 = 4$$
(2)

②÷1)을 하면

$$r^3 = \frac{1}{8}$$
 $\therefore r = \frac{1}{2} (\because 공비는 실수)$

 $r = \frac{1}{2}$ 을 ①에 대입하면

$$a\left(\frac{1}{2}\right)^2 = 32 \qquad \therefore a = 128$$

$$\therefore a_n = 128 \times \left(\frac{1}{2}\right)^{n-1} = 2^{8-n}$$

따라서 첫째항부터 제9항까지의 합은

$$\frac{128 \times \left\{1 - \left(\frac{1}{2}\right)^{9}\right\}}{1 - \frac{1}{2}} = 256 \times \left\{1 - \left(\frac{1}{2}\right)^{9}\right\} = \frac{511}{2}$$

4-1 1과 *b*의 등차중항이 *a*이므로

$$2a=1+b$$
 $\therefore b=2a-1$

a와 b의 등비중항이 $\sqrt{3}$ 이므로

$$(\sqrt{3})^2 = ab$$

①을 ②에 대입하면 3=a(2a-1)

$$2a^2-a-3=0$$
, $(2a-3)(a+1)=0$

$$\therefore a = \frac{3}{2}$$
 또는 $a = -1$

그런데 a는 정수이므로 a=-1

a = -1을 ①에 대입하면 b = -3

$$\therefore a^2+b^2=(-1)^2+(-3)^2=10$$

5-1 첫째항을 a, 공차를 d라고 하면

$$a_2+a_3=(a+d)+(a+2d)=2a+3d=10$$
 ① $a_5=a+5d=12$ ②

①, ②를 연립하여 풀면 a=2, d=2

$$\therefore a_8 = a + 7d = 2 + 7 \times 2 = 16$$

6-1 첫째항이 50, 제n항이 -10, 항의 개수가 n인 등차수열 의 첫째항부터 제n항까지의 합이 220이므로

$$\frac{n\{50+(-10)\}}{2}=220, 20n=220$$

 $\therefore n=11$

즉, a_{11} =-10이므로 공차를 d라고 하면

$$50+(11-1)d=-10, 10d=-60$$

$$\therefore d=-6$$

따라서 첫째항부터 제2n항까지의 합은 첫째항부터 제22항까지의 합이므로

$$\frac{22\{2\times50+(22-1)\times(-6)\}}{2} = -286$$

7-1 공비를 r라고 하면

$$\frac{a_{11}}{a_1} + \frac{a_{12}}{a_2} + \frac{a_{13}}{a_3} + \frac{a_{14}}{a_4} + \frac{a_{15}}{a_5}$$

$$= \frac{a_1 r^{10}}{a_1} + \frac{a_1 r^{11}}{a_1 r} + \frac{a_1 r^{12}}{a_1 r^2} + \frac{a_1 r^{13}}{a_1 r^3} + \frac{a_1 r^{14}}{a_1 r^4}$$

$$= r^{10} + r^{10} + r^{10} + r^{10} + r^{10}$$

$$= 5r^{10} = 10$$

$$\therefore r^{10} = 2$$

$$\therefore \frac{a_{30}}{a_{10}} = \frac{a_1 r^{29}}{a_1 r^9} = r^{20} = (r^{10})^2 = 2^2 = 4$$

8-1 등차수열 $\{a_n\}$ 의 첫째항을 a라고 하면

$$a_1=a$$
, $a_2=a+4$, $a_5=a+(5-1)\times 4$

이때 a_1 , a_2 , a_5 가 이 순서대로 등비수열을 이루므로 $a_2^2 = a_1 a_5$ 에서

$$(a+4)^2 = a(a+16), 8a=16$$
 : $a=2$

$$\therefore a_2 = 2 + 4 = 6$$

9-1 등비수열 $\{a_n\}$ 의 첫째항을 a. 공비를 r라고 하면

$$\frac{a(r^{10}-1)}{r-1}=3$$
 ①

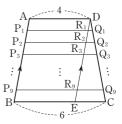
$$\frac{ar^{10}(r^{10}-1)}{r-1} = 18 \qquad \dots \dots 2$$

②÷①을 하면 $r^{10}=6$

따라서 제21항부터 제30항까지의 합은

$$\frac{ar^{20}(r^{10}-1)}{r-1} = (r^{10})^2 \times \frac{a(r^{10}-1)}{r-1}$$
$$= 6^2 \times 3 = 108$$

10-1오른쪽 그림과 같이 변 BC 위 에 $\overline{AB}/\!\!/ \overline{DE}$ 인 점 E를 잡고, $\overline{P_kQ_k}(k{=}1,\ 2,\ 3,\ \cdots,\ 9)$ 와 \overline{DE} 의 교점을 R_k 라고 하면 $\triangle DE$ C와 $\triangle DR_kQ_k$ 는 닮음 이고, 닮음비는 10:k이므로



$$2: \overline{R_kQ_k} = 10: k \qquad \therefore \overline{R_kQ_k} = \frac{1}{5}k$$

$$\therefore \overline{P_k Q_k} = \overline{P_k R_k} + \overline{R_k Q_k} = 4 + \frac{1}{5} k$$

따라서 $\overline{P_1Q_1}$, $\overline{P_2Q_2}$, $\overline{P_3Q_3}$, …, $\overline{P_9Q_9}$ 는 공차가 $\frac{1}{5}$ 인 등차수열을 이루고

$$\overline{P_1Q_1} = 4 + \frac{1}{5} = \frac{21}{5}, \ \overline{P_9Q_9} = 4 + \frac{9}{5} = \frac{29}{5}$$

이므로

$$\overline{P_1Q_1} + \overline{P_2Q_2} + \overline{P_3Q_3} + \, \cdots \, + \overline{P_9Q_9}$$

$$=\frac{9\times\!\left(\frac{21}{5}+\frac{29}{5}\right)}{2}$$

$$=\frac{9\times10}{2}=45$$

11-1 P지역의 연간 자동차 휘발유 소비량이 매년 r배 감소한 다고 하면 4년 후의 휘발유 소비량은 $768r^4$ 톤이므로

768
$$r^4 = 48$$
, $r^4 = \frac{1}{16}$ $\therefore r = \frac{1}{2} (\because r > 0)$

따라서 8년 동안 사용되는 자동차 휘발유 소비량의 총합은 $768+768r+768r^2+\cdots+768r^7$

$$=\frac{768(1-r^8)}{1-r}=\frac{768\left\{1-\left(\frac{1}{2}\right)^8\right\}}{1-\frac{1}{2}}$$

=1530(톤)

2. 수열의 합

2-1 ∑의 뜻과 성질

내신 대비 쌍둥이 문제

193~194쪽

2-1
$$\sum_{k=1}^{8} (2k+1)$$

3-1 (1) 2 (2) 19

1-1 (1)
$$\sum_{i=1}^{10} (4i+3) = (4 \times 1 + 3) + (4 \times 2 + 3)$$

 $+ (4 \times 3 + 3) + \cdots + (4 \times 10 + 3)$
 $= 7 + 11 + 15 + \cdots + 43$

(2)
$$\sum_{j=1}^{10} j(j+2) = 1 \times 3 + 2 \times 4 + 3 \times 5 + \dots + 10 \times 12$$
$$= 3 + 8 + 15 + \dots + 120$$

2-1 주어진 등차수열의 첫째항이 3, 공차가 2이므로 일반항 a_k 는

$$a_k = 3 + (k-1) \times 2 = 2k + 1$$
 $2k + 1 = 17$ 에서 $k = 8$ 이므로 $3 + 5 + 7 + \cdots + 17 = \sum\limits_{k=1}^{8} (2k + 1)$

3-1 (1)
$$\sum_{k=1}^{10} (2a_k - b_k) = 2 \sum_{k=1}^{10} a_k - \sum_{k=1}^{10} b_k$$

= $2 \times 5 - 8 = 2$

$$\begin{array}{c} \text{(2)} \ \sum\limits_{k=1}^{10} \left(3 a_k \!-\! 2 b_k \!+\! 2\right) \!=\! 3 \sum\limits_{k=1}^{10} a_k \!-\! 2 \sum\limits_{k=1}^{10} b_k \!+\! \sum\limits_{k=1}^{10} 2 \\ = \! 3 \!\times\! 5 \!-\! 2 \!\times\! 8 \!+\! 2 \!\times\! 10 \\ = \! 15 \!-\! 16 \!+\! 20 \\ = \! 19 \end{array}$$

소단원 확인 문제

195~196쪽

- **1-1** (2), (4)
- **2-1** (1) 435 (2) -40
- **3-1** $\sum_{k=1}^{8} \left(-\frac{1}{3}\right)^{k-1}$
- **4-1** 13

1-1 (2)
$$2^2 + 3^2 + 4^2 + \cdots + 9^2 = \sum_{k=1}^{8} (k+1)^2$$

(4) $1 \times 3 + 2 \times 5 + 3 \times 7 + \cdots + 10 \times 21 = \sum_{k=1}^{10} k(2k+1)$ 따라서 잘못 나타낸 것은 (2), (4)이다.

2-1 (1)
$$\sum_{k=1}^{100} (a_k + 2)^2 = \sum_{k=1}^{100} (a_k^2 + 4a_k + 4)$$

$$= \sum_{k=1}^{100} a_k^2 + 4 \sum_{k=1}^{100} a_k + \sum_{k=1}^{100} 4$$

$$= 15 + 4 \times 5 + 4 \times 100$$

(2)
$$\sum_{k=1}^{100} (2a_k + 1)(2a_k - 1) = \sum_{k=1}^{100} (4a_k^2 - 1)$$
$$= 4 \sum_{k=1}^{100} a_k^2 - \sum_{k=1}^{100} 1$$
$$= 4 \times 15 - 1 \times 100$$
$$= -40$$

3-1 주어진 등비수열의 첫째항이
$$1$$
, 공비가 $-\frac{1}{3}$ 이므로 일반항 a_{b} 는

$$a_k = 1 \times \left(-\frac{1}{3}\right)^{k-1} = \left(-\frac{1}{3}\right)^{k-1}$$

$$\left(-rac{1}{3}
ight)^{k-1} = -rac{1}{2187} = \left(-rac{1}{3}
ight)^7$$
에서 $k=8$ 이므로

$$1 - \frac{1}{3} + \frac{1}{9} - \cdots - \frac{1}{2187} = \sum_{k=1}^{8} \left(-\frac{1}{3} \right)^{k-1}$$

4-1
$$\sum_{k=1}^{10} (a_k - 1)^2 = 12$$
에서

$$\sum_{k=1}^{10} (a_k^2 - 2a_k + 1) = 12 \qquad \cdots$$

$$\sum\limits_{k=1}^{10}(a_{k}\!-\!1)(a_{k}\!+\!1)\!=\!18$$
에서

$$\sum_{k=1}^{10} (a_k^2 - 1) = 18 \qquad \cdots 2$$

②-(1)을 하면

$$\sum_{k=1}^{10} (2a_k-2) = 6$$
, $2\sum_{k=1}^{10} a_k-20 = 6$

$$\therefore \sum_{k=1}^{10} a_k = 13$$

2-2 여러 가지 수열의 합

내신 대비 쌍둥이 문제

197~201쪽

- **1-1** (1) 91 (2) 1296 (3) 650 (4) 2025
- **2-1** (1) -4 (2) 495 (3) 3976 (4) 516
- 3-1 $\frac{n(n+1)(n+2)}{6}$
- **4-1** 8000
- **5-1** (1) $\frac{36}{55}$ (2) 4
- **6-1** (1) $a_n = 2n$ (2) $a_n = 2^n$
- **7-1** (1) $a_n = p(q-1) \times q^{n-1}$ (2) 풀이 참조

1-1 (1)
$$\sum_{k=1}^{6} k^2 = \frac{6 \times 7 \times 13}{6} = 91$$

(2)
$$\sum_{k=1}^{8} k^3 = \left(\frac{8 \times 9}{2}\right)^2 = 36^2 = 1296$$

(3)
$$1^2 + 2^2 + 3^2 + \dots + 12^2 = \sum_{k=1}^{12} k^2$$

$$= \frac{12 \times 13 \times 25}{6}$$

$$= 650$$

(4)
$$1^3 + 2^3 + 3^3 + \dots + 9^3 = \sum_{k=1}^{9} k^3$$

= $\left(\frac{9 \times 10}{2}\right)^2$
= 2025

2-1 (1)
$$\sum_{k=1}^{8} (k-5) = \sum_{k=1}^{8} k - \sum_{k=1}^{8} 5$$

$$= \frac{8 \times 9}{2} - 5 \times 8$$

$$= -4$$

(2)
$$\sum_{k=1}^{10} k(k+2) = \sum_{k=1}^{10} (k^2 + 2k)$$

$$= \sum_{k=1}^{10} k^2 + 2 \sum_{k=1}^{10} k$$

$$= \frac{10 \times 11 \times 21}{6} + 2 \times \frac{10 \times 11}{2}$$

$$= 385 + 110$$

$$= 495$$

(3)
$$\sum_{k=1}^{7} (4k^3 + 6k^2)$$
$$= 4\sum_{k=1}^{7} k^3 + 6\sum_{k=1}^{7} k^2$$
$$= 4\left(\frac{7 \times 8}{2}\right)^2 + 6 \times \frac{7 \times 8 \times 15}{6}$$
$$= 3136 + 840$$
$$= 3976$$

(4)
$$\sum_{k=1}^{9} (k-1)(2k+1)$$

$$= \sum_{k=1}^{9} (2k^2 - k - 1)$$

$$= 2 \sum_{k=1}^{9} k^2 - \sum_{k=1}^{9} k - \sum_{k=1}^{9} 1$$

$$= 2 \times \frac{9 \times 10 \times 19}{6} - \frac{9 \times 10}{2} - 1 \times 9$$

$$= 570 - 45 - 9$$

$$= 516$$

3-1 주어진 수열의 일반항을
$$a_k$$
라고 하면

$$a_k = k\{n-(k-1)\} = -k^2 + (n+1)k$$

$$\begin{split} & \therefore \ (\begin{tabular}{l} \begin{tabular}{l}$$

4-1 20단계에 속한 수들은 다음과 같다.

제1행의 수들의 합은

$$1+2+3+\cdots+20=\sum_{k=1}^{20}k=\frac{20\times21}{2}=210$$

제2행의 수들의 합은

$$(1+2+3+\cdots+20)+20=210+20$$

제3행의 수들의 합은

$$(1+2+3+\cdots+20)+40=210+40$$

제20행의 수들의 합은

$$(1+2+3+\cdots+20)+380=210+380$$

따라서 모두 더하면

$$210 \times 20 + \sum_{k=1}^{19} 20k = 4200 + 20 \times \frac{19 \times 20}{2}$$
$$= 4200 + 3800 = 8000$$

5-1 (1)
$$\sum_{k=2}^{10} \frac{1}{k^2 - 1}$$

$$= \sum_{k=2}^{10} \frac{1}{(k-1)(k+1)}$$

$$= \sum_{k=2}^{10} \frac{1}{2} \left(\frac{1}{k-1} - \frac{1}{k+1} \right)$$

$$= \frac{1}{2} \left\{ \left(\frac{1}{1} - \frac{1}{3} \right) + \left(\frac{1}{2} - \frac{1}{4} \right) + \left(\frac{1}{3} - \frac{1}{5} \right) + \cdots + \left(\frac{1}{8} - \frac{1}{10} \right) + \left(\frac{1}{9} - \frac{1}{11} \right) \right\}$$

$$= \frac{1}{2} \left(1 + \frac{1}{2} - \frac{1}{10} - \frac{1}{11} \right) = \frac{36}{55}$$

$$(2) \sum_{k=1}^{40} \frac{1}{\sqrt{2k+1} + \sqrt{2k-1}}$$

$$= \sum_{k=1}^{40} \frac{\sqrt{2k+1} - \sqrt{2k-1}}{(\sqrt{2k+1} + \sqrt{2k-1})(\sqrt{2k+1} - \sqrt{2k-1})}$$

$$= \sum_{k=1}^{40} \frac{\sqrt{2k+1} - \sqrt{2k-1}}{(2k+1) - (2k-1)}$$

$$= \frac{1}{2} \sum_{k=1}^{40} (\sqrt{2k+1} - \sqrt{2k-1})$$

$$= \frac{1}{2} \{ (\sqrt{3} - \sqrt{1}) + (\sqrt{5} - \sqrt{3}) + \cdots + (\sqrt{79} - \sqrt{77}) + (\sqrt{81} - \sqrt{79}) \}$$

$$= \frac{1}{2} (\sqrt{81} - 1) = 4$$

6-1 (1)
$$n=1$$
일 때, $a_1=1^2+1=2$ $n\geq 2$ 일 때, $S_n=\sum\limits_{k=1}^n a_k=n^2+n$ 이라고 하면 $a_n=S_n-S_{n-1}$ $=n^2+n-\{(n-1)^2+n-1\}=2n$ ① ①에 $n=1$ 을 대입한 값이 $a_1=2$ 와 같으므로 일반항 a_n 은 $a_n=2n$ (2) $n=1$ 일 때, $a_1=2^2-2=2$ $n\geq 2$ 일 때, $S_n=\sum\limits_{k=1}^n a_k=2^{n+1}-2$ 라고 하면 $a_n=S_n-S_{n-1}$ $=(2^{n+1}-2)-(2^n-2)=2^n$ ① ①에 $n=1$ 을 대입한 값이 $a_1=2$ 와 같으므로 일반항 a_n 은 $a_n=2^n$

7-1 (1)
$$n=1$$
일 때, $a_1=p\times q-p$
 $n\geq 2$ 일 때, $S_n=\sum\limits_{k=1}^n a_k=p\times q^n-p$ 라고 하면

 $a_n=S_n-S_{n-1}$
 $=(p\times q^n-p)-(p\times q^{n-1}-p)$
 $=p(q-1)\times q^{n-1}$ ①
①에 $n=1$ 을 대입한 값이 $a_1=p\times q-p$ 와 같으므로 일반항 a_n 은

 $a_n=p(q-1)\times q^{n-1}$
(2) $\frac{a_{n+1}}{a_n}=\frac{p(q-1)\times q^n}{p(q-1)\times q^{n-1}}=q$ 이므로 수열 $\{a_n\}$ 은 공비가 a 인 등비수열이다.

단원 확인 문제

202~2045

1-1 (1) 250 (2) 310 (3)
$$\frac{12}{25}$$
 (4) $\frac{9}{10}$

3-1 (1)
$$\frac{20}{11}$$
 (2) 10

4-1
$$a_1 = 4$$
, $a_n = 2 \times 3^{n-1}$ $(n \ge 2)$

1-1 (1)
$$\sum_{k=1}^{10} (4k+3) = 4 \sum_{k=1}^{10} k + \sum_{k=1}^{10} 3$$

= $4 \times \frac{10 \times 11}{2} + 3 \times 10$
= $220 + 30 = 250$

(2)
$$\sum_{k=1}^{10} (k^2 - k - 2)$$

$$= \sum_{k=1}^{10} k^2 - \sum_{k=1}^{10} k - \sum_{k=1}^{10} 2$$

$$= \frac{10 \times 11 \times 21}{6} - \frac{10 \times 11}{2} - 2 \times 10$$

$$= 385 - 55 - 20$$

$$= 310$$

(3)
$$\frac{1}{4k^2 - 1} = \frac{1}{(2k - 1)(2k + 1)}$$
$$= \frac{1}{2} \left(\frac{1}{2k - 1} - \frac{1}{2k + 1} \right)$$
이므로
$$\sum_{k=1}^{12} \frac{1}{4k^2 - 1}$$
$$= \sum_{k=1}^{12} \frac{1}{2} \left(\frac{1}{2k - 1} - \frac{1}{2k + 1} \right)$$
$$= \frac{1}{2} \left\{ \left(\frac{1}{1} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{5} \right) + \cdots + \left(\frac{1}{23} - \frac{1}{25} \right) \right\}$$
$$= \frac{1}{2} \left(1 - \frac{1}{25} \right) = \frac{12}{25}$$

(4)
$$\frac{\sqrt{k+1} - \sqrt{k}}{\sqrt{k}\sqrt{k+1}} = \frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}}$$
 이므로
$$\sum_{k=1}^{99} \frac{\sqrt{k+1} - \sqrt{k}}{\sqrt{k}\sqrt{k+1}}$$

$$= \sum_{k=1}^{99} \left(\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}}\right)$$

$$= \left(\frac{1}{1} - \frac{1}{\sqrt{2}}\right) + \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}}\right) + \dots + \left(\frac{1}{\sqrt{99}} - \frac{1}{\sqrt{100}}\right)$$

$$= 1 - \frac{1}{\sqrt{100}}$$

$$= 1 - \frac{1}{10} = \frac{9}{10}$$

2-1 (1)
$$\sum_{k=1}^{9} (2k-1)(k-3) - \sum_{k=1}^{9} (k+2)(k-3)$$

 $= \sum_{k=1}^{9} \{(2k-1)(k-3) - (k+2)(k-3)\}$
 $= \sum_{k=1}^{9} (k^2 - 6k + 9)$
 $= \sum_{k=1}^{9} k^2 - 6 \sum_{k=1}^{9} k + \sum_{k=1}^{9} 9$
 $= \frac{9 \times 10 \times 19}{6} - 6 \times \frac{9 \times 10}{2} + 9 \times 9 = 96$
(2) $\sum_{k=1}^{8} k(k-1)(k+1) + \sum_{k=1}^{8} (k^3 + 2)$
 $= \sum_{k=1}^{8} \{k(k-1)(k+1) + (k^3 + 2)\}$
 $= \sum_{k=1}^{8} (2k^3 - k + 2)$
 $= 2\sum_{k=1}^{8} k^3 - \sum_{k=1}^{8} k + \sum_{k=1}^{8} 2$
 $= 2\left(\frac{8 \times 9}{2}\right)^2 - \frac{8 \times 9}{2} + 2 \times 8 = 2572$

3-1 (1)
$$\sum_{k=1}^{10} \frac{1}{1+2+3+\cdots+k}$$

$$= \sum_{k=1}^{10} \frac{1}{\frac{1}{k(k+1)}} = \sum_{k=1}^{10} \frac{2}{k(k+1)}$$

$$= 2 \sum_{k=1}^{10} \left(\frac{1}{k} - \frac{1}{k+1}\right)$$

$$= 2 \left\{ \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \cdots + \left(\frac{1}{10} - \frac{1}{11}\right) \right\}$$

$$= 2 \left(1 - \frac{1}{11}\right) = \frac{20}{11}$$
(2)
$$\frac{2}{\sqrt{2k+2} + \sqrt{2k+4}}$$

$$= \frac{2(\sqrt{2k+4} - \sqrt{2k+2})}{(\sqrt{2k+4} + \sqrt{2k+2})(\sqrt{2k+4} - \sqrt{2k+2})}$$

$$= \frac{2(\sqrt{2k+4} - \sqrt{2k+2})}{(2k+4) - (2k+2)} = \sqrt{2k+4} - \sqrt{2k+2}$$

$$\therefore \sum_{k=1}^{70} \frac{2}{\sqrt{2k+2} + \sqrt{2k+4}}$$

$$= \sum_{k=1}^{70} (\sqrt{2k+4} - \sqrt{2k+2})$$

$$= (\sqrt{6} - \sqrt{4}) + (\sqrt{8} - \sqrt{6}) + (\sqrt{10} - \sqrt{8}) + \cdots$$

$$+ (\sqrt{144} - \sqrt{142})$$

$$= \sqrt{144} - \sqrt{4} = 12 - 2 = 10$$

4-1
$$n=1$$
일 때, $a_1=3^1+1=4$

$$n \ge 2$$
일 때, $S_n = \sum_{k=1}^n a_k = 3^n + 1$ 이라고 하면

$$a_{n} = S_{n} - S_{n-1}$$

$$= (3^{n} + 1) - (3^{n-1} + 1)$$

$$= 3^{n} - 3^{n-1}$$

$$= 3^{n-1}(3-1)$$

$$= 2 \times 3^{n-1} \qquad \cdots \qquad \boxed{1}$$

①에 n=1을 대입한 값이 $a_1=4$ 와 다르므로 일반항 a_n 은 $a_1 = 4$, $a_n = 2 \times 3^{n-1} (n \ge 2)$

중단원 연습 문제

206~211쪽

1-1 (1)
$$\sum_{k=1}^{10} k(2k+1)$$

1-1 (1)
$$\sum_{k=1}^{10} k(2k+1)$$
 (2) $\sum_{k=1}^{7} \frac{1}{(2k+1)^2 - 1}$

2-1 75

$$(2)\frac{8}{17}$$

4-1 (1)
$$a = 4n - 7$$

4-1 (1)
$$a_n = 4n - 7$$
 (2) $a_n = 3n^2 - 3n + 1$

(3)
$$a_n = 9 \times 10^{n-1}$$

(3)
$$a_n = 9 \times 10^{n-1}$$
 (4) $a_n = \frac{1}{n(n+1)}$

$$7-1 - 100$$

8-1
$$-\frac{15}{16}$$

1-1 (1)
$$\sum_{k=1}^{10} k(2k+1)$$

(2)
$$\sum_{k=1}^{7} \frac{1}{(2k+1)^2-1}$$

2-1
$$\sum_{k=1}^{20} (a_k - 2)^2 = \sum_{k=1}^{20} (a_k^2 - 4a_k + 4)$$
$$= \sum_{k=1}^{20} a_k^2 - 4 \sum_{k=1}^{20} a_k + \sum_{k=1}^{20} 4$$
$$= 55 - 4 \times 15 + 4 \times 20$$
$$= 75$$

3-1 (1)
$$\sum_{k=1}^{8} (3 \times 2^{k} - 1) = 3 \sum_{k=1}^{8} 2^{k} - \sum_{k=1}^{8} 1$$

= $3 \times \frac{2(2^{8} - 1)}{2 - 1} - 8$
= $6(2^{8} - 1) - 8 = 1522$

$$(2) \sum_{k=1}^{8} \frac{1}{4k^2 - 1}$$

$$= \sum_{k=1}^{8} \frac{1}{(2k-1)(2k+1)}$$

$$= \sum_{k=1}^{8} \frac{1}{2} \left(\frac{1}{2k-1} - \frac{1}{2k+1} \right)$$

$$= \frac{1}{2} \left\{ \left(\frac{1}{1} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{5} \right) + \left(\frac{1}{5} - \frac{1}{7} \right) + \cdots + \left(\frac{1}{13} - \frac{1}{15} \right) + \left(\frac{1}{15} - \frac{1}{17} \right) \right\}$$

$$= \frac{1}{2} \left(1 - \frac{1}{17} \right) = \frac{8}{17}$$

4-1 (1) n=1일 때, $a_1=2\times1^2-5\times1=-3$ $n \ge 2$ 일 때.

$$a_n = S_n - S_{n-1}$$

= $(2n^2 - 5n) - \{2(n-1)^2 - 5(n-1)\}$
= $4n - 7$ (1)

①에 n=1을 대입한 값이 $a_1=-3$ 과 같으므로 일반 항 *a*_e은

$$a_n = 4n - 7$$

(2) n = 1 2 1 = 1 2 = 1

 $n \ge 2$ 일 때.

$$a_n = S_n - S_{n-1}$$

= $n^3 - (n-1)^3$
= $3n^2 - 3n + 1$ ①

①에 n=1을 대입한 값이 $a_1=1$ 과 같으므로 일반항 $a_n \stackrel{\diamond}{\leftarrow}$

$$a_n = 3n^2 - 3n + 1$$

(3) n=1일 때, $a_1=10-1=9$ $n \ge 2$ 일 때.

$$a_n = S_n - S_{n-1}$$

= $10^n - 1 - (10^{n-1} - 1)$
= $10^{n-1}(10 - 1)$
= $9 \times 10^{n-1}$ (1)

①에 n=1을 대입한 값이 $a_1=9$ 와 같으므로 일반항 $a_n \stackrel{\diamond}{\leftarrow}$

$$a_n = 9 \times 10^{n-1}$$

(4)
$$n=1$$
일 때, $a_1=\frac{1}{1+1}=\frac{1}{2}$
 $n\geq 2$ 일 때, $a_n=S_n-S_{n-1}$

$$=\frac{n}{n+1}-\frac{n-1}{n}$$

$$=\frac{1}{n(n+1)} \qquad \cdots \qquad 0$$

①에 n=1을 대입한 값이 $a_1=\frac{1}{2}$ 과 같으므로 일반항 a_v 은

$$a_n = \frac{1}{n(n+1)}$$

5-1 (1)
$$\sum_{k=1}^{10} \frac{(k+1)^3}{k} + \sum_{k=1}^{10} \frac{(k-1)^3}{k}$$

$$= \sum_{k=1}^{10} \frac{k^3 + 3k^2 + 3k + 1}{k} + \sum_{k=1}^{10} \frac{k^3 - 3k^2 + 3k - 1}{k}$$

$$= \sum_{k=1}^{10} \frac{2k^3 + 6k}{k}$$

$$= \sum_{k=1}^{10} (2k^2 + 6)$$

$$= 2 \times \frac{10 \times 11 \times 21}{6} + 6 \times 10 = 830$$

$$(2) \sum_{k=1}^{10} (2^{k}+1)^{2} - \sum_{k=1}^{10} (2^{k}-1)^{2}$$

$$= \sum_{k=1}^{10} \{ (2^{2k}+2 \times 2^{k}+1) - (2^{2k}-2 \times 2^{k}+1) \}$$

$$= \sum_{k=1}^{10} (4 \times 2^{k})$$

$$= 4 \sum_{k=1}^{10} 2^{k}$$

$$= 4 \times \frac{2(2^{10}-1)}{2-1}$$

$$= 2^{13}-8$$

(3)
$$\sum_{n=1}^{19} \{ (-1)^{n+1} \times n^2 \}$$

$$= 1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + \dots + 19^2$$

$$= 1^2 + (3^2 - 2^2) + (5^2 - 4^2) + \dots + (19^2 - 18^2)$$

$$= 1^2 + (3 - 2)(3 + 2) + (5 - 4)(5 + 4) + \dots$$

$$+ (19 - 18)(19 + 18)$$

$$= 1 + (2 + 3) + (4 + 5) + \dots + (18 + 19)$$

$$= \sum_{n=1}^{19} n = \frac{19 \times 20}{2}$$

$$= 190$$

6-1
$$\sum_{k=1}^{n} (a_{2k-1} + a_{2k})$$

 $= (a_1 + a_2) + (a_3 + a_4) + \cdots + (a_{2n-1} + a_{2n})$
 $= S_{2n}$
따라서 $S_{2n} = 4n^2 - 2n$ 이므로
 $S_n = n^2 - n = n(n-1)$
 $\therefore \sum_{k=11}^{20} a_k = \sum_{k=1}^{20} a_k - \sum_{k=1}^{10} a_k = S_{20} - S_{10}$
 $= 20 \times 19 - 10 \times 9 = 290$

7-1 이차방정식의 근과 계수의 관계에 의하여 $\alpha+\beta=3, \ \alpha\beta=-2$ $\therefore \ \sum_{k=1}^{10} \left(1-\frac{k}{\alpha}\right) \left(1-\frac{k}{\beta}\right)$ $= \sum_{k=1}^{10} \frac{1}{\alpha\beta} \left\{k^2 - (\alpha+\beta)k + \alpha\beta\right\}$

$$= -\frac{1}{2} \sum_{k=1}^{10} (k^2 - 3k - 2)$$

$$= -\frac{1}{2} \left(\frac{10 \times 11 \times 21}{6} - 3 \times \frac{10 \times 11}{2} - 2 \times 10 \right)$$

$$= -100$$

8-1 $-2x^2+(n+1)x-2n$ 을 x-n으로 나누었을 때의 나머 지가 a_n 이므로 $a_n=-2n^2+(n+1)n-2n$

$$= -n^{2} - n$$

$$\therefore \sum_{k=1}^{15} \frac{1}{a_{k}}$$

$$= \sum_{k=1}^{15} \frac{1}{-k^{2} - k}$$

$$= \sum_{k=1}^{15} \left(\frac{1}{k+1} - \frac{1}{k}\right)$$

$$= \left(\frac{1}{2} - \frac{1}{1}\right) + \left(\frac{1}{3} - \frac{1}{2}\right) + \left(\frac{1}{4} - \frac{1}{3}\right) + \cdots$$

$$+ \left(\frac{1}{16} - \frac{1}{15}\right)$$

$$= \frac{1}{16} - 1 = -\frac{15}{16}$$

9-1
$$S_n = -2n^2 + an$$
이므로 $n = 1$ 일 때, $a_1 = S_1 = -2 + a$ $n = 2$ 일 때, $a_n = S_n - S_{n-1}$ $= -2n^2 + an - \{-2(n-1)^2 + a(n-1)\}$ $= -4n + a + 2$ (①

①에 n=1을 대입한 값이 $a_1=-2+a$ 와 같으므로 일반 항 a_n 은

$$a_{n} = -4n + a + 2$$

따라서 수열 $\{a_n\}$ 은 첫째항이 $a_1=a-2$, 공차가 -4인 등차수열이고, $a_8=-a_1$ 이므로

$$a-30 = -(a-42)$$
 : $a=36$

$$\begin{aligned} \textbf{10-1} & \sum_{k=1}^{20} k(a_k - a_{k+1}) \\ & = (a_1 - a_2) + 2(a_2 - a_3) + 3(a_3 - a_4) + \cdots \\ & \qquad \qquad + 19(a_{19} - a_{20}) + 20(a_{20} - a_{21}) \\ & = a_1 + (-a_2 + 2a_2) + (-2a_3 + 3a_3) + \cdots \\ & \qquad \qquad + (-19a_{20} + 20a_{20}) - 20a_{21} \\ & = (a_1 + a_2 + a_3 + \cdots + a_{20}) - 20a_{21} \\ & = \sum_{k=1}^{20} a_k - 20 \times \frac{1}{2} = 248 \\ & \therefore \sum_{k=1}^{20} a_k = 258 \end{aligned}$$

11-1나열된 모든 수의 합을 S라고 하면

$$S=1+2\times 3+3\times 3^2+4\times 3^3+\cdots+8\times 3^7$$
(1)

①의 양변에 3을 곱하면

$$3S = 3 + 2 \times 3^2 + 3 \times 3^3 + 4 \times 3^4 + \cdots + 8 \times 3^8 \cdots 2$$

①-②를 하면

$$-2S = 1 + 3 + 3^{2} + 3^{3} + \dots + 3^{7} - 8 \times 3^{8}$$

$$= \frac{1 \times (3^{8} - 1)}{3 - 1} - 8 \times 3^{8}$$

$$= \frac{1}{2} (3^{8} - 1) - 8 \times 3^{8}$$

$$= -\frac{1}{2} (15 \times 3^{8} + 1)$$

$$\therefore S = \frac{1}{4} (15 \times 3^8 + 1)$$

따라서 m=4, n=15이므로 m+n=19

3. 수학적 귀납법

3-1 수열의 귀납적 정의

내신 대비 쌍둥이 문제

213~215쪽

1-1 (1)
$$a_1 = 1$$
, $a_2 = 2$, $a_3 = \frac{5}{2}$, $a_4 = \frac{17}{6}$

(2)
$$a_1 = 10$$
, $a_2 = 9$, $a_3 = 10$, $a_4 = 9$

(3)
$$a_1 = 2$$
, $a_2 = 2$, $a_3 = 4$, $a_4 = 12$

(4)
$$a_1 = 1$$
, $a_2 = 3$, $a_3 = 8$, $a_4 = 19$

2-1 (1)
$$a_{n+1} = 8a_n$$
 (2) 2^{18}

3-1 (1) 32 (2)
$$a_{n+1} = \frac{1}{2} a_n + 12$$
 (3) 24.5

1-1 (1)
$$a_{n+1} = a_n + \frac{1}{n}$$
에 $n = 1, 2, 3$ 을 차례로 대입하면

$$a_2 = a_1 + \frac{1}{1} = 1 + 1 = 2$$

$$a_3 = a_2 + \frac{1}{2} = 2 + \frac{1}{2} = \frac{5}{2}$$

$$a_4 = a_3 + \frac{1}{3} = \frac{5}{2} + \frac{1}{3} = \frac{17}{6}$$

(2) $a_{n+1} = a_n + (-1)^n$ 에 n = 1, 2, 3을 차례로 대입하면

$$a_2 = a_1 + (-1)^1 = 10 - 1 = 9$$

$$a_3 = a_2 + (-1)^2 = 9 + 1 = 10$$

$$a_4 = a_3 + (-1)^3 = 10 - 1 = 9$$

(3) $a_{n+1} = na_n$ 에 n = 1, 2, 3을 차례로 대입하면

$$a_2 = a_1 = 2$$

$$a_3 = 2a_2 = 2 \times 2 = 4$$

$$a_4 = 3a_3 = 3 \times 4 = 12$$

(4) $a_{n+1}=2a_n+n$ 에 n=1, 2, 3을 차례로 대입하면

$$a_2 = 2a_1 + 1 = 2 \times 1 + 1 = 3$$

$$a_3 = 2a_2 + 2 = 2 \times 3 + 2 = 8$$

$$a_4 = 2a_3 + 3 = 2 \times 8 + 3 = 19$$

2-1 (1) 한 변의 길이가 $\frac{1}{2}$ 인 정육면체의 개수는

$$a = 8$$

한 변의 길이가 $\frac{1}{2^2}$ 인 정육면체의 개수는

$$a_2 = a_1 \times 8 = 8a_1$$

마찬가지로 $a_3 = a_2 \times 8 = 8a_2$, …이므로

$$a_{n+1} = 8a_n$$

(2) a_1 =8이므로 관계식 a_{n+1} =8 a_n 에 n=1, 2, 3, 4, 5 를 차례로 대입하면

$$a_2 = 8a_1 = 8 \times 8 = 8^2$$

$$a_3 = 8a_2 = 8 \times 8^2 = 8^3$$

$$a_4 = 8a_3 = 8 \times 8^3 = 8^4$$

$$a_5 = 8a_4 = 8 \times 8^4 = 8^5$$

$$\therefore a_6 = 8a_5 = 8 \times 8^5 = 8^6 = 2^{18}$$

3-1 (1) a_1 은 처음 수족관에 있던 물의 양 40 L의 절반을 버리고 12 L의 물을 새로이 넣었을 때 수족관에 남아 있는 물의 양이므로

$$a_1 = \frac{40}{2} + 12 = 32$$

(2) n번째 주말의 물의 양 a_n L의 절반을 버리고 12 L의 물을 새로이 넣었을 때 수족관에 남아 있는 물의 양이 a_{n+1} L이므로

$$a_{n+1} = \frac{1}{2} a_n + 12$$

(3)
$$a_1 = 32$$
이므로 관계식 $a_{n+1} = \frac{1}{2}a_n + 12$ 에

$$a_2 = \frac{1}{2}a_1 + 12 = 16 + 12 = 28$$

$$a_3 = \frac{1}{2}a_2 + 12 = 14 + 12 = 26$$

$$a_4 = \frac{1}{2}a_3 + 12 = 13 + 12 = 25$$

$$\therefore a_5 = \frac{1}{2}a_4 + 12 = 12.5 + 12 = 24.5$$

소단위 확인 문제

217~219쪽

2-1 (1) 6 (2)
$$\frac{41}{17}$$

3-1 (1)
$$a_{n+1} = a_n + n + 1$$
 (2) 16

1-1 (1) a_{n+1} = a_n +3에 n=1, 2, 3을 차례로 대입하면

$$a_2 = a_1 + 3 = -9 + 3 = -6$$

$$a_3 = a_2 + 3 = -6 + 3 = -3$$

$$a_4 = a_3 + 3 = -3 + 3 = 0$$

(2) $a_{n+1}=2a_n$ 에 n=1, 2, 3을 차례로 대입하면

$$a_2 = 2a_1 = 2 \times \frac{1}{8} = \frac{1}{4}$$

$$a_3 = 2a_2 = 2 \times \frac{1}{4} = \frac{1}{2}$$

$$a_4 = 2a_3 = 2 \times \frac{1}{2} = 1$$

(3) $a_{n+1}=a_n+4n$ 에 n=1, 2, 3을 차례로 대입하면

$$a_2 = a_1 + 4 \times 1 = 3 + 4 = 7$$

$$a_3 = a_2 + 4 \times 2 = 7 + 8 = 15$$

$$\therefore a_4 = a_3 + 4 \times 3 = 15 + 12 = 27$$

(4) $a_{n+1}=a_n+2^n$ 에 n=1, 2, 3을 차례로 대입하면

$$a_2 = a_1 + 2^1 = 2 + 2 = 4$$

$$a_3 = a_2 + 2^2 = 4 + 4 = 8$$

$$\therefore a_4 = a_3 + 2^3 = 8 + 8 = 16$$

2-1 (1) $a_{n+1} = n - a_n$ 에 n = 1, 2, 3, 4를 차례로 대입하면

$$a_2 = 1 - a_1 = 1 - 4 = -3$$

$$a_3 = 2 - a_2 = 2 - (-3) = 5$$

$$a_4 = 3 - a_3 = 3 - 5 = -2$$

$$\therefore a_5 = 4 - a_4 = 4 - (-2) = 6$$

(2) $a_{n+1} = \frac{1}{a_n} + 2$ 에 n = 1, 2, 3, 4를 차례로 대입하면

$$a_2 = \frac{1}{a_1} + 2 = 1 + 2 = 3$$

$$a_3 = \frac{1}{a_2} + 2 = \frac{1}{3} + 2 = \frac{7}{3}$$

$$a_4 = \frac{1}{a_2} + 2 = \frac{3}{7} + 2 = \frac{17}{7}$$

$$\therefore a_5 = \frac{1}{a_4} + 2 = \frac{7}{17} + 2 = \frac{41}{17}$$

3-1 (1) $a_1 = 2$, $a_2 = 4$, $a_3 = 7$, $a_4 = 11$, ...

n개의 직선에 1개의 직선을 추가하면 (n+1)개의 영역이 새로 생긴다. 즉,

$$a_2 = a_1 + 2$$

$$a_3 = a_2 + 3$$

$$a_4 = a_3 + 4$$

:

$$\therefore a_{n+1} = a_n + n + 1$$

(2)
$$a_5 = a_4 + 5 = 11 + 5 = 16$$

3-2 수학적 귀납법

내신 대비 쌍둥이 문제

220~222쪽

- 1-1 (1) 풀이 참조 (2) 풀이 참조
- 2-1 풀이 참조
- 3-1 풀이 참조

1-1 (1)
$$1^3 + 2^3 + 3^3 + \dots + n^3 = \left\{\frac{n(n+1)}{2}\right\}^2$$

● n=1일 때

(좌변)=
$$1^3$$
=1, (우변)= $\left(\frac{1\times 2}{2}\right)^2$ =1

이므로 ①이 성립한다.

② n=k일 때 ①이 성립한다고 가정하면

$$1^3+2^3+3^3+\cdots+k^3=\left\{\frac{k(k+1)}{2}\right\}^2$$

이므로 양변에 $(k+1)^3$ 을 더하면

$$1^3 + 2^3 + 3^3 + \cdots + k^3 + (k+1)^3$$

$$= \left\{ \frac{k(k+1)}{2} \right\}^2 + (k+1)^3$$

$$=\frac{(k+1)^2}{4}\{k^2+4(k+1)\}$$

$$=\frac{(k+1)^2}{4}(k+2)^2$$

$$= \left\{ \frac{(k+1)(k+2)}{2} \right\}^2$$

따라서 n=k+1일 때도 ①이 성립한다.

①. ②에 의하여 모든 자연수 n에 대하여 ①이 성립한다.

$$(2) 2+4+8+ \cdots +2^{n}=2^{n+1}-2 \qquad \cdots (1)$$

● n=1일 때

이므로 ①이 성립한다.

② n=k일 때 ①이 성립한다고 가정하면

$$2+4+8+\cdots+2^{k}=2^{k+1}-2$$

이므로 양변에 2^{k+1} 을 더하면

$$(2+4+8+\cdots+2^k)+2^{k+1}$$

$$= (2^{k+1} - 2) + 2^{k+1}$$
$$= 2 \times 2^{k+1} - 2$$

 $=2^{k+2}-2$

따라서 n=k+1일 때도 ①이 성립한다.

①, ②에 의하여 모든 자연수 n에 대하여 ①이 성립한다.

2-1 $2^{n+3} > (n+1)(n+2)$

•••••(1)

● n=1일 때

$$($$
좌변 $)=2^4=16, ($ 우변 $)=2\times3=6$

이때 16>6이므로 ①이 성립한다.

2n=k일 때 ①이 성립한다고 가정하면

$$2^{k+3} > (k+1)(k+2)$$

이므로 양변에 2를 곱하면

$$2^{k+4} > 2(k+1)(k+2)$$

$$=(2k+2)(k+2) \ge (k+2)(k+3)$$

따라서 n=k+1일 때도 ①이 성립한다.

 \bigcirc 0 에 의하여 모든 자연수 n에 대하여 \bigcirc 이 성립한다.

3-1
$$\frac{1}{2} \times \frac{3}{4} \times \frac{5}{6} \times \cdots \times \frac{2n-1}{2n} < \sqrt{\frac{1}{2n+1}}$$
(1)

● n=1일 때

(좌변)=
$$\frac{1}{2}$$
, (우변)= $\frac{1}{\sqrt{3}}$

이때 $\frac{1}{2} < \frac{1}{\sqrt{3}}$ 이므로 ①이 성립한다.

② n=k일 때 ①이 성립한다고 가정하면

$$\frac{1}{2} \times \frac{3}{4} \times \frac{5}{6} \times \cdots \times \frac{2k-1}{2k} < \sqrt{\frac{1}{2k+1}}$$

이므로 양변에 $\frac{2k+1}{2k+2}$ 을 곱하면

$$\frac{1}{2} \times \frac{3}{4} \times \frac{5}{6} \times \cdots \times \frac{2k-1}{2k} \times \frac{2k+1}{2k+2}$$

$$<\sqrt{\frac{1}{2k+1}} \times \frac{2k+1}{2k+2} = \sqrt{\frac{2k+1}{4(k+1)^2}}$$

그런데

$$\frac{2k+1}{4(k+1)^2} - \frac{1}{2k+3}$$

$$=\frac{(2k+1)(2k+3)-4(k+1)^2}{4(k+1)^2(2k+3)}$$

$$=\frac{-1}{4(k+1)^2(2k+3)}\!<\!0\;(\because k$$
는 자연수)

이므로
$$\frac{2k+1}{4(k+1)^2} < \frac{1}{2k+3}$$

$$\therefore \frac{1}{2} \times \frac{3}{4} \times \frac{5}{6} \times \cdots \times \frac{2k-1}{2k} \times \frac{2k+1}{2k+2}$$

$$<\sqrt{\frac{1}{2k+3}}$$

따라서 $n\!=\!k\!+\!1$ 일 때도 ①이 성립한다.

①, ②에 의하여 모든 자연수 n에 대하여 ①이 성립한다.

223~224쪽

1-1 (71): 3 (41): k+2

- 2-1 풀이 참조
- **1-1** 명제 p(n)이 $n=3, 5, 7, \dots, 2m+1, \dots$ (m은 자연수) 일 때 성립함을 수학적 귀납법으로 보이려면
 - ① n=3 일 때, 명제 p(n)이 성립함을 보인다.
 - ② n=k일 때, 명제 p(n)이 성립한다고 가정하고 $n=\lceil k+2 \rceil$ 일 때도 명제 p(n)이 성립함을 보인다.

2-1 $2^n > 2n + 3$

- n=4일 때 (좌변)=2⁴=16. (우변)=2×4+3=11 이므로 ①이 성립한다.
- ② $n=k(k\geq 4)$ 일 때 ①이 성립한다고 가정하면 $2^{k} > 2k + 3$
 - 이므로 양변에 2를 곱하면 $2^{k+1} > 4k+6 > 2k+5 = 2(k+1)+3$ 따라서 n=k+1일 때도 ①이 성립한다.
- ①, ②에 의하여 $n \ge 4$ 인 모든 자연수 n에 대하여 ①이 성 립하다

중단원 연습 문제

226~230쪽

- **1-1** (1) $a_1 = -3$, $a_2 = 6$, $a_3 = -12$, $a_4 = 24$, $a_5 = -48$ (2) $a_1 = 3$, $a_2 = \frac{1}{2}$, $a_3 = -2$, $a_4 = -\frac{1}{2}$, $a_5 = -\frac{3}{4}$
- **2-1** (1) $a_1 = 10$, $a_{n+1} = a_n 3$ ($n = 1, 2, 3, \cdots$) (2) $a_1 = 3$, $a_{n+1} = -2a_n$ ($n = 1, 2, 3, \cdots$)

- **3-1** 96 **4-1** 51 **5-1** $\left(\frac{2}{3}\right)^{10}$
- **6-1** (1) $a_{n+1} = 7a_n + 9^n$ ($n = 1, 2, 3, \cdots$) (2) 536
- 7-1 풀이 참조
- **8-1** 606
- **9-1** (카) 99 (나) 9
- **1-1** (1) $a_{n+1} = -2a_n$ 에 n=1, 2, 3, 4를 차례로 대입하면 $a_2 = -2a_1 = (-2) \times (-3) = 6$

$$a_3 = -2a_2 = (-2) \times 6 = -12$$

 $a_4 = -2a_3 = (-2) \times (-12) = 24$
 $a_5 = -2a_4 = (-2) \times 24 = -48$

(2) $a_{n+1} = \frac{1}{a-1}$ 에 n=1, 2, 3, 4를 차례로 대입하면

$$a_2 = \frac{1}{a_1 - 1} = \frac{1}{3 - 1} = \frac{1}{2}$$

$$a_3 = \frac{1}{a_2 - 1} = \frac{1}{\frac{1}{2} - 1} = \frac{1}{-\frac{1}{2}} = -2$$

$$a_4 = \frac{1}{a_3 - 1} = \frac{1}{-2 - 1} = -\frac{1}{3}$$

$$a_5 = \frac{1}{a_4 - 1} = \frac{1}{-\frac{1}{3} - 1} = \frac{1}{-\frac{4}{3}} = -\frac{3}{4}$$

2-1 (1) a_1 =10, a_2 = a_1 -3, a_3 = a_2 -3, …이므로 수열 $\{a_n\}$ 을 귀납적으로 정의하면

$$a_1 = 10, a_{n+1} = a_n - 3 \ (n = 1, 2, 3, \cdots)$$

(2) $a_1 = 3$, $a_2 = -2a_1$, $a_3 = -2a_2$, …이므로 수열 $\{a_n\}$ 을 귀납적으로 정의하면

$$a_1 = 3$$
, $a_{n+1} = -2a_n$ ($n = 1, 2, 3, \cdots$)

3-1 $(a_{n+1})^2 = a_n a_{n+2}$ 이므로 수열 $\{a_n\}$ 은 등비수열이다. 등비수열 $\{a_n\}$ 의 공비를 r라고 하면

$$a_4 = 3r^3 = 6$$
 $\therefore r^3 = 2$
 $\therefore a_{16} = 3r^{15} = 3(r^3)^5 = 3 \times 2^5 = 96$

4-1 $a_{n+1} = a_n + 4$ 에서 수열 $\{a_n\}$ 은 공차가 4인 등차수열이다. 이때 $a_1=3$ 이므로

$$a_n = 3 + (n-1) \times 4 = 4n-1$$

4n-1>200에서 n>50.25

따라서 처음으로 200보다 커지는 항은 제51항이다.

$$\therefore k=51$$

5-1 $a_1 = \frac{2}{2}$

$$a_2 = \frac{2}{3} a_1 = \left(\frac{2}{3}\right)^2$$

$$a_3 = \frac{2}{3} a_2 = \left(\frac{2}{3}\right)^3$$

$$\therefore a_{10} = \frac{2}{3} a_9 = \left(\frac{2}{3}\right)^{10}$$

6-1 (1) n번째 시행 후 얻어지는 흰색 사각형 1개에 대하여 (n+1)번째 시행 후 얻어지는 흰색 사각형의 개수는

> n번째 시행 후 얻어지는 검은색 사각형 1개에 대하여 (n+1)번째 시행 후 얻어지는 흰색 사각형의 개수는

n번째 시행 후 얻어지는 검은색 사각형의 개수는 $9^{n} - a_{n}(7)$ 이므로

$$a_{n+1} = 8a_n + 9^n - a_n = 7a_n + 9^n \ (n = 1, 2, 3, \cdots)$$

(2)
$$a_{n+1} = 7a_n + 9^n$$
에 $n = 1$, 2를 차례로 대입하면 $a_2 = 7a_1 + 9^1 = 7 \times 8 + 9 = 65$
 $\therefore a_2 = 7a_2 + 9^2 = 7 \times 65 + 81 = 536$

7-1
$$3n+2 < 2^n$$

.....(1)

● n=4일 때 (좌변)=14, (우변)=16

이때 14<16이므로 ①이 성립한다. ② $n=k(k\geq 4)$ 일 때 ①이 성립한다고 가정하면

 $3k+2 < 2^k$

이므로

$$3(k+1)+2=3k+2+3<2^k+3$$

이때 $k \ge 4$ 에서 $2^k + 3 > 2^{k+1}$ 이므로 $3(k+1)+2<2^{k+1}$

따라서 n=k+1일 때도 ①이 성립한다.

- ①. ②에 의하여 $n \ge 4$ 인 모든 자연수 n에 대하여 ①이 성 립하다
- **8-1** 수열 {*a*_n}을 나열하면

$$a_1=7$$
, $a_2=3$, $a_3=-1$, $a_4=9$, $a_5=5$, $a_6=1$, $a_7=-3$, $a_8=7$, $a_9=3$, ...

이므로 $a_n = a_{n+7}$ ($n=1, 2, 3, \cdots$)임을 알 수 있다.

이때
$$200=7\times28+4$$
이고, $\sum\limits_{k=1}^{7}a_{k}=21$ 이므로

$$\begin{split} &\sum\limits_{k=1}^{200} a_k \! = \! 28 \sum\limits_{k=1}^{7} a_k \! + \! (a_{197} \! + \! a_{198} \! + \! a_{199} \! + \! a_{200}) \\ &= \! 28 \! \times \! 21 \! + \! (7 \! + \! 3 \! - \! 1 \! + \! 9) \\ &= \! 606 \end{split}$$

9-1 ① n=1일 때. f(1)=10+1=11이므로

 $f(n) = 10^{2n-1} + 1$ 은 11의 배수이다.

② n=k일 때 $f(k)=10^{2k-1}+1$ 이 11의 배수라고 가정 하면

$$f(k) = 11p (p$$
는 자연수)

로 놓을 수 있다.

$$n=k+1$$
일 때

$$=k+1$$
일 때 $f(k+1)=10^{2k+1}+1$ $=10^{2k-1}\times 10^2+1$ $=100(10^{2k-1}+1)-100+1$ $=100f(k)-99$ $=11(100p-9)$

따라서 n=k+1일 때도 $f(n)=10^{2n-1}+1$ 은 11의 배수이다

- ①. ②에 의하여 모든 자연수 n에 대하여 f(n)은 11의 배수이다
 - .:. (71): 99 (41): 9

대단원 모으	239~242쪽			
01 ③	02 ④	03 ②	04 ①	05 ④
06 ⑤	07 ②	08 ④	09 ②	10 ①
11 ③	12 ④	13 ③	14 ③	15 ②
16 ①	17 ①	18 ④	19 ①	20 ①
21 8	22 40	23 203	24 -10	25 37

01 등차수열 $\{a_n\}$ 의 공차를 d라고 하면 $a_1=4$ 이므로 $a_2+a_3=(a_1+d)+(a_1+2d)$

$$= 2a_1 + 3d$$

$$= 8 + 3d$$

$$8+3d=14$$
에서 $d=2$

$$\therefore a_8 = a_1 + 7d = 4 + 7 \times 2 = 18$$

02 세 수 a, 2, b는 이 순서대로 등차수열을 이루므로 4=a+b

세 수 $\frac{1}{a}$, 2, $\frac{2}{b}$ 는 이 순서대로 등비수열을 이루므로

$$4 = \frac{2}{ab} \qquad \therefore ab = \frac{1}{2}$$

$$\therefore a^2 + b^2 = (a+b)^2 - 2ab$$

$$= 4^2 - 2 \times \frac{1}{2}$$

$$= 16 - 1 = 15$$

03
$$a_2+a_4+a_6+a_8+\cdots+a_{100}$$
 $=a_{2\times 1}+a_{2\times 2}+a_{2\times 3}+a_{2\times 4}+\cdots+a_{2\times 50}$
 $=\sum_{k=1}^{50}a_{2k}$
한편, $a_{2k}=2k\times 4^k$ 이므로
 $(주어진 식)=\sum_{k=1}^{50}a_{2k}=\sum_{k=1}^{50}(2k\times 4^k)$
 $=2\sum_{k=1}^{50}(k\times 4^k)$

04
$$\sum_{k=1}^{11} k(k-2) = 11 \times 9 + \sum_{k=1}^{10} k(k-2)$$
이므로
$$\sum_{k=1}^{10} (k+1)^2 - \sum_{k=1}^{11} k(k-2)$$
$$= \sum_{k=1}^{10} (k+1)^2 - \sum_{k=1}^{10} k(k-2) - 99$$
$$= \sum_{k=1}^{10} (4k+1) - 99$$
$$= 4 \times \frac{10 \times 11}{2} + 10 - 99 = 131$$

- 05 a_{n+1}=a_n-3에서 a_{n+1}-a_n=-3이므로 수열 {a_n}은 등 차수열이고 첫째항이 a, 공차가 -3이다.
 따라서 a_n=a+(n-1)×(-3)=-3n+3+a이므로 a₁₀=-30+3+a=20
 ∴ a=47
- 5차수열 {a_n}의 공차를 d라고 하면
 a₅₀-a₄₀=10d=30 ∴ d=3
 따라서 수열 {a_n}은 첫째항이 2, 공차가 3인 등차수열이
 므로

$$a_{11}+a_{12}+\cdots+a_{20}$$

$$=S_{20}-S_{10}$$

$$=\frac{20(2\times2+19\times3)}{2}-\frac{10(2\times2+9\times3)}{2}$$

$$=610-155=455$$

07 등비수열 $\{a_n\}$ 의 첫째항을 a, 공비를 r라고 하면 $S_n = \frac{a(1-r^n)}{1-r}$

$$S_{2n} = \frac{a(1-r^{2n})}{1-r} = \frac{a(1-r^n)(1+r^n)}{1-r}$$
$$= (1+r^n)S_n$$

$$\begin{split} S_{3n} &= \frac{a(1-r^{3n})}{1-r} = \frac{a(1-r^n)(1+r^n+r^{2n})}{1-r} \\ &= (1+r^n+r^{2n})S_n \\ &\frac{S_{2n}}{S_n} = 5$$
에서 $1+r^n = 5$ 이므로 $r^n = 4$
$$\therefore \frac{S_{3n}}{S_n} = 1+r^n+r^{2n} = 1+4+4^2 = 21 \end{split}$$

08 이차방정식의 근과 계수의 관계에 의하여 $\alpha_n + \beta_n = n, \ \alpha_n \beta_n = n$ 이므로 $\alpha_n^3 + \beta_n^3 = (\alpha_n + \beta_n)^3 - 3\alpha_n \beta_n (\alpha_n + \beta_n)$ $= n^3 - 3n^2$ $\therefore \sum_{n=1}^{10} (\alpha_n^3 + \beta_n^3) = \sum_{n=1}^{10} (n^3 - 3n^2)$ $= \left(\frac{10 \times 11}{2}\right)^2 - 3\left(\frac{10 \times 11 \times 21}{6}\right)$ = 1870

$$egin{array}{ll} egin{array}{ll} \sum_{k=1}^n \left(a_{2k-1} + a_{2k}
ight) \\ &= \left(a_1 + a_2
ight) + \left(a_3 + a_4
ight) + \, \cdots \, + \left(a_{2n-1} + a_{2n}
ight) \\ & \div 2\left\{a_n
ight\}$$
의 첫째항부터 제 n 항까지의 합을 S_n 이라고 하면 $S_{2n} = 4n^2$ 따라서 구하는 합은 $S_{16} - S_6 = (4 \! imes \! ^2) - (4 \! imes \! ^2) = 220 \end{array}$

10 두 등차수열 $\{a_n\}$, $\{b_n\}$ 의 공차를 각각 s, t 라고 하면

$$A_n = \frac{n\{2a_1 + (n-1)s\}}{2}$$

$$B_n = \frac{n\{2b_1 + (n-1)t\}}{2}$$

따라서 모든 자연수 n에 대하여

$$\frac{A_n}{B_n} = \frac{2a_1 + (n-1)s}{2b_1 + (n-1)t} = \frac{3n+1}{5n+4} \qquad \cdots$$

한편, $a_5 = a_1 + 4s$, $b_5 = b_1 + 4t$ 이므로

$$\frac{a_5}{b_5} = \frac{a_1 + 4s}{b_1 + 4t} = \frac{2a_1 + 8s}{2b_1 + 8t}$$

①에 n=9를 대입하면

$$\frac{2a_1 + 8s}{2b_1 + 8t} = \frac{3 \times 9 + 1}{5 \times 9 + 4} = \frac{28}{49} = \frac{4}{7}$$

따라서
$$\frac{a_5}{b_5} = \frac{4}{7}$$
이므로

$$m+n=7+4=11$$

11
$$\sum_{m=1}^{n} \left(\sum_{k=1}^{m} k \right) = \sum_{m=1}^{n} \frac{m(m+1)}{2}$$

$$= \frac{1}{2} \left(\sum_{m=1}^{n} m^{2} + \sum_{m=1}^{n} m \right)$$

$$= \frac{1}{2} \left\{ \frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} \right\}$$

$$= \frac{1}{6} n(n+1)(n+2) = 120$$

 $n(n+1)(n+2) = 720 = 8 \times 9 \times 10$ 이므로 n=8

- 12 (주어진 식) $=\sqrt{4}(\sqrt{5}-\sqrt{3})+\sqrt{5}(\sqrt{6}-\sqrt{4})$ $+\sqrt{6}(\sqrt{7}-\sqrt{5})+\cdots+\sqrt{63}(\sqrt{64}-\sqrt{62})$ $=(\sqrt{4}\sqrt{5}-\sqrt{3}\sqrt{4})+(\sqrt{5}\sqrt{6}-\sqrt{4}\sqrt{5})$ $+(\sqrt{6}\sqrt{7}-\sqrt{5}\sqrt{6})+\cdots+(\sqrt{63}\sqrt{64}-\sqrt{62}\sqrt{63})$ $=\sqrt{63}\sqrt{64}-\sqrt{3}\sqrt{4}$ $=24\sqrt{7}-2\sqrt{3}$ 따라서 m=24, n=2이므로 m+n=26
- 13 $(3n-2)a_{n+1}=(3n+1)a_n$ 에서 $a_{n+1}=\frac{3n+1}{3n-2}a_n$ 위 식에 $n=1, 2, 3, \cdots, n-1$ 을 차례로 대입하면 $a_2=\frac{4}{1}a_1$ $a_3=\frac{7}{4}a_2$ $a_4=\frac{10}{7}a_3$: $a_n=\frac{3n-2}{3n-5}a_{n-1}$ 위 식을 각 변끼리 곱하면 $a_n=\frac{4}{1}\times\frac{7}{4}\times\frac{10}{7}\times\cdots\times\frac{3n-2}{3n-5}a_1$ $=(3n-2)a_1$

$$a_{n} = \frac{1}{1} \times \frac{1}{4} \times \frac{20}{7} \times \cdots \times \frac{3n-5}{3n-5} a_{1}$$

$$= (3n-2)a_{1}$$

$$= 6n-4 \ (\because a_{1}=2)$$

$$\therefore a_{20} = 6 \times 20 - 4 = 116$$

14
$$\sum_{k=n}^{2n} a_k = n^2$$
이므로 $a_1 + a_2 = 1^2$ $a_3 + a_4 + \cdots + a_6 = 3^2$ $a_6 + a_7 + \cdots + a_{12} = 6^2$

$$\sum_{k=1}^{12} a_k = (a_1 + a_2) + (a_3 + a_4 + \dots + a_6) + (a_6 + a_7 + \dots + a_{12}) - a_6$$

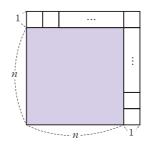
$$= 1^2 + 3^2 + 6^2 - a_6$$

$$= 1 + 9 + 36 - a_6 = 40$$

$$\therefore a_6 = 6$$

- 15 수열 $\{a_n\}$ 은 등차수열이므로 조건 (나)에서 $\sum_{k=1}^8 a_k = \frac{8(a_1 + a_8)}{2} = 4(1 + a_8) = 516 \; (\because \; a_1 = 1)$ 따라서 $a_8 = 128$ 이므로 조건 (가)에서 $b_8 = 128$ 등비수열 $\{b_n\}$ 의 공비를 r라고 하면 $\frac{b_8}{b_1} = r^7 = 128$ 이므로 r = 2 $\therefore \sum_{k=1}^8 b_k = 1 + 2 + 2^2 + \cdots + 2^7$ $= \frac{2^8 1}{2 1} = 255$
- 16 S_1 =2이고 수열 $\{S_{2n-1}\}$ 이 공비가 2인 등비수열이므로 $S_{2n-1}=S_1\times 2^{n-1}=2\times 2^{n-1}=2^n$ $a_2=S_2-S_1=2-2=0$ 이고 수열 $\{a_{2n}\}$ 이 공차가 2인 등 차수열이므로 $a_{2n}=a_2+(n-1)\times 2=2n-2$ 이때 $a_{12}=S_{12}-S_{11}$ 이므로 $S_{12}=a_{12}+S_{11}$ $=(2\times 6-2)+2^6$ =10+64=74
- 17 $a_n = S_n S_{n-1}$ $= (n^2 + 2n) - \{(n-1)^2 + 2(n-1)\}$ $= 2n + 1(n \ge 2)$ $a_1 = S_1 = 1 + 2 = 3$ $\therefore \sum_{k=1}^{15} \frac{1}{a_k a_{k+1}}$ $= \sum_{k=1}^{15} \frac{1}{(2k+1)(2k+3)}$ $= \frac{1}{2} \sum_{k=1}^{15} \left(\frac{1}{2k+1} - \frac{1}{2k+3}\right)$ $= \frac{1}{2} \left\{\left(\frac{1}{3} - \frac{1}{5}\right) + \left(\frac{1}{5} - \frac{1}{7}\right) + \dots + \left(\frac{1}{31} - \frac{1}{33}\right)\right\}$ $= \frac{1}{2} \left(\frac{1}{3} - \frac{1}{33}\right) = \frac{5}{33}$

18 오른쪽 그림과 같이 한 변의 길이가 (n+1)인 정사각형은 한 변의 길이가 n인 정사각형보다 한 변의 길이가 1인 정사각형이 (2n+1)개, 한 변의 길이가 2인 정사각형이 (2n-1)개,



÷

한 변의 길이가 n인 정사각형이 3개, 한 변의 길이가 (n+1)인 정사각형이 1개 더 많다.

$$\therefore a_{n+1} = a_n + \{1+3+\dots + (2n-1) + (2n+1)\}$$

$$= a_n + \sum_{k=1}^{n+1} (2k-1)$$

$$= a_n + 2 \times \frac{(n+1)(n+2)}{2} - (n+1)$$

$$= a_n + (n+1)^2$$

$$\therefore a_{21} - a_{20} = (20+1)^2 = 21^2 = 441$$

19 자연수 *n*에 대하여 9ⁿ, 8ⁿ을 10으로 나누었을 때의 나머지를 차례로 구하면 다음과 같다

n	f(n)	g(n)	$a_n = f(n) - g(n)$
1	9	8	$a_1=1$
2	1	4	$a_2 = -3$
3	9	2	$a_3 = 7$
4	1	6	$a_4 = -5$
5	9	8	$a_5=1$
6	1	4	$a_6 = -3$
7	9	2	$a_7 = 7$
8	1	6	$a_8 = -5$
9	9	8	$a_9 = 1$
:	:	:	:

즉, 수열 $\{a_n\}$ 의 일반항은

$$a_{n} = \begin{cases} 1 & (n=4k+1) \\ -3 & (n=4k+2) \\ 7 & (n=4k+3) \end{cases} (k=0, 1, 2, \cdots)$$

$$-5 & (n=4k+4)$$

따라서 $a_1+a_2+a_3+a_4=a_5+a_6+a_7+a_8=\cdots=0$ 이고, $2018=4\times504+2$ 이므로

$$\sum_{n=1}^{2018} a_n = \sum_{n=1}^{2016} a_n + a_{2017} + a_{2018}$$

$$= 0 + a_1 + a_2$$

$$= 1 + (-3) = -2$$

20 $\sum_{m=1}^{k} \frac{1}{\sqrt{m}} = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{k}} > \sqrt{k}$ 가 성립한

$$\sum_{m=1}^{k+1} \frac{1}{\sqrt{m}} = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{k}} + \boxed{\frac{1}{\sqrt{k+1}}}$$

$$> \sqrt{k} + \boxed{\frac{1}{\sqrt{k+1}}}$$

이고

$$\begin{array}{l} \sqrt{k} + \boxed{\frac{1}{\sqrt{k+1}}} - \boxed{\text{(4)}} \\ \\ = \frac{\sqrt{k^2+k}-k}{\sqrt{k+1}} = \sqrt{k} - \frac{k}{\sqrt{k+1}} > 0 \end{array}$$

에서
$$(4)$$
 $=\sqrt{k+1}$ 이므로

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}} > \sqrt{k+1}$$

이다

따라서
$$f(k) = \frac{1}{\sqrt{k+1}}$$
, $g(k) = \sqrt{k+1}$ 이므로

$$f(3) \times g(15) = \frac{1}{\sqrt{4}} \times \sqrt{16} = \frac{1}{2} \times 4 = 2$$

* 서술형 문제

21 ① $f(x)=x^2-ax+2a+1$ 이라고 하면 다항식 f(x)를 x-1, x-2, x-3으로 나누었을 때의 나머지는 각각 f(1), f(2), f(3)이므로

$$p=f(1)=a+2, q=f(2)=5, r=f(3)=10-a$$

② 한편, 세 수 a+2, 5, 10-a가 이 순서대로 등비수열 을 이루므로

$$(a+2)(10-a)=5^2$$

- $a^2+8a+20=25, a^2-8a+5=0$

● 따라서 근과 계수의 관계에 의하여 모든 실수 a의 값의 합은 8이다.

채점 기준		배점
① 나머:	지정리를 이용하여 $\emph{p}, \emph{q}, \emph{r}$ 의 값 구하기	30 %
② 등비	중항을 이용하여 방정식 세우기	30 %
❸ 조건	을 만족하는 모든 실수 $\it a$ 의 값의 합 구하기	40 %

22 ① 첫째항부터 제*n*항까지의 합이 50이므로

$$\frac{n\{2m+(n-1)\times 1\}}{2} = 50$$

$$n(2m+n-1)=100$$

② n은 자연수이므로 위의 식을 만족하는 n, m의 값은 다음 표와 같다

n	1	2	4	5	10	20	25	50	100
m	50	$\frac{49}{2}$	11	8	$\frac{1}{2}$	-7	-10	$\frac{-47}{2}$	-49

③ 또, *m*은 자연수이고 *m*≤10이므로 *n*=5, *m*=8
 ∴ *mn*=8×5=40

배점
30 %
40 %
30 %

23 • $a_{n+1} = \left(1 - \frac{1}{n+2}\right) a_n = \frac{n+1}{n+2} a_n$

 $n=1, 2, 3, \dots, n-1$ 을 차례로 대입하면

$$a_2 = \frac{2}{3} a_1$$

$$a_3 = \frac{3}{4} a_2$$

$$a_4 = \frac{4}{5} a_3$$

:

$$a_n = \frac{n}{n+1} a_{n-1}$$

② ①의 식을 각 변끼리 곱하면

$$a_n = a_1 \left(\frac{2}{3} \times \frac{3}{4} \times \frac{4}{5} \times \dots \times \frac{n}{n+1} \right)$$
$$= 1 \times \frac{2}{n+1} \ (\because a_1 = 1)$$
$$= \frac{2}{n+1} \ (n \ge 2)$$

③ 따라서 $a_{200} = \frac{2}{201}$ 이므로

$$p+q=201+2=203$$

채점 기준	배점
$lue{1}$ 주어진 식에 $n\!=\!1,2,3,\cdots\!,n\!-\!1$ 을 차례로 대입하기	40 %
② a_n 의 식 구하기	40 %
$oldsymbol{3}$ $p\!+\!q$ 의 값 구하기	20 %

24 ①
$$2S_n = a_n + 5$$
에서 $2S_{n+1} = a_{n+1} + 5$
 $2(S_{n+1} - S_n) = (a_{n+1} + 5) - (a_n + 5)$
 $\therefore S_{n+1} - S_n = \frac{1}{2}a_{n+1} - \frac{1}{2}a_n$
이때 $S_{n+1} - S_n = a_{n+1}$ 이므로
 $a_{n+1} = \frac{1}{2}a_{n+1} - \frac{1}{2}a_n$
 $\frac{1}{2}a_{n+1} = -\frac{1}{2}a_n$
 $\therefore a_{n+1} = -a_n$
② $a_1 = 5$ 이므로
 $a_1 = a_3 = a_5 = \dots = a_{2n-1} = 5$
 $a_2 = a_4 = a_6 = \dots = a_{2n} = -5$

 $a_{2020} - a_{2019} = (-5) - 5 = -10$

채점 기준		배점
❶ 수열	의 합과 일반항 사이의 관계를 이용하여 a_{n+1} 과	50 %
a_n λ	아이의 관계식 구하기	
a_{2n}	a_{2n-1} 의 값 구하기	30 %
3 a_{2020}	₀ -a ₂₀₁₉ 의 값 구하기	20 %

25 ① 수열 $\{a_n + a_{n+1}\}$ 은 첫째항이 1, 공차가 4인 등차수열이므로

$$a_n + a_{n+1} = 1 + (n-1) \times 4$$

= $4n - 3$

이 성립한다.

$$2 \therefore a_1 + a_{20}$$

$$= (a_1 + a_2 + a_3 + \dots + a_{19} + a_{20})$$

$$- (a_2 + a_3 + a_4 + \dots + a_{18} + a_{19})$$

$$= \{ (a_1 + a_2) + (a_3 + a_4) + \dots + (a_{19} + a_{20}) \}$$

$$- \{ (a_2 + a_3) + (a_4 + a_5) + \dots + (a_{18} + a_{19}) \}$$

$$= (1 + 9 + \dots + 73) - (5 + 13 + \dots + 69)$$

③ 즉,
$$a_1 + a_{20} = \sum_{k=1}^{10} (8k - 7) - \sum_{k=1}^{9} (8k - 3)$$

= $\frac{10(1+73)}{2} - \frac{9(5+69)}{2}$
= 37

채점 기준		배점
수열 {a_n+	$\{a_{n+1}\}$ 의 일반항 구하기	30 %
② ①의 식을 () 용하여 $a_1 + a_{20}$ 을 등치수열의 합으로 나	40 %
타내기		
③ a₁+a₂₀의 ₹	값 구하기	30 %

권말 부록

수학 I	중간고사							244~247쪽
01	4 02	3	03	4	04	2	05	(5)
06	① 07	1	08	2	09	4	10	2
11	① 12	4	13	(5)	14	2	15	2
16	4 17	2	18	3	19	15	20	10배
21	$\frac{26}{25}$ 22	1	23	최댓값:	1,	최솟값: -	<u>L</u>	
24	24							

01 좌변을 간단히 하면

$$\sqrt[4]{\frac{\sqrt[3]{a}}{\sqrt[3]{a}}} \times \sqrt[4]{\frac{\sqrt[4]{a}}{\sqrt[3]{a}}} = \frac{\sqrt[4]{\sqrt[3]{a}}}{\sqrt[4]{\sqrt{a}}} \times \frac{\sqrt[4]{a}}{\sqrt[3]{\sqrt{a}}}$$

$$= \frac{\sqrt[12]{a}}{\sqrt[8]{a}} \times \frac{\sqrt[8]{a}}{\sqrt[6]{a}} = \frac{\sqrt[12]{a}}{\sqrt[6]{a}}$$

$$= \frac{\sqrt[12]{a}}{\sqrt[12]{a^2}} = \sqrt[12]{\frac{1}{a}}$$

$$\therefore n=12$$

$$02 \quad \sqrt[3]{8} \times 27^{\frac{2}{3}} = \sqrt[3]{2^3} \times (3^3)^{\frac{2}{3}} = 2 \times 3^2 = 18$$

03 8
x
= 3에서 2^{3x} = 3 27^{y} = 512에서 3^{3y} = 2^{9} 이때 3^{3y} = $(2^{3x})^{3y}$ = 2^{9xy} = 2^{9} 이므로 xy = 1

다른 풀이

8^x=30||x|
$$2^{3x}$$
=3, $3x$ = $\log_2 3$
 $\therefore x = \frac{1}{3}\log_2 3$
27^y=5120||x| 3^{3y} = 2^9 , $3y$ = $\log_3 2^9$
 $\therefore y$ = $3\log_3 2$
 $\therefore xy = \frac{1}{3}\log_2 3 \times 3\log_3 2 = 1$

04 ②
$$\log_c \frac{b}{a} = \log_c b - \log_c a$$
이므로
$$\log_c \frac{b}{a} \neq \frac{\log_c b}{\log_c a}$$
이다.

05
$$\log 592 = 2.7723$$
에서
$$\log 5920^2 = 2\log 5920 = 2\log(10 \times 592)$$
$$= 2(1 + \log 592) = 2(1 + 2.7723)$$

$$\log 0.0592 = \log \left(\frac{1}{10^4} \times 592\right)$$

$$= -4 + \log 592 = -4 + 2.7723$$

$$\therefore \log 5920^2 + \log 0.0592$$

$$= 2(1 + 2.7723) + (-4 + 2.7723)$$

$$= -2 + 3 \times 2.7723 = 6.3169$$

06 현재 이산화황의 배출량을 A라고 하면 n년 후 이산화황의 배출량은 $A imes \Big(\frac{95.5}{100}\Big)^n$ 이다.

이때

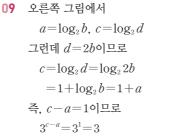
$$A \times \left(\frac{95.5}{100}\right)^n \le A \times \frac{80}{100}, \stackrel{2}{\rightleftharpoons} \left(\frac{95.5}{100}\right)^n \le \frac{8}{10}$$

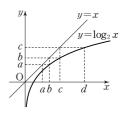
이어야 하므로 위 식의 양변에 상용로그를 취하면 $n(\log 9.55-1) \leq \log 8-1, -0.02n \leq -0.10$ $\therefore n \geq 5$

따라서 이산화황 배출량이 처음으로 현재의 80% 이하가 되는 것은 최소 5년 후이다.

07 함수 y=3^{a-x}+b의 그래프가 점 (0, 2)를 지나므로 2=3^a+b
또, 점근선의 방정식이 y=-1이므로 b=-1
이때 2=3^a-1에서 a=1
∴ ab=-1

08 ② 함수 $y = \log_2(x-4) + 3$ 의 치역은 실수 전체의 집합이다.





10 2^x=t(t>0)로 놓으면 주어진 방정식은
 t²-7t+5=0①
 이때 2^α, 2^β이 방정식 ①의 두 근이므로 이차방정식의 근
과 계수의 관계에 의하여
 2^α+2^β=7, 2^α×2^β=5
 ∴ 4^α+4^β=(2^α+2^β)²-2×2^α×2^β
 =7²-2×5=39

11 주어진 부등식을 변형하면

진수 조건에서 x>-1, $x>\frac{4}{3}$

$$\therefore x > \frac{4}{3}$$

따라서 ①, ②를 동시에 만족시키는 x의 값의 범위는 $\frac{4}{3}{<}x{<}\frac{7}{3}$ 이므로 정수는 1개이다.

12
$$\frac{2}{\tan \theta} - \frac{\sin(-\pi - \theta)}{1 - \cos \theta} + \frac{\cos\left(\frac{3}{2}\pi + \theta\right)}{1 + \cos(-\theta)}$$

$$= \frac{2}{\tan \theta} - \frac{\sin \theta}{1 - \cos \theta} + \frac{\sin \theta}{1 + \cos \theta}$$

$$= \frac{2}{\tan \theta} + \frac{-\sin \theta (1 + \cos \theta) + \sin \theta (1 - \cos \theta)}{(1 - \cos \theta)(1 + \cos \theta)}$$

$$= \frac{2}{\tan \theta} + \frac{-2\sin \theta \cos \theta}{\sin^2 \theta}$$

$$= \frac{2}{\tan \theta} - \frac{2}{\tan \theta} = 0$$

13
$$\angle AOP_1 = \pi \times \frac{1}{10} = \frac{\pi}{10}$$
이고 원주각의 크기는 중심각의 크기의 $\frac{1}{2}$ 이므로 $\angle ABP_1 = \theta_1 = \frac{\pi}{20}$ $\therefore \theta_n = \frac{n}{20}\pi$ $\therefore \sin^2\theta_1 + \sin^2\theta_2 + \cdots + \sin^2\theta_9$ $= \sin^2\frac{\pi}{20} + \sin^2\frac{2}{20}\pi$ $+ \cdots + \sin^2\frac{8}{20}\pi + \sin^2\frac{9}{20}\pi$

그런데

$$\sin^{2}\frac{9}{20}\pi = \sin^{2}\left(\frac{\pi}{2} - \frac{\pi}{20}\right) = \cos^{2}\frac{\pi}{20}$$

$$\sin^{2}\frac{8}{20}\pi = \sin^{2}\left(\frac{\pi}{2} - \frac{2}{20}\pi\right) = \cos^{2}\frac{2}{20}\pi$$

$$\sin^{2}\frac{7}{20}\pi = \sin^{2}\left(\frac{\pi}{2} - \frac{3}{20}\pi\right) = \cos^{2}\frac{3}{20}\pi$$

$$\sin^{2}\frac{6}{20}\pi = \sin^{2}\left(\frac{\pi}{2} - \frac{4}{20}\pi\right) = \cos^{2}\frac{4}{20}\pi$$

$$0) = \Xi$$

(주어진 식)
$$= \left(\sin^2 \frac{\pi}{20} + \sin^2 \frac{9}{20}\pi\right) + \left(\sin^2 \frac{2}{20}\pi + \sin^2 \frac{8}{20}\pi\right)$$

$$+ \left(\sin^2 \frac{3}{20}\pi + \sin^2 \frac{7}{20}\pi\right)$$

$$+ \left(\sin^2 \frac{4}{20}\pi + \sin^2 \frac{6}{20}\pi\right) + \sin^2 \frac{5}{20}\pi$$

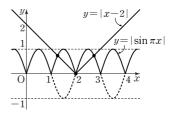
$$= \left(\sin^2 \frac{\pi}{20} + \cos^2 \frac{\pi}{20}\right) + \left(\sin^2 \frac{2}{20}\pi + \cos^2 \frac{2}{20}\pi\right)$$

$$+ \left(\sin^2 \frac{3}{20}\pi + \cos^2 \frac{3}{20}\pi\right)$$

$$+ \left(\sin^2 \frac{4}{20}\pi + \cos^2 \frac{4}{20}\pi\right) + \sin^2 \frac{\pi}{4}$$

$$= 4 + \sin^2 \frac{\pi}{4} = 4 + \frac{1}{2} = \frac{9}{2}$$

14 $f(x) = \sqrt{1 - \cos^2 \pi x} = \sqrt{\sin^2 \pi x} = |\sin \pi x|$ 이고 함수 f(x)의 주기는 $\frac{\pi}{\pi} = 1$ 이다.



두 함수 $f(x)=|\sin \pi x|$, g(x)=|x-2|의 그래프는 위의 그림과 같고, 교점의 개수는 3이므로 방정식 f(x)-g(x)=0, 즉 f(x)=g(x)의 서로 다른 실근의 개수는 3이다.

- **15** 이차방정식 $x^2 4x\cos\theta + 6\sin\theta = 0$ 이 서로 다른 두 양의 실근을 가지려면 이 이차방정식의 판별식을 D라고 할 때.
 - $(i) \frac{D}{4} = 4\cos^2\theta 6\sin\theta > 0$

 $\begin{array}{l} 4(1-\sin^2\theta)-6\sin\theta\!>\!0,\ 2\sin^2\theta+3\sin\theta-2\!<\!0\\ (2\sin\theta\!-\!1)(\sin\theta\!+\!2)\!<\!0 \end{array}$

 $0 \le \theta < 2\pi$ 에서 $\sin \theta + 2 > 0$ 이므로

$$2\sin\theta - 1 < 0 \qquad \therefore \sin\theta < \frac{1}{2}$$

(ii) 두 근의 합: $4\cos\theta > 0$: $\cos\theta > 0$

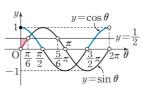
(i), (ii), (iii)에서 $0 < \sin \theta < \frac{1}{2}$, $\cos \theta > 0$

정답과 해설

오른쪽 그림에서 구하는 θ 의 값의 범위는

$$\alpha = 0, \beta = \frac{\pi}{6}$$

$$\therefore \alpha + \beta = \frac{\pi}{6}$$



16 $x = \cos \theta$, $y = \sin \theta$ 이므로

$$f(\theta) = 4\cos\theta + \sin^2\theta = 4\cos\theta + (1-\cos^2\theta)$$

= $-(\cos\theta - 2)^2 + 5$

그런데 $-1 \le \cos \theta \le 1$ 이므로 $\cos \theta = 1$ 일 때, 최댓값 4 를 갖는다.

따라서 함수 $f(\theta)$ 의 최댓값은 4이다.

17 주어진 그래프에서 주기가 2π 이고 b>0이므로

$$\frac{\pi}{b} = 2\pi$$
 $\therefore b = \frac{1}{2}$

주어진 그래프는 함수 $y=a \tan \frac{1}{2}x$ 의 그래프를 x축의 방향으로 π 만큼 평행이동한 것이므로

$$y = a \tan \frac{1}{2} (x - \pi) = a \tan \left(\frac{1}{2} x - \frac{\pi}{2} \right)$$

$$\therefore c = \frac{\pi}{2} (\because 0 \le c < \pi)$$

따라서 주어진 함수의 식은 $y = a \tan\left(\frac{1}{2}x - \frac{\pi}{2}\right)$ 이고,

이 그래프가 점 $\left(\frac{\pi}{2}, -2\right)$ 를 지나므로

$$-2=a\tan\left(\frac{\pi}{4}-\frac{\pi}{2}\right)$$
, $-2=a\tan\left(-\frac{\pi}{4}\right)$

$$-2=-a$$
 $\therefore a=2$

$$\therefore abc = 2 \times \frac{1}{2} \times \frac{\pi}{2} = \frac{\pi}{2}$$

18 부등식 $\sin x < \frac{1}{2}$ 을 만족시

키는 x의 값의 범위는

$$0 \le x < \frac{\pi}{6}$$
 또는 $\frac{5}{6}\pi < x \le 2\pi$

이으
$$x < \frac{\pi}{6}$$
 또는 $\frac{\pi}{6}$ $\pi < x \le 2\pi$
이므로 $B = \left\{ x \middle| 0 \le x < \frac{\pi}{6} \right\}$ 또는 $\frac{5}{6}$ $\pi < x \le 2\pi$

따라서 두 집합 A, B 사이의 포함 관계는

$$A \subseteq B^{C}$$

19 $\mathbf{0} \log_a 3 = X, \log_b 3 = Y$ 라고 하자.

$$2X+Y=3$$
, $\frac{1}{X}+\frac{1}{Y}=-1$ 에서

$$\frac{X+Y}{XY} = -1 \qquad \therefore XY = -3$$

③ ∴
$$(\log_a 3)^2 + (\log_b 3)^2 = X^2 + Y^2$$

= $(X+Y)^2 - 2XY$
= $9+6=15$

채점기준	배점
$lacktriangle$ $\log_a 3 = X$, $\log_b 3 = Y$ 로 치환하기	20 %
${f arOmega}$ 주어진 식을 이용하여 $X\!+\!Y$, XY 의 값 구하기	40 %
3 곱셈 공식의 변형을 이용하여 $(\log_a 3)^2 + (\log_b 3)^2$ 의	40 %
값 구하기	

20 ① 1.7등급인 별의 밝기를 I_1 , 4.2등급의 별의 밝기를 I_2 라고 하면

$$1.7 = -2.5 \log I_1 + C$$
①

$$4.2 = -2.5 \log I_2 + C$$

② ①-②를 하면

$$\begin{split} &1.7 - 4.2 \!=\! (-2.5 \log I_1 \!+\! C) \!-\! (-2.5 \log I_2 \!+\! C) \\ &-2.5 \!=\! -2.5 \log \frac{I_1}{I_2}, \; \frac{I_1}{I_2} \!=\! 10 \end{split}$$

$$I_1 = 10I_2$$

③ 따라서 1.7등급인 별의 밝기는 4.2등급인 별의 밝기의 10배이다.

채점 기준	배점
❶ 별의 밝기에 관한 식 세우기	30 %
${m arOmega}$ ${m lackbr{1}}$ 의 식을 계산하여 I_1 과 I_2 사이의 관계식 구하기	60 %
⑤ 몇 배 더 밝은지 구하기	10 %

21 ① 함수 $f(x) = \left(\frac{1}{5}\right)^{ax} + b$ 에 대하여

$$f(0) = 2$$
에서 $\left(\frac{1}{5}\right)^0 + b = 1 + b = 2$ $\therefore b = 1$

②
$$f(1) = 6$$
 에서 $\left(\frac{1}{5}\right)^a + 6 = 6$, $\left(\frac{1}{5}\right)^a + 1 = 6$
∴ $a = -1$

③ 따라서
$$f(x) = \left(\frac{1}{5}\right)^{-x} + 1$$
이므로

$$f(-2) = \left(\frac{1}{5}\right)^2 + 1 = \frac{26}{25}$$

채점 기준	배점
$oldsymbol{0} f(0)\!=\!2$ 를 이용하여 b 의 값 구하기	30 %
${m \it 0}$ $f(1)\!=\!6$ 을 이용하여 a 의 값 구하기	30 %
③ f(−2)의 값 구하기	40 %

22
$$\mathbf{0}$$
 $f(\theta) = \frac{\cos(-\pi + \theta)}{1 + \cos(\frac{\pi}{2} + \theta)} = \frac{-\cos\theta}{1 - \sin\theta}$ 이므로
$$f(-\theta) = \frac{-\cos(-\theta)}{1 - \sin(-\theta)} = \frac{-\cos\theta}{1 + \sin\theta}$$
$$\therefore f(\theta)f(-\theta) = \frac{-\cos\theta}{1 - \sin\theta} \times \frac{-\cos\theta}{1 + \sin\theta}$$
$$= \frac{\cos^2\theta}{1 - \sin^2\theta} = \frac{\cos^2\theta}{\cos^2\theta} = 1$$
$$\mathbf{0}$$
 $g(\theta) = \frac{\cos(\frac{\pi}{2} + \theta)}{\sin(-\pi + \theta)} = \frac{-\sin\theta}{-\sin\theta} = 1$
$$\circ | \exists \exists g(-\theta) = 1$$
$$\therefore g(-\theta)g(\theta) = 1$$
$$\vdots \frac{f(\theta)f(-\theta)}{g(\theta)g(-\theta)} = 1$$

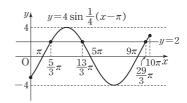
채점 기준	배점
$lackbox{1}{f f}(heta)$ 를 정리하여 $f(heta)f(- heta)$ 의 값 구하기	30 %
${m Q}(g(heta)$ 를 정리하여 $g(heta)g(- heta)$ 의 값 구하기	30 %
③ $rac{f(heta)f(- heta)}{g(heta)g(- heta)}$ 의 값 구하기	40 %

② 이때 $0 \le \sin^2 x \le 1$ 이므로 f(x)의 최댓값은 $\sin^2 x = 0$ 또는 $\sin^2 x = 1$ 일 때 1 f(x)의 최솟값은 $\sin^2 x = \frac{1}{2}$ 일 때 $\frac{1}{4}$ 이다.

채점 기준	배점
① 삼각함수의 성질을 이용하여 함수 $f(x)$ 간단히 하기	40 %
② ①을 이용하여 함수의 최댓값과 최솟값 각각 구하기	60 %

24 ① 함수 $y=4\sin\frac{1}{4}(x-\pi)$ 의 그래프와 직선 y=2가 만 나는 점은 $4\sin\frac{1}{4}(x-\pi)=2$ 에서 $\sin\frac{1}{4}(x-\pi)=\frac{1}{2}$ $\frac{1}{4}(x-\pi)=t$ 로 놓으면 $0 \le x \le 10\pi$ 에서 $-\frac{\pi}{4} \le t \le \frac{9}{4}\pi$ 이고 주어진 방정식은 $\sin t = \frac{1}{2}$ 따라서 $t=\frac{\pi}{6}$ 또는 $t=\frac{5}{6}\pi$ 또는 $t=\frac{13}{6}\pi$ 이므로 $\frac{1}{4}(x-\pi)=\frac{\pi}{6}$ 또는 $\frac{1}{4}(x-\pi)=\frac{5}{6}\pi$ 또는 $\frac{1}{4}(x-\pi)=\frac{13}{6}\pi$ ∴ $x=\frac{5}{3}\pi$ 또는 $x=\frac{13}{3}\pi$ 또는 $x=\frac{29}{3}\pi$

② 따라서 함수 $y=4\sin\frac{1}{4}(x-\pi)(0\leq x\leq 10\pi)$ 의 그 래프와 직선 y=2가 만나는 점의 좌표는 $\left(\frac{5}{3}\pi,\,2\right),\left(\frac{13}{3}\pi,\,2\right),\left(\frac{29}{3}\pi,\,2\right)$



- ③ 한편, 함수 $y=4\sin\frac{1}{4}(x-\pi)$ 의 치역은 $\{y|-4\leq y\leq 4\}$ 이고, 이 그래프 위의 점 P와 직선 y=2 사이의 거리를 d라고 하면 $0< d\leq 6$
- ① 이때 선분 AB의 최대 길이는 $\frac{29}{3}\pi \frac{5}{3}\pi = 8\pi$ 이므로 구하는 최댓값은

$$\frac{1}{2} \times 8\pi \times 6 = 24\pi \qquad \therefore k = 24$$

채점 기준		배점
① 방정	식 $\sin\frac{1}{4}(x-\pi) = \frac{1}{2}$ 의 해 구하기	30 %
② 삼각	함수의 그래프와 직선이 만나는 점의 좌표 구하기	30 %
❸ 삼각	형의 높이의 범위 구하기	10 %
4 k의	값 구하기	30 %

수학 I 기말:	과사			248~251쪽
01 ⑤	02 ④	03 ④	04 ③	05 ⑤
06 ①	07 ②	08 ②	09 ①	10 ④
11 ③	12 ②	13 ⑤	14 ②	15 ④
16 ④	17 ③	18 ②	19 $\frac{2\sqrt{3}}{3}$	20 $\sqrt{2}$
21 50	22 27	23 102	24 25	

- ○ABC에서 코사인법칙에 의하여
 BC²=70²+80²-2×70×80 cos 60°=5700
 ∴ BC=10√57 (m)
 따라서 두 지점 B, C 사이의 거리는 10√57 m이다.
- 02 주어진 이차방정식이 중근을 가지므로 이 이차방정식의 판별식을 D라고 하면

$$\frac{D}{4} = (\sin A \sin B)^2 - \sin^2 A (\sin^2 A + \sin^2 C) = 0$$

$$\sin^2 A (\sin^2 B - \sin^2 A - \sin^2 C) = 0 \qquad \cdots \cdots 0$$

$$\triangle ABC$$
에서 사인법칙에 의하여

$$\sin A = \frac{a}{2R}$$
, $\sin B = \frac{b}{2R}$, $\sin C = \frac{c}{2R}$

이므로 위 식을 ①에 대입하면

$$\left(\frac{a}{2R}\right)^2 \left\{ \left(\frac{b}{2R}\right)^2 - \left(\frac{a}{2R}\right)^2 - \left(\frac{c}{2R}\right)^2 \right\} = 0$$

 $\therefore b^2 = a^2 + c^2$

따라서 \triangle ABC는 B=90°인 직각삼각형이다.

03
$$\frac{a}{b+c} + \frac{b}{a+c} = 1$$
에서 $\frac{a(a+c)+b(b+c)}{(b+c)(a+c)} = 1$ $\frac{a^2+ac+b^2+bc}{ab+ac+bc+c^2} = 1$ $a^2+ac+b^2+bc=ab+ac+bc+c^2$ $a^2+b^2-c^2=ab$ ① 이때 $\cos C = \frac{a^2+b^2-c^2}{2ab}$ 이므로 이 식에 ①을 대입하면 $\cos C = \frac{ab}{2ab} = \frac{1}{2}$

$$\begin{aligned} &\frac{1}{2} \times 6 \times 8 \sin 120^{\circ} \\ &= \frac{1}{2} \times 6 \times x \times \sin 60^{\circ} + \frac{1}{2} \times 8 \times x \times \sin 60^{\circ} \\ &12\sqrt{3} = \frac{3\sqrt{3}x}{2} + 2\sqrt{3}x, \ \frac{7\sqrt{3}x}{2} = 12\sqrt{3} \\ &\therefore \ x = \frac{24}{7} \end{aligned}$$

따라서 직선 도로 AD의 길이는 $\frac{24}{7}$ km이다.

05 오른쪽 그림의 △ABC에서 A=θ라고 하면

$$\cos\theta = \frac{7^2 + 5^2 - 3^2}{2 \times 7 \times 5} = \frac{13}{14}$$

이때

$$\sin\theta = \sqrt{1 - \left(\frac{13}{14}\right)^2} = \frac{3\sqrt{3}}{14}$$
이므로

 $\triangle {
m ABC}$ 에서 외접원의 반지름의 길이를 R라고 하면 사 인법칙에 의하여

$$\frac{3}{\sin \theta} = 2R \qquad \therefore R = \frac{1}{2} \times \frac{3}{\sin \theta} = \frac{7\sqrt{3}}{3}$$

따라서 구하는 워의 넓이는

$$\pi \times \left(\frac{7\sqrt{3}}{3}\right)^2 = \frac{49}{3}\pi$$

06 \overline{AB} =5a, \overline{AC} =2a, \overline{AD} =b라고 하자. 이때 선분 BD와 선분 DC의 길이의 비는 \triangle ABD와 \triangle ADC의 넓이의 비와 같고,

$$\angle BAD = 120^{\circ} \times \frac{3}{4} = 90^{\circ}, \ \angle DAC = 120^{\circ} \times \frac{1}{4} = 30^{\circ}$$

이므로

$$\triangle ABD = \frac{1}{2} \times 5a \times b \times \sin 90^{\circ} = \frac{5}{2} ab$$

$$\triangle ADC = \frac{1}{2} \times 2a \times b \times \sin 30^{\circ} = \frac{1}{2} ab$$

$$\therefore \overline{BD} : \overline{DC} = 5 : 1$$

따라서 \overline{BD} =5. \overline{DC} =1이고 $\angle EDF$ =60°이므로

△EDF에서 코사인법칙에 의하여

$$\overline{EF}^2 = 5^2 + 1^2 - 2 \times 5 \times 1 \times \cos 60^\circ = 21$$

07 수열 $\{a_n\}$ 은 공차가 -3인 등차수열이므로 $a_{10} = a_1 + 9 \times (-3) = a_1 - 27$

$$a_{10} = a_1 + 5 \times (-3) = a_1 - 15$$

$$\begin{split} a_{10} &= \frac{a_6}{3} \text{ on } \\ a_1 - 27 &= \frac{a_1 - 15}{3}, \ \frac{2}{3} \, a_1 = 22 \qquad \therefore \ a_1 = 33 \\ &\therefore \ a_5 = a_1 + 4 \times (-3) = 33 - 12 = 21 \end{split}$$

08 첫째항이 2, 끝항이 30, 항의 개수가 k+2인 등차수열의 항이 128이므로

$$\frac{(k+2)(2+30)}{2} = 128, \ k+2=8$$

$$\therefore k=6$$

이때 30은 제8항이므로

$$30 = 2 + 7d$$
 : $d = 4$

$$\therefore k+d=6+4=10$$

09 등차수열 $\{a_n\}$ 의 공차가 -3이므로 $a_1+a_4+a_7=a_1+\{a_1+3\times(-3)\}+\{a_1+6\times(-3)\}$ $=3a_1-27=30$

$$\therefore a_1 = 19$$

등차수열 $\{a_n\}$ 의 일반항은

$$a_n = 19 + (n-1) \times (-3) = -3n + 22$$

그런데 $a_1 + a_2 + a_3 + \cdots + a_n$ 의 값이 최대가 되려면 $a_n > 0$ 인 항까지의 합을 구해야 하므로

$$-3n+22>0, n<\frac{22}{3}=7.\times\times$$

따라서 수열 $\{a_n\}$ 은 첫째항부터 제7항까지의 합이 최대 이므로 n=7이다.

10 등비수열 $\{a_n\}$ 의 첫째항을 a, 공비를 r라고 하면 $a_4a_6a_8=(ar^3)(ar^5)(ar^7)=a^3r^{15} = (ar^5)^3=64=4^3$ 이므로 $ar^5=4$ $\therefore a_5a_7=(ar^4)(ar^6)=a^2r^{10}=(ar^5)^2=4^2=16$

11
$$a_1+2a_2=0$$
에서 $a_2=-\frac{1}{2}a_1$ 이므로 등비수열 $\{a_n\}$ 의 공비를 r 라고 하면 $r=-\frac{1}{2}$ 이다.
또, $a_2+a_4=a_1(r+r^3)=a_1\Big(-\frac{1}{2}-\frac{1}{8}\Big)=-\frac{5}{8}a_1$ 이므로 $-\frac{5}{8}a_1=-\frac{5}{24}$ 에서 $a_1=\frac{1}{3}$

따라서 수열 $\left\{\frac{1}{a_n}\right\}$ 은 첫째항이 $\frac{1}{a_1}$ =3이고, 공비가 $\frac{1}{r}$ =-2인 등비수열이므로 $\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+\cdots+\frac{1}{a_m}$ $=\frac{3\{1-(-2)^m\}}{1-(-2)}=1-(-2)^m$ $1-(-2)^m=-255$ 에서 $(-2)^m=256$ $\therefore m=8$

12
$$\sum_{k=1}^{20} |k-10| + \sum_{k=1}^{20} (k-10)$$

$$= \sum_{k=1}^{20} \{|k-10| + (k-10)\}$$

$$= \sum_{k=1}^{10} \{(-k+10) + (k-10)\} + \sum_{k=11}^{20} 2(k-10)$$

$$= 0 + \sum_{k=1}^{10} 2k$$

$$= 2 \times \frac{10 \times 11}{2} = 110$$

- 13 $\sum_{k=1}^{n} (a_{3k-2} + a_{3k-1} + a_{3k})$ $= (a_1 + a_2 + a_3) + (a_4 + a_5 + a_6)$ $+ \cdots + (a_{3n-2} + a_{3n-1} + a_{3n})$ $= \sum_{k=1}^{3n} a_k = 3n(3n+1)$ 위 식에 n = 5를 대입하면 $\sum_{k=1}^{15} a_k = 15(15+1) = 240$ $\therefore \sum_{k=1}^{15} (2a_k + 3) = 2 \sum_{k=1}^{15} a_k + 3 \times 15$ $= 2 \times 240 + 45 = 525$
- **14** 수열 { a_n }의 첫째항부터 제n항까지의 항 중에서 0, 1, 2 의 개수를 각각 x, y, z라고 하면

$$\sum_{k=1}^{n} a_k = 0 \times x + 1 \times y + 2 \times z = 21$$

$$\therefore y + 2z = 21 \qquad \cdots \dots \text{①}$$

$$\sum_{k=1}^{n} a_k^2 = 0^2 \times x + 1^2 \times y + 2^2 \times z = 37$$

$$\therefore y + 4z = 37 \qquad \cdots \dots \text{②}$$

①. ②를 연립하여 풀면

$$y = 5, z = 8$$

$$\therefore \sum_{k=1}^{n} a_k^3 = 0^3 \times x + 1^3 \times y + 2^3 \times z$$

$$= 5 + 8 \times 8 = 69$$

15 이차방정식의 근과 계수의 관계에 의하여

$$\alpha_n + \beta_n = 2n - 1$$
, $\alpha_n \beta_n = n^2$

$$\therefore \sum_{k=1}^{10} \frac{1}{(\alpha_k + 1)(\beta_k + 1)}$$

$$= \sum_{k=1}^{10} \frac{1}{\alpha_k \beta_k + (\alpha_k + \beta_k) + 1}$$

$$= \sum_{k=1}^{10} \frac{1}{k^2 + (2k - 1) + 1}$$

$$= \sum_{k=1}^{10} \frac{1}{k(k + 2)}$$

$$= \frac{1}{2} \sum_{k=1}^{10} \left(\frac{1}{k} - \frac{1}{k + 2}\right)$$

$$= \frac{1}{2} \left\{ \left(1 - \frac{1}{3}\right) + \left(\frac{1}{2} - \frac{1}{4}\right) + \left(\frac{1}{3} - \frac{1}{5}\right) + \cdots + \left(\frac{1}{9} - \frac{1}{11}\right) + \left(\frac{1}{10} - \frac{1}{12}\right) \right\}$$

$$= \frac{1}{2} \left(1 + \frac{1}{2} - \frac{1}{11} - \frac{1}{12}\right) = \frac{175}{264}$$

$$m+n=264+175=439$$

16
$$a_{k+1} + a_{k+2} = S_{k+2} - S_k$$
이므로

$$\begin{split} \frac{a_{k+1} + a_{k+2}}{S_k S_{k+2}} &= \frac{S_{k+2} - S_k}{S_k S_{k+2}} = \frac{1}{S_k} - \frac{1}{S_{k+2}} \\ &\therefore \sum_{k=1}^{10} \frac{a_{k+1} + a_{k+2}}{S_k S_{k+2}} \\ &= \sum_{k=1}^{10} \left(\frac{1}{S_k} - \frac{1}{S_{k+2}}\right) \\ &= \left(\frac{1}{S_1} - \frac{1}{S_3}\right) + \left(\frac{1}{S_2} - \frac{1}{S_4}\right) + \left(\frac{1}{S_3} - \frac{1}{S_5}\right) \\ &+ \dots + \left(\frac{1}{S_9} - \frac{1}{S_{11}}\right) + \left(\frac{1}{S_{10}} - \frac{1}{S_{12}}\right) \end{split}$$

$$= \frac{1}{S_1} + \frac{1}{S_2} - \frac{1}{S_{11}} - \frac{1}{S_{12}}$$

조건 에서 $S_1=a_1=1$, $S_2=a_1+a_2=1+1=2$ 이므로

$$\frac{1}{S_1} + \frac{1}{S_2} - \frac{1}{S_{11}} - \frac{1}{S_{12}}$$
$$= \frac{1}{1} + \frac{1}{2} - \frac{1}{6} - \frac{1}{12} = \frac{5}{4}$$

- **17** 문제의 조건에서 p(n), p(n+1) 중 어느 하나가 참이면 p(n+2)가 참이므로
 - (i) p(1)이 참이면 p(3)이 참이다.
 또, p(3)이 참이면 p(4)도 참이고, p(5)도 참이다.
 이와 같이 계속하면 p(1)이 참이면
 p(3), p(4), p(5), …도 참이다.
 - (ii) p(2)가 참이면 p(3)이 참이다.
 또, p(3)이 참이면 p(4)도 참이고, p(5)도 참이다.
 이와 같이 계속하면 p(2)가 참이면
 p(3), p(4), p(5), …도 참이다.

그런데 p(1)이 참일 때, p(2)가 참인지 또는 p(2)가 참일 때, p(1)이 참인지 알 수 없으므로 p(1)과 p(2)가 모두 참일 때, 명제 p(n)이 모든 자연수 n에 대하여 참이라고 말할 수 있다.

즉, 명제 p(n)이 모든 자연수 n에 대하여 참이기 위한 조건은 p(1)과 p(2)가 참이다.

18 *n*=*k*+1일 때.

$$\sum_{i=1}^{k+1} i \times \sum_{j=1}^{k+1} \frac{1}{j}$$

$$= \{(1+2+\cdots+k)+(k+1)\}$$

$$\times \left\{ \left(1+\frac{1}{2}+\cdots+\frac{1}{k}\right)+\frac{1}{k+1} \right\}$$

$$= (1+2+\cdots+k)\left(1+\frac{1}{2}+\cdots+\frac{1}{k}\right)$$

$$+(1+2+\cdots+k)\left(\frac{1}{k+1}+\cdots+\frac{1}{k}\right)$$

$$+(k+1)\left(1+\frac{1}{2}+\cdots+\frac{1}{k}\right)+1$$

$$> k^2 + \frac{k(k+1)}{2} \times \frac{1}{k+1} + (k+1)\left(1+\frac{1}{2}\right)+1$$

$$= k^2 + 2k + \frac{5}{2}$$

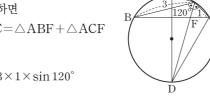
$$> (k+1)^2$$

따라서
$$f(k) = \frac{1}{k+1}$$
, $g(k) = k^2 + 2k$ 이므로

$$f(3)g(4) = \frac{1}{4} \times (4^2 + 2 \times 4) = 6$$

19 ① 선분 AD와 선분 BC의 교점을 F라고 하면

$$\triangle ABC = \triangle ABF + \triangle ACF$$
이므로



$$\frac{1}{2} \times 3 \times 1 \times \sin 120^{\circ}$$

$$=\!\frac{1}{2}\!\times\!3\!\times\!\overline{AF}\!\times\!\sin60^{\circ}\!+\!\frac{1}{2}\!\times\!1\!\times\!\overline{AF}\!\times\!\sin60^{\circ}$$

$$\frac{3\sqrt{3}}{4} = \frac{3\sqrt{3}}{4} \overline{AF} + \frac{\sqrt{3}}{4} \overline{AF} \quad \therefore \overline{AF} = \frac{3}{4}$$

② △ABF와 △ADC에서 ∠ABF=∠ADC이므로 두 삼각형은 서로 닮음이다.

즉,
$$\overline{AB}$$
 : $\overline{AF} = \overline{AD}$: \overline{AC} 에서 $3 : \frac{3}{4} = \overline{AD} : 1$

$$\therefore \overline{AD} = 4$$

- ③ △ABC에서 코사인법칙에 의하여 $\overline{BC}^2 = 3^2 + 1^2 - 2 \times 3 \times 1 \times \cos 120^\circ = 13$ $\therefore \overline{BC} = \sqrt{13}$
- \P \triangle ABC의 외접원의 반지름의 길이를 R라고 하면 사 인법칙에 의하여

$$2R = \frac{\overline{BC}}{\sin 120^{\circ}}$$
이므로 $R = \frac{2\sqrt{39}}{3}$
 $\therefore \overline{DE} = \frac{2\sqrt{39}}{2}$

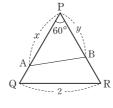
⑤ △ADE는 직각삼각형이므로 피타고라스 정리에 의하여

$$\overline{AE}^2 = \overline{DE}^2 - \overline{AD}^2 = \left(\frac{2\sqrt{39}}{3}\right)^2 - 4^2 = \frac{4}{3}$$

$$\therefore \overline{AE} = \frac{2\sqrt{3}}{3}$$

채점 기준	배점
❶ 삼각형의 넓이를 이용하여 선분 AF의 길이 구하기	20 %
② 삼각형의 닮음을 이용하여 선분 AD의 길이 구하기	20 %
③ 코사인법칙을 이용하여 선분 BC의 길이 구하기	20 %
④ 사인법칙을 이용하여 선분 DE의 길이 구하기	20 %
⑤ △ADE에서 선분 AE의 길이 구하기	20 %

20 ① 정삼각형의 세 꼭짓점을 P. Q. R라 하고. $\overline{PA} = x$. $\overline{PB} = y$ 라고 하면 $\triangle PQR = \frac{1}{2} \times 2 \times 2 \sin 60^{\circ}$



$$\triangle PAB = \frac{1}{2} \times x \times y \times \sin 60^{\circ} = \frac{\sqrt{3}}{4} xy$$

이때 2△PAB=△PQR이므로

$$2 \times \frac{\sqrt{3}}{4} xy = \sqrt{3} \quad \therefore xy = 2$$

② △ABP에서 코사인법칙에 의하여

$$\overline{\text{AB}}^2 = x^2 + y^2 - 2xy \times \cos 60^\circ$$
 $= x^2 + y^2 - xy = x^2 + y^2 - 2$
 $\ge 2xy - 2 = 2$

- $\therefore \overline{AB} \ge \sqrt{2}$ (등호는 $x=y=\sqrt{2}$ 일 때 성립)
- ③ 따라서 선분 AB의 길이의 최솟값은 $\sqrt{2}$ 이다.

채점 기준		배점
① △PQR	와 △PAB의 넓이를 식으로 나타내기	40 %
🛭 코사인법	칙을 이용하여 $\overline{ m AB}^{^2}$ 을 식으로 나타내기	40 %
❸ 선분 AF	3의 길이의 최솟값 구하기	20 %

21 ① $\overline{PM} = x$, $\overline{PN} = y$ 라고 하면

$$\frac{1}{2} \times 6 \times 4 \sin 30^{\circ} = \frac{1}{2} \times 6 \times x + \frac{1}{2} \times 4 \times y$$

$$\therefore 3x+2y=6$$

② 산술평균과 기하평균 사이의 관계에 의하여

$$6\left(\frac{\overline{AB}}{\overline{PM}} + \frac{\overline{AC}}{\overline{PN}}\right)$$

$$= (3x + 2y)\left(\frac{\overline{AB}}{\overline{PM}} + \frac{\overline{AC}}{\overline{PN}}\right)$$

$$= (3x + 2y)\left(\frac{6}{x} + \frac{4}{y}\right)$$

$$= 26 + 12\left(\frac{y}{x} + \frac{x}{y}\right)$$

$$\geq 26 + 12 \times 2\sqrt{\frac{y}{x} \times \frac{x}{y}} = 50$$

③ 따라서 구하는 최솟값은 50이다.

채점 기준	배점
$lackbox{ }\overline{ ext{PM}}{=}x$, $\overline{ ext{PN}}{=}y$ 라 하고	40 %
$\triangle { m ABC} {=} \triangle { m ABP} {+} \triangle { m ACP}$ 의 관계를 x, y 에 대한	
식으로 나타내기	
② $m{0}$ 의 결과와 $6\Big(rac{\overline{AB}}{\overline{PM}}+rac{\overline{AC}}{\overline{PN}}\Big)$ 에 산술평균과 기하평균	40 %
의 관계식 적용하기	
$oldsymbol{6}\left(rac{\overline{AB}}{\overline{PM}}+rac{\overline{AC}}{\overline{PN}} ight)$ 의 최솟값 구하기	20 %

- **22 1** 수열 a_1 , a_3 , a_5 , a_7 , …은 첫째항이 3, 공비가 3인 등비수열이고, 수열 a_2 , a_4 , a_6 , a_8 , …은 첫째항이 $\frac{1}{9}$, 공비가 3인 등비수열이다.
 - ② a_{11} 은 수열 a_1 , a_3 , a_5 , a_7 , …의 제6항이므로 $a_{11}{=}3{\times}3^{6-1}{=}3^6$ a_{12} 는 수열 a_2 , a_4 , a_6 , a_8 , …의 제6항이므로 $a_{12}{=}\frac{1}{9}{\times}3^{6-1}{=}\frac{1}{3^2}{\times}3^5{=}3^3$
 - $3 : \frac{a_{11}}{a_{12}} = \frac{3^6}{3^3} = 3^3 = 27$

채점 기준	배점
$m{0}\ a_{2n-1},a_{2n}$ 의 규칙을 찾아 첫째항과	공비 각각 구하기 40 %
$@~a_{11},a_{12}$ 의 값 각각 구하기	40 %
$rac{a_{11}}{a_{12}}$ 의 값 구하기	20 %

23 ① 수열 $\{na_n\}$ 의 첫째항부터 제n항까지의 합이 S_n 이므로 $S_n = a_1 + 2a_2 + 3a_3 + \cdots + na_n$ $= \frac{n(n+1)(n+2) - 3}{3}$ $S_n = a_1 + 2a_2 + 2a_3 + \cdots + (n-1)a_n$

$$S_{n-1} = a_1 + 2a_2 + 3a_3 + \dots + (n-1)a_{n-1}$$
$$= \frac{(n-1)n(n+1) - 3}{3}$$

② n=1일 때.

$$a_1 = S_1 = \frac{1 \times 2 \times 3 - 3}{3} = 1 \qquad \dots \dots \oplus$$

 $n \ge 2$ 일 때.

$$na_n = S_n - S_{n-1}$$

$$= \frac{n(n+1)(n+2) - 3}{3}$$

$$-\frac{(n-1)n(n+1)-3}{3}$$

$$=n(n+1)$$

 $\therefore a_n = n+1$ 2

③ ①, ②에서

$$a_1 = 1, a_n = n+1 \ (n \ge 2)$$

배점
20 %
30 %
30 %
20 %

24 ① 원의 중심 (2k+1, 0)과 직선 $y=a_k x$ 사이의 거리가 1이므로

$$\frac{|a_{k}(2k+1)-1\times 0|}{\sqrt{{a_{k}}^{2}+1}}=1$$

② 위 식의 양변을 제곱하면

$$\frac{a_k^2(2k+1)^2}{a_k^2+1} = 1$$

$$a_k^2(4k^2+4k) = 1$$

$$\therefore a_k^2 = \frac{1}{4(k^2+k)} = \frac{1}{4k(k+1)}$$

$$\begin{array}{l}
\text{(3)} \sum_{k=1}^{n} a_k^2 = \frac{1}{4} \sum_{k=1}^{n} \frac{1}{k(k+1)} \\
= \frac{1}{4} \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1} \right) \\
= \frac{1}{4} \left\{ \left(\frac{1}{1} - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) \\
+ \cdots + \left(\frac{1}{n} - \frac{1}{n+1} \right) \right\} \\
= \frac{1}{4} \left(1 - \frac{1}{n+1} \right) \\
= \frac{n}{n}
\end{array}$$

④
$$\frac{n}{4(n+1)} > \frac{6}{25}$$
 에서 $25n > 24(n+1)$
∴ $n > 24$

따라서 자연수 n의 최솟값은 25이다.

채점 기준	배점
$lue{1}$ 반지름의 길이가 1 인 원과 직선 $y\!=\!a_k\!x$ 가 접할 조건	20 %
구하기	
$oldsymbol{0}$ a_k^2 을 k 에 대한 식으로 나타내기	20 %
③ Σ 의 성질을 이용하여 $\sum\limits_{k=1}^{n}{a_k}^2$ 구하기	30 %
\P 조건을 만족하는 n 의 값의 범위에서 자연수 n 의 최솟	30 %
값 구하기	

Ⅰ. 지수함수와 로그함수

Total Control of the		gas and an experience of the		
대단원 기	출 모의고사			252~255쪽
CONTRACT OF THE PARTY OF THE PA				
	0	0	0	
정단물 80 % 이상	01 ④	02 ⑤	03 ③	04 ①
05 ④	06 ⑤	07 ④	08 27	09 ②
U5 4	06 3	U / 4	U8 21	U9 ②
10 ④	11 ①			
⊠⊞ 79~60 %	12 ③	13 98	14 ①	15 ③
16 16	17 124			
	10 0	10 ①	20 ①	04 00
정말률 60 % 미만	18 ④	19 ①	20 ①	21 36
22 17	23 ④			
22 11	23 4			
L.				

01 지수법칙

$$8^{\frac{1}{3}} + 27^{\frac{2}{3}} = (2^3)^{\frac{1}{3}} + (3^3)^{\frac{2}{3}}$$
$$= 2 + 3^2 = 11$$

02 지수함수의 그래프

0 < a < 1이므로 함수 $f(x) = a^x$ 은 감소함수이다. 즉, $-2 \le x \le 1$ 에서 함수 f(x)는 x = 1에서 최솟값, x = -2에서 최댓값을 가진다.

$$f(1)=a$$
가 최솟값이므로 $a=\frac{5}{6}$

따라서
$$f(x) = \left(\frac{5}{6}\right)^x$$
이므로
$$M = f(-2) = \left(\frac{5}{6}\right)^{-2} = \left(\frac{6}{5}\right)^2 = \frac{36}{25}$$

$$\therefore a \times M = \frac{5}{6} \times \frac{36}{25} = \frac{6}{5}$$

03 지수함수의 함숫값

 $f(x) = a^x$ 에 대하여

$$f(b) = 3$$
에서 $a^b = 3$

$$f(c) = 6$$
에서 $a^c = 6$

$$\therefore f\left(\frac{b+c}{2}\right) = a^{\frac{b+c}{2}} = (a^{b+c})^{\frac{1}{2}} = (a^b \times a^c)^{\frac{1}{2}}$$
$$= (3 \times 6)^{\frac{1}{2}} = 18^{\frac{1}{2}}$$
$$= 3\sqrt{2}$$

다른 풀여

$$f(b)=a^b=3$$
에서 $b=\log_a 3$ $f(c)=a^c=6$ 에서 $c=\log_a 6$ 이때 $b+c=\log_a 3+\log_a 6=\log_a 180$ 므로

$$f\left(\frac{b+c}{2}\right) = a^{\frac{b+c}{2}} = (a^{b+c})^{\frac{1}{2}} = (\underline{a^{\log_{s}18}})^{\frac{1}{2}}$$
$$= 18^{\frac{1}{2}} = 3\sqrt{2}$$

04 로그함수의 그래프

곡선 $y = \log_a x$ 와 직선 y = 1이 만나는 점 A_1 의 x좌표는 $\log_a x = 1$ 에서 x = a

즉, 점 A₁의 좌표는 (a, 1)이다.

곡선 $y=\log_b x$ 와 직선 y=1이 만나는 점 B_1 의 x좌표는 $\log_b x=1$ 에서 x=b

즉, 점 B₁의 좌표는 (b, 1)이다.

선분 A₁B₁의 중점의 좌표가 (2, 1)이므로

$$\frac{a+b}{2} = 2$$
 $\therefore a+b=4$

 $\overline{A_1B_1}=1$ 에서

$$|a-b|=1$$
 $\therefore b-a=1$ $(\because a < b)$

곡선 $y = \log_a x$ 와 직선 y = 2가 만나는 점 A_2 의 x좌표는 $\log_a x = 2$ 에서 $x = a^2$

즉, 점 A_2 의 좌표는 $(a^2, 2)$ 이다.

곡선 $y=\log_b x$ 와 직선 y=2가 만나는 점 B_2 의 x좌표는 $\log_b x=2$ 에서 $x=b^2$

즉, 점 B_2 의 좌표는 $(b^2, 2)$ 이다.

$$\therefore \overline{A_2B_2} = |a^2 - b^2| = b^2 - a^2$$

$$= (b - a)(b + a)$$

$$= 1 \times 4 = 4$$

05 실생활에서의 로그의 활용

t=1, x=2일 때, y=a이므로

$$t{=}4$$
, $x{=}d$ 일 때, $y{=}\frac{a}{2}$ 이므로

$$\log \frac{a}{2} = A - \frac{1}{2} \log 4 - \frac{Kd^{2}}{4}$$

$$= A - \frac{1}{2} \log 2^{2} - \frac{Kd^{2}}{4}$$

$$= A - \log 2 - \frac{Kd^{2}}{4} \qquad \dots \dots 2$$

①-②를 하면

$$\log a - \log \frac{a}{2} = (A - 4K) - \left(A - \log 2 - \frac{Kd^2}{4}\right)$$

$$\log 2 = \log 2 - 4K + \frac{Kd^2}{4}$$

$$\frac{Kd^2}{4} = 4K, \ d^2 = 16 \ (\because K > 0)$$

$$\therefore d = 4 \ (\because d > 0)$$

06 로그의 성질

이차방정식의 근과 계수의 관계에 의하여

$$\alpha + \beta = 18$$
, $\alpha\beta = 6$

$$\therefore \log_2(\alpha+\beta) - 2\log_2\alpha\beta = \log_2 18 - 2\log_2 6$$

$$=\log_2\frac{18}{6^2}$$

$$=\log_2\frac{1}{2}=-1$$

07 로그함수의 그래프

곡선 $y=a^x$ 을 직선 y=x에 대하여 대칭이동한 곡선은 $y = \log_a x$ 이다.

따라서 곡선 $y = \log_a x$ 가 점 (2, 3)을 지나므로

$$3 = \log_a 2, a^3 = 2$$

$$\therefore a = \sqrt[3]{2}$$

곡선 $y=a^x$ 을 직선 y=x에 대하여 대칭이동한 곡선이 점 (2, 3)을 지나므로 곡선 $y=a^x$ 은 점 (3, 2)를 지난다.

즉,
$$2=a^3$$
이므로 $a=\sqrt[3]{2}$

08 로그방정식

$$(\log_3 x)^2 - 6\log_3 \sqrt{x} + 2 = 0$$
에서

$$(\log_3 x)^2 - 3\log_3 x + 2 = 0$$

이때 $\log_3 x = t$ 로 놓으면

$$t^2-3t+2=0$$
, $(t-1)(t-2)=0$

즉, $\log_3 x = 1$ 또는 $\log_3 x = 2$ 이므로

$$\log_3 x = 1$$
에서 $x = 3^1 = 3$

$$\log_3 x = 2$$
에서 $x = 3^2 = 9$

따라서 주어진 방정식의 서로 다른 두 실근 α , β 의 곱 $\alpha\beta=3\times9=27$ 이다.

다른 풀이

$$(\log_3 x)^2 - 6\log_3 \sqrt{x} + 2 = 00$$

$$(\log_3 x)^2 - 3\log_3 x + 2 = 0$$

$$\log_3 x = t$$
로 놓으면 $t^2 - 3t + 2 = 0$

이때 t에 대한 이차방정식 ①의 두 근이 $\log_3 \alpha$, $\log_3 \beta$ 이므 로 근과 계수의 관계에 의하여

$$\log_3 \alpha + \log_3 \beta = 3$$
, $\log_3 \alpha \beta = 3$

$$\therefore \alpha \beta = 3^3 = 27$$

09 로그부등식

$$(1+\log_3 x)(a-\log_3 x)>0$$
에서

$$(\log_3 x + 1)(\log_3 x - a) < 0$$

$$\log_3 x = t$$
로 놓으면 주어진 부등식은

$$(t+1)(t-a) < 0$$

이때 부등식의 해가
$$\frac{1}{3}$$
< x <9이므로

$$\log_3 \frac{1}{3} < t < \log_3 9$$

$$\log_3 3^{-1} < t < \log_3 3^2$$

$$\therefore -1 < t < 2$$

부등식 $(1+\log_3 x)(a-\log_3 x)>0$ 의 해가 $\frac{1}{3}< x<90$ 므

로 방정식
$$(1+\log_3 x)(a-\log_3 x)=0$$
의 해는

$$x = \frac{1}{3}$$
 또는 $x = 90$ 다.

즉,
$$\log_3 x = -1$$
 또는 $\log_3 x = a$ 에서

$$x = \frac{1}{3} \stackrel{\text{\tiny }}{=} x = 3^a$$

따라서 $3^a = 90$ 으로 a = 2

10 지수함수의 그래프의 평행이동

함수 y=f(x)의 그래프에서 기울기는 1이고, y절편은 1 이므로 f(x) = x + 1

$$\therefore y = 2^{2-f(x)} = 2^{2-(x+1)}$$

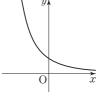
$$=2^{-x+1}=2^{-(x-1)}$$

$$=\left(\frac{1}{2}\right)^{x-1}$$

따라서 $y=2^{2-f(x)}$ 의 그래프는

$$y = \left(\frac{1}{2}\right)^x$$
의 그래프를 x 축의 방

향으로 1만큼 평행이동한 것이므 로 그래프의 개형은 오른쪽 그림 과 같다.



참고 도형의 평행이동

방정식 f(x, y)=0이 나타내는 도형을 x축의 방향으로 a만 큼, y축의 방향으로 b만큼 평행이동한 도형의 방정식은

11 로그의 성질

주어진 두 점을 지나는 직선의 기울기는

$$\frac{\log_2 10 - \log_2 5}{2 - 1} = \log_2 \frac{10}{5} = 1$$

12 로그함수의 최대·최소

밑이 1보다 크므로 $y=3+\log_{3}(x^{2}-4x+31)$ 이 최소인 경우는 $x^2 - 4x + 31$ 이 최솟값을 가질 때이다.

$$f(x) = x^2 - 4x + 31$$
로 놓으면

$$f(x) = (x-2)^2 + 27$$
에서 $f(x)$ 의 최솟값은 27이다.
따라서 $y = 3 + \log_2(x^2 - 4x + 31)$ 의 최솟값은

$$3 + \log_3 27 = 3 + 3 = 6$$

참고 로그함수의 최대·최소 $-y = \log_a f(x)$ 꼴 정의역이 $\{x \mid m \le x \le n\}$ 인 로그함수

 $g(x) = \log_a f(x) (a > 0, a \neq 1)$ 의 최대·최소

(1) 주어진 정의역에서 f(x)의 최댓값 α . 최솟값 β 를 구한다.

 $\Rightarrow g(x)$ 의 최댓값은 $\log_a \alpha$, 최솟값은 $\log_a \beta$

0<a<1일 때

 $\Rightarrow g(x)$ 의 최댓값은 $\log_a \beta$, 최솟값은 $\log_a \alpha$

13 곱셈 공식을 활용한 지수법칙

$$a^{\frac{1}{2}} + a^{-\frac{1}{2}} = 10$$
의 양변을 제곱하면

$$(a^{\frac{1}{2}})^2 + 2 \times a^{\frac{1}{2}} \times a^{-\frac{1}{2}} + (a^{-\frac{1}{2}})^2 = 10^2$$

$$a+2+a^{-1}=100$$
 : $a+a^{-1}=98$

14 거듭제곱근의 성질

두 자연수 a. b에 대하여

$$\sqrt{\frac{2^a \times 5^b}{2}}$$
이 자연수이므로 a 는 홀수, b 는 짝수이고,

$$\sqrt[3]{\frac{3^b}{2^{a+1}}}$$
이 유리수이고 2와 3은 서로소이므로 $a+1$ 과 b

는 3의 배수이다

따라서 두 자연수 a. b의 최솟값은 각각 5. 6이므로 a+b의 최솟값은 11이다.

15 로그의 정의

두 점 P, Q의 좌표를 각각 $(p, \log_a p), (q, \log_a q)$ (q < p)라고 하면 선분 PQ의 중점이 원의 중심이므로

$$\frac{p+q}{2} = \frac{5}{4}, \frac{\log_a p + \log_a q}{2} = 0$$

$$\therefore p+q=\frac{5}{2}, pq=1$$

b. a를 두 근으로 하는 이차방정식은

$$t^2 - \frac{5}{2}t + 1 = 0, (t - \frac{1}{2})(t - 2) = 0$$

$$\therefore t = \frac{1}{2}$$
 또는 $t = 2$

$$\therefore p=2, q=\frac{1}{2}(\because p>q)$$

두 점 P(2,
$$\log_a 2$$
), Q $\left(\frac{1}{2}, \log_a \frac{1}{2}\right)$ 에서

$$\overline{PQ} = \sqrt{\left(2 - \frac{1}{2}\right)^2 + \left(\log_a 2 - \log_a \frac{1}{2}\right)^2}$$
$$= \sqrt{\frac{9}{4} + (\log_a 4)^2}$$

한편, 선분 PQ의 길이는 원의 지름의 길이와 같다.

즉,
$$\overline{PQ} = 2 \times \frac{\sqrt{13}}{4} = \frac{\sqrt{13}}{2}$$
에서 $\overline{PQ}^2 = \frac{13}{4}$ 이므로

$$\frac{9}{4} + (\log_a 4)^2 = \frac{13}{4}, (\log_a 4)^2 = 1$$

$$\log_a 4 = 1$$
 (: $a > 1$) : $a = 4$

16 로그의 밑의 변환

$$\frac{\log_a b}{2a} = \frac{3}{4} \text{ Med } \log_a b = \frac{3}{2} a$$

$$\frac{18\log_b a}{b} = \frac{3}{4} \text{ Med} \log_b a = \frac{1}{24}b$$

 $\log_a b \times \log_b a = 1$ 이므로

$$\frac{3}{2}a \times \frac{1}{24}b = 1$$
 $\therefore ab = 16$

다른 풀이

 $\log_a b \times \log_b a = 10$

$$rac{\log_a b}{2a} imes rac{18 \log_b a}{b} = \left(rac{3}{4}
ight)^2$$
에서

$$\frac{18}{2ab} = \frac{9}{16}$$
 : $ab = 16$

17 지수법칙의 활용

$$(\sqrt{3^n})^{\frac{1}{2}} = (3^{\frac{n}{2}})^{\frac{1}{2}} = 3^{\frac{n}{4}} {}^{n} \sqrt{3^{100}} = 3^{\frac{100}{n}}$$

 $3^{\frac{n}{4}}$. $3^{\frac{100}{4}}$ 이 모두 자연수가 되도록 하는 2 이상의 자연수 n은 4의 배수이면서 100의 약수이다. 따라서 구하는 모든 n의 값의 합은 2^2 , $2^2 \times 5$, $2^2 \times 5^2$

$$4+20+100=124$$

18 지수법칙의 활용

$$12^a = 16$$
에서 $12^a = 2^4$ $\therefore 12 = 2^{\frac{4}{a}}$ ①

$$3^b = 2$$
에서 $3 = 2^{\frac{1}{b}}$ (2)

①÷②를 하면

$$2^{\frac{4}{a}} \div 2^{\frac{1}{b}} = 12 \div 3$$

$$\therefore 2^{\frac{4}{a} - \frac{1}{b}} = 4$$

19 지수함수의 그래프의 평행이동

함수 $f(x)=2^x$ 의 그래프를 x축의 방향으로 m만큼, y축의 방향으로 n만큼 평행이동한 함수 g(x)는

$$g(x) = 2^{x-m} + n$$

점 A(1, f(1))을 x축의 방향으로 m만큼, y축의 방향으로 n만큼 평행이동한 점 A'의 좌표는

$$(1+m, f(1)+n)$$

이때 점 A'의 x좌표가 3이므로

$$1+m=3$$
 $\therefore m=2$

 $g(x)=2^{x-2}+n$ 이고 y=g(x)의 그래프가 점 $(0,\ 1)$ 을 지나므로 g(0)=1에서

$$2^{-2} + n = 1 \qquad \therefore n = \frac{3}{4}$$

$$\therefore m+n=2+\frac{3}{4}=\frac{11}{4}$$

참고 (1) 점의 평행이동

점 P(x, y)를 x축의 방향으로 a만큼, y축의 방향으로 b만큼 평행이동한 점을 P'이라고 하면

 \Rightarrow P'(x+a, y+b)

(2) 도형의 평행이동

방정식 f(x, y)=0이 나타내는 도형을 x축의 방향으로 a만큼, y축의 방향으로 b만큼 평행이동한 도형의 방정식은

$$\Rightarrow f(x = a, y = b) = 0$$

20 로그의 성질

조건 (개)에서 $\sqrt[4]{ab} = \sqrt[3]{a}$

$$(ab)^{\frac{1}{4}} = a^{\frac{1}{3}}, ab = a^{\frac{4}{3}} \qquad \therefore b = a^{\frac{1}{3}}$$

조건 (내)에서

$$\log_a bc + \log_b ac$$

$$=\log_a b + \log_a c + \log_b a + \log_b c$$

$$=\log_a a^{\frac{1}{3}} + \log_a c + \log_{\frac{1}{3}} a + \log_{\frac{1}{3}} c$$

$$=\frac{1}{3} + \log_a c + 3 + 3\log_a c$$

$$=\frac{10}{3}+4\log_a c=4$$

$$\leq \log_a c = \frac{1}{6}, c = a^{\frac{1}{6}}$$

따라서
$$\frac{b}{c} = \frac{a^{\frac{1}{3}}}{a^{\frac{1}{6}}} = a^{\frac{1}{3} - \frac{1}{6}} = a^{\frac{1}{6}}$$
이므로 $a = \left(\frac{b}{c}\right)^6$ $\therefore k = 6$

21 치환을 이용한 지수방정식

$$4^{x}+4^{-x}+a(2^{x}-2^{-x})+7=0$$
에서

$$2^{x}-2^{-x}=t$$
로 놓으면

$$4^{x}+4^{-x}=(2^{x}-2^{-x})^{2}+2=t^{2}+2$$
이므로

주어진 방정식은
$$(t^2+2)+at+7=0$$

$$\therefore t^2 + at + 9 = 0 \qquad \cdots$$

이때 $t=2^x-2^{-x}$ 이 모든 실숫값을 가질 수 있으므로 주어진 방정식이 실근을 갖기 위해서는 이차방정식 ①이 실근을 가져야 한다.

이차방정식 ①의 판별식을 D라고 하면

$$D=a^2-36\geq 0, (a+6)(a-6)\geq 0$$

따라서 양수 a의 최솟값은 m=6이므로

$$m^2 = 36$$

22 지수법칙의 활용

$$2^a = x$$
, $2^b = y$ 라고 하면

$$x+y=2, \frac{1}{x}+\frac{1}{y}=\frac{9}{4}$$

$$\frac{1}{x} + \frac{1}{y} = \frac{9}{4} \text{ and } \frac{x+y}{xy} = \frac{2}{xy} = \frac{9}{4} \qquad \therefore xy = \frac{8}{9}$$

$$2^{a+b} = 2^a 2^b = xy = \frac{8}{9}$$

따라서
$$p=9$$
, $q=8$ 이므로 $p+q=17$

23 실생활에서의 지수법칙의 활용

D=d, W=160일 때의 가스버블의 최대반경 R_1 은

$$R_1 = k \left(\frac{160}{d+10} \right)^{\frac{1}{3}}$$

D=d, W=p일 때의 가스버블의 최대반경 R_2 는

$$R_2 = k \left(\frac{p}{d+10} \right)^{\frac{1}{3}}$$

$$\frac{R_1}{R_2}$$
=2에서

$$\frac{k\left(\frac{160}{d+10}\right)^{\frac{1}{3}}}{k\left(\frac{p}{d+10}\right)^{\frac{1}{3}}} = \left(\frac{160}{p}\right)^{\frac{1}{3}} = 2$$

$$\frac{160}{p} = 2^3 \qquad \therefore p = 20$$

Ⅱ. 삼각함수

대단원 기출	모의고사			256~259쪽
정단를 80 % 이상	01 ④	02 ③	03 ④	04 ⑤
05 ⑤	06 6			
정말로 <mark>79~60 %</mark>	07 ②	08 ②	09 27	10 9
11 30	12 18			
정말률 60 % 미만	13 ①	14 9	15 256	16 ②
17 ②	18 ④	19 50	20 103	

01 부채꼴의 호의 길이와 넓이

부채꼴의 호의 길이는 $4 \times \frac{\pi}{4} = \pi$

02 삼각함수를 포함하는 방정식

$$1+\sqrt{2}\sin 2x = 0$$
에서 $\sin 2x = -\frac{1}{\sqrt{2}}$

 $0 \le x \le \pi$ 에서 $0 \le 2x \le 2\pi$ 이므로

$$2x = \frac{5}{4}\pi$$
 또는 $2x = \frac{7}{4}\pi$

$$\therefore x = \frac{5}{8}\pi$$
 또는 $x = \frac{7}{8}\pi$

따라서 구하는 모든 해의 합은

$$\frac{5}{8}\pi + \frac{7}{8}\pi = \frac{3}{2}\pi$$

03 삼각함수를 포함하는 방정식

 $\cos^2 x = \sin^2 x - \sin x$ 에서

$$1-\sin^2 x = \sin^2 x - \sin x$$

$$2\sin^2 x - \sin x - 1 = 0$$

$$(2\sin x + 1)(\sin x - 1) = 0$$

$$\therefore \sin x = -\frac{1}{2}$$
 또는 $\sin x = 1$

 $0 < x < 2\pi$ 에서

(i)
$$\sin x = -\frac{1}{2}$$
일 때, $x = \frac{7}{6}\pi$ 또는 $x = \frac{11}{6}\pi$

(ii)
$$\sin x = 1$$
일 때, $x = \frac{\pi}{2}$

(i). (ii)에서 구하는 모든 해의 합은

$$\frac{7}{6}\pi + \frac{11}{6}\pi + \frac{\pi}{2} = \frac{7}{2}\pi$$

04 삼각함수 사이의 관계

 $\sin\theta + \cos\theta = \frac{2}{3}$ 의 양변을 제곱하면

$$\sin^2\theta + 2\sin\theta\cos\theta + \cos^2\theta = \frac{4}{9}$$

$$1+2\sin\theta\cos\theta=\frac{4}{9}$$
 : $\sin\theta\cos\theta=-\frac{5}{18}$

$$\therefore \sin^3\theta + \cos^3\theta$$

$$= (\sin\theta + \cos\theta)^3 - 3\sin\theta\cos\theta(\sin\theta + \cos\theta)$$

$$= \left(\frac{2}{3}\right)^3 - 3 \times \left(-\frac{5}{18}\right) \times \frac{2}{3}$$

$$=\frac{8}{27}+\frac{5}{9}=\frac{23}{27}$$

05 삼각함수의 미정계수 구하기

주어진 함수의 최댓값이 2이고 a>0이므로 a=2

또, 주기는 2이고
$$b>0$$
이므로 $\frac{2\pi}{\frac{\pi}{2b}}=2$ $\therefore b=\frac{1}{2}$

$$\therefore a+b=\frac{5}{2}$$

06 그래프가 주어진 삼각함수의 미정계수 구하기

주어진 함수의 최댓값이 3이고 a>0이므로 a=3

또, 주기는
$$\frac{5}{4}\pi - \frac{\pi}{4} = \pi$$
이고 $b > 0$ 이므로

$$\frac{2\pi}{b} = \pi$$
 $\therefore b = 2$

$$\therefore ab = 6$$

07 실생활에서 삼각함수의 활용

난방기를 가동한 지 20분 후의 실내 온도가 18 $^{\circ}$ C이므로 주어진 식에 $t=20,\ T=18$ 을 대입하면

$$18 = B - \frac{k}{6} \cos(\frac{\pi}{60} \times 20), B - \frac{k}{6} \times \frac{1}{2} = 18$$

$$\therefore B - \frac{k}{12} = 18 \qquad \cdots$$

또, 난방기를 가동한 지 40분 후의 실내 온도가 20 °C이 므로 주어진 식에 t=40, T=20을 대입하면

$$20 = B - \frac{k}{6} \cos(\frac{\pi}{60} \times 40), B - \frac{k}{6} \times (-\frac{1}{2}) = 20$$

$$\therefore B + \frac{k}{12} = 20$$
2

$$2-1$$
을 하면 $\frac{k}{6}=2$ $\therefore k=12$

08 삼각함수를 포함하는 부등식

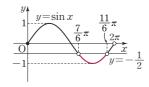
 $2\sin x + 1 < 0$ 에서 $\sin x < -\frac{1}{2}$

주어진 부등식의 해는 함수 $y = \sin x$ 의 그래프가 직선

 $y = -\frac{1}{2}$ 보다 아래쪽에 있는 x의 값의 범위와 같다.

오른쪽 그림에서 구하는 보드시이 체느

부등식의 해는
$$\frac{7}{6}\pi < x < \frac{11}{6}\pi$$
 $\frac{0}{-1}$



따라서
$$\alpha = \frac{7}{6}\pi$$
, $\beta = \frac{11}{6}\pi$

이므로
$$\cos(\beta - \alpha) = \cos\frac{2}{3}\pi = -\frac{1}{2}$$

09 부채꼴의 호의 길이

반원의 중심을 O라고 하면

$$\overline{OA} = \overline{OB} = \overline{OC} = 6$$

 $\angle COB = \theta$ 라고 하면 호 BC의 길이가 4π 이므로 $6\theta = 4\pi$ 에서

$$\theta = \frac{2}{3}\pi$$

따라서
$$\angle ext{COH} = \pi - \frac{2}{3}\pi = \frac{\pi}{3}$$
이므로 $\triangle ext{CHO에서}$

$$\overline{\text{CH}} = \overline{\text{OC}} \sin \frac{\pi}{3} = 6 \times \frac{\sqrt{3}}{2} = 3\sqrt{3}$$

$$\therefore \overline{\text{CH}}^2 = 27$$

10 삼각함수를 포함하는 방정식

$$f(x) = \sin^2 x + \sin\left(x + \frac{\pi}{2}\right) + 1$$
$$= 1 - \cos^2 x + \cos x + 1$$
$$= -\cos^2 x + \cos x + 2$$
$$= -\left(\cos x - \frac{1}{2}\right)^2 + \frac{9}{4}$$

 $-1 \le \cos x \le 1$ 이므로 $\cos x = \frac{1}{2}$ 에서 최댓값 $\frac{9}{4}$ 를 갖는다.

따라서
$$M=\frac{9}{4}$$
이므로 $4M=9$

11 삼각함수를 포함하는 방정식

함수 $y=\cos x+\frac{1}{4}$ 의 그래프는 함수 $y=\cos x$ 의 그래프

를 y축의 방향으로 $\frac{1}{4}$ 만큼 평행이동한 것이므로 주기는

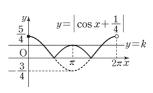
$$2\pi$$
, 치역은 $\left\{y \middle| -\frac{3}{4} \le y \le \frac{5}{4}\right\}$ 이다.

함수 $y = \left|\cos x + \frac{1}{4}\right|$ 의 그래프는 함수 $y = \cos x + \frac{1}{4}$ 의

그래프에서 y < 0인 부분을 x축에 대하여 대칭이동시킨

것이므로 함수 $y = \left|\cos x + \frac{1}{4}\right|$ 의 그래프와 직선 y = k가

서로 다른 세 점에서 만 나려면 오른쪽 그림과 같 이 직선 y=k가 x좌표가 π 인 지점을 지나야 한다. $x=\pi$ 일 때 y의 값은



$$y = \left|\cos \pi + \frac{1}{4}\right| = \left|-1 + \frac{1}{4}\right| = \frac{3}{4}$$

따라서
$$k=\frac{3}{4}$$
이므로 $\alpha=\frac{3}{4}$

$$\therefore 40\alpha = 30$$

12 삼각함수 사이의 관계

 $\log_2 \sin \theta + \log_2 \cos \theta = -4$ 에서

$$\log_2 \sin \theta \cos \theta = -4$$

$$\sin\theta\cos\theta=2^{-4}=\frac{1}{16}$$

$$\log_2(\sin\theta + \cos\theta) = \frac{1}{2}(\log_2 x - 4)$$
에서

$$2\log_2(\sin\theta+\cos\theta)=\log_2x-\log_22^4$$

$$\log_2(\sin\theta + \cos\theta)^2 = \log_2 x - \log_2 16$$

$$\log_2(\sin^2\theta + 2\sin\theta\cos\theta + \cos^2\theta) = \log_2\frac{x}{16}$$

$$\log_2\left(1+2\times\frac{1}{16}\right) = \log_2\frac{x}{16}$$

$$\frac{9}{8} = \frac{x}{16}$$
 : $x = 18$

13 삼각함수의 미정계수 구하기

주어진 함수의 주기는 $\frac{2}{3}\pi - \left(-\frac{\pi}{3}\right) = \pi$ 이고 a > 0이므로

$$\frac{2\pi}{a} = \pi$$
 $\therefore a = 2$

즉, 주어진 함수의 식은 $y = \cos 2(x+b) + 1$ 이므로 이함수의 그래프는 $y = \cos 2x$ 의 그래프를 x축의 방향으로 -b만큼, y축의 방향으로 1만큼 평행이동한 것이다.

이때 $0 < b < \pi$ 에서 $-\pi < -b < 0$ 이므로

$$-b = -\frac{\pi}{3}$$
 $\therefore b = \frac{\pi}{3}$

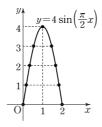
$$\therefore ab = \frac{2}{3}\pi$$

14 삼각함수의 그래프

주어진 함수의 주기는 $\frac{2\pi}{\frac{\pi}{2}} = 4$ 이 $\frac{y}{4} = \sin\left(\frac{\pi}{2}x\right)$

므로 그 그래프는 오른쪽 그림과 같다.

이때 y좌표가 정수인 점의 개수는 9이다.



15 삼각함수의 활용

용수철에 질량이 144 g인 추를 매달아 아래쪽으로 10 cm 만큼 잡아당겼다가 놓은 지 2초가 지난 후의 추의 높이를 h_1 cm라고 하면

$$h_1 = 20 - 10\cos\frac{2\pi \times 2}{\sqrt{144}} = 20 - 10\cos\frac{\pi}{3}$$
$$= 20 - 10 \times \frac{1}{2} = 15$$

용수철에 질량이 a g인 추를 매달아 아래쪽으로 $5\sqrt{2}$ cm 만큼 잡아당겼다가 놓은 지 2초가 지난 후의 추의 높이를 h_2 cm라고 하면

$$h_2 = 20 - 5\sqrt{2}\cos\frac{2\pi \times 2}{\sqrt{a}} = 20 - 5\sqrt{2}\cos\frac{4\pi}{\sqrt{a}}$$

$$h_1 = h_2$$
이므로 $15 = 20 - 5\sqrt{2}\cos\frac{4\pi}{\sqrt{a}}$

$$5\sqrt{2}\cos\frac{4\pi}{\sqrt{a}} = 5$$
 $\therefore \cos\frac{4\pi}{\sqrt{a}} = \frac{1}{\sqrt{2}}$

이때
$$a \ge 100$$
이므로 $0 < \frac{4\pi}{\sqrt{a}} \le \frac{4\pi}{\sqrt{100}} = \frac{2}{5}\pi$

따라서
$$\cos\frac{4\pi}{\sqrt{a}} = \frac{1}{\sqrt{2}}$$
에서 $\frac{4\pi}{\sqrt{a}} = \frac{\pi}{4}$
 $\sqrt{a} = 16$ $\therefore a = 256$

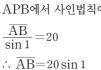
16 부채꼴의 호의 길이

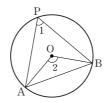
원의 넓이가 100π 이므로 반지름의 길이는 10이다. 또. 호 AB의 길이는 반지름의 길이의 2배이므로

$$10\theta = 20$$
 $\therefore \theta = 2$

오른쪽 그림과 같이 원 위의 한 점 을 P라고 하면 ∠APB=1이므로

△APB에서 사인법칙에 의하여



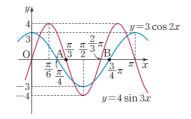


17 삼각형의 넓이

$$\triangle$$
OAB에서 \angle AOB $=2\pi \times \frac{1}{8} = \frac{\pi}{4}$ 이므로
$$\triangle OCB = \frac{1}{2} \sin \frac{3}{4} \pi = \frac{1}{2} \sin \frac{\pi}{4} = \triangle OCD$$
$$\therefore \Box ABCD = 3\triangle OCD - \triangle OCB = 2\triangle OCD$$
$$= 2 \times \frac{1}{2} \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}$$

18 삼각함수의 그래프

두 함수 $y=4\sin 3x$, $y=3\cos 2x$ 의 그래프는 다음 그림과 같으므로 $A\left(\frac{\pi}{3},\ 0\right)$, $B\left(\frac{3}{4}\pi,\ 0\right)$



 $\triangle ABP에서 \overline{AB} = \frac{3}{4}\pi - \frac{\pi}{3} = \frac{5}{12}\pi$ 로 일정하므로

 $\triangle ABP$ 의 넓이가 최대가 되려면 점 P의 y좌표의 절댓값 이 최대이어야 한다.

이때 점 P는 함수 $y=4\sin 3x$ 의 그래프 위의 점이므로 점 P의 y좌표의 절댓값의 최댓값은 4이다.

따라서 △ABP의 넓이의 최댓값은

$$\frac{1}{2} \times \frac{5}{12} \pi \times 4 = \frac{5}{6} \pi$$

19 사인법칙과 코사인법칙

□ABCD가 원에 내접하므로 $\angle BCD = \theta(0 < \theta < \pi)$ 라고 하면 $\angle BAD = \pi - \theta$

△ABD에서 코사인법칙에 의하여 $\overline{BD}^2 = 2^2 + 10^2 - 2 \times 2 \times 10$

$$\times \cos(\pi - \theta)$$
= 2² + 10² - 2 × 2 × 10 × \cos \theta
= 2² + 10² - 2 × 2 × 10 × \frac{3}{5} = 128

 $\therefore \overline{BD} = 8\sqrt{2}$

이때 $\sin \theta = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \frac{4}{5}$ 이고, \triangle BCD의 외접원의 반지름의 길이를 *R*라고 하면 사인법칙에 의하여

$$\frac{8\sqrt{2}}{\sin\theta} = 2R$$

$$\therefore R = \frac{1}{2} \times \frac{8\sqrt{2}}{\sin \theta} = 5\sqrt{2}$$

따라서 외접원의 넓이는 $(5\sqrt{2})^2\pi=50\pi$ 이므로 a=50

20 삼각형의 넓이의 활용

△ABC에서 코사인법칙에 의하여

$$\cos A = \frac{6^2 + 5^2 - 4^2}{2 \times 6 \times 5} = \frac{3}{4}$$

이므로
$$\sin A = \sqrt{1 - \left(\frac{3}{4}\right)^2} = \frac{\sqrt{7}}{4}$$

△ABC의 넓이는

$$\frac{1}{2} \times 6 \times 5 \times \sin A = \frac{1}{2} \times 6 \times 5 \times \frac{\sqrt{7}}{4} = \frac{15\sqrt{7}}{4}$$

 $\overline{\mathrm{PF}} = x$ 라고 하면

 $\triangle ABC = \triangle ABP + \triangle BCP + \triangle CAP$ 이므로

$$\frac{15\sqrt{7}}{4} = \frac{1}{2} \times 6 \times x + \frac{1}{2} \times 4 \times \sqrt{7} + \frac{1}{2} \times 5 \times \frac{\sqrt{7}}{2}$$

$$\frac{15\sqrt{7}}{4} = 3x + \frac{13\sqrt{7}}{4}$$
 $\therefore x = \frac{\sqrt{7}}{6}$

이때 $\square AFDE에서 \triangle FPE = 180^{\circ} - \angle FAE$ 이므로

△EFP의 넓이는

$$\frac{1}{2} \times \frac{\sqrt{7}}{6} \times \frac{\sqrt{7}}{2} \times \sin\left(\pi - A\right)$$

$$= \frac{1}{2} \times \frac{\sqrt{7}}{6} \times \frac{\sqrt{7}}{2} \times \sin A$$

$$=\frac{1}{2} \times \frac{\sqrt{7}}{6} \times \frac{\sqrt{7}}{2} \times \frac{\sqrt{7}}{4} = \frac{7}{96} \sqrt{7}$$

따라서 p=96, q=7이므로 p+q=103

Ⅲ 수열

대단원 기출	모의고사			260~264쪽
				200 2017
정단표 80 % 이상	01 ③	02 ①	03 ①	04 (4)
	•. •	•= •		•••
05 ①	06 ⑤	07 ⑤	08 ①	09 ④
79~60 %	10 ③	11 ②	12 ⑤	13 ②
14 ①	15 19	16 8	17 ②	18 ②
19 ①				
窓口服 60 % 미만	20 200	21 65	22 ①	23 29
24 26				

01 ∑의 성질

$$\sum_{n=1}^{10} (a_n - 1) = \sum_{n=1}^{10} a_n - \sum_{n=1}^{10} 1$$
$$= 20 - 1 \times 10 = 10$$

02 등차수열의 일반항

등차수열 $\{a_{\scriptscriptstyle n}\}$ 의 첫째항을 $a_{\scriptscriptstyle n}$ 공차를 d(d>0)라고 하면

조건 (개)에서
$$a_6 + a_8 = 0$$
이므로

$$(a+5d)+(a+7d)=0$$
 : $a=-6d$

조건 (나)에서
$$|a_6| = |a_7| + 3$$
이므로

$$|a+5d| = |a+6d| + 3$$

①에 a = -6d를 대입하면

$$|-d|=3$$
 $\therefore d=3 \ (\because d>0)$

이때
$$a = -6d = -18$$
이므로

$$a_2 = a + d = -18 + 3 = -15$$

다른 풀이

수열 $\{a_n\}$ 이 등차수열이므로 조건 (개)에서

$$a_7 = \frac{a_6 + a_8}{2} = 0$$

공차가 양수이므로 조건 (네)에서

$$a_6 = -3$$
 $\therefore d = 3$

한편,
$$a_7 - 5d = (a_1 + 6d) - 5d = a_1 + d = a_2$$
이므로

$$a_2 = 0 - 5 \times 3 = -15$$

03 수열의 합과 일반항의 관계

$$S_n = n^2 - 10n$$
에서

(i) n=1일 때.

$$a_1 = S_1 = 1^2 - 10 \times 1 = -9$$

(ii) n≥2일 때.

$$a_n = S_n - S_{n-1}$$

= $(n^2 - 10n) - \{(n-1)^2 - 10(n-1)\}$
= $2n - 11$ (1)

이때 a_1 =-9는 ①에 n=1을 대입한 것과 같으므로 a_n =2n-11

$$a_n < 0$$
에서 $2n - 11 < 0$ $\therefore n < \frac{11}{2}$

따라서 구하는 자연수 *n*의 개수는 1, 2, 3, 4, 5의 5이다.

04 ∑의 성질

$$\sum_{k=1}^{10} (2a_k^2 - a_k) = 2 \sum_{k=1}^{10} a_k^2 - \sum_{k=1}^{10} a_k$$

$$= 2 \times 7 - 3 = 11$$

05 등차수열의 합

$$a_8 - a_6 = (6+7d) - (6+5d) = 2d \qquad \cdots \cdots \textcircled{1}$$

$$S_8 - S_6 = \frac{8(2 \times 6 + 7d)}{2} - \frac{6(2 \times 6 + 5d)}{2}$$

$$= 4(12+7d) - 3(12+5d)$$

$$= 12+13d \qquad \cdots \cdots \textcircled{2}$$

①, ②를
$$\frac{a_8-a_6}{S_8-S_6}$$
=2에 대입하면

$$\frac{2d}{12+13d} = 2 \qquad \therefore d = -1$$

06 수열의 합

$$\sum_{k=1}^{5} \frac{1}{k} = a + \sum_{k=1}^{5} \frac{1}{k+1} \text{ old}$$

$$\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} = a + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6}$$

$$1 = a + \frac{1}{6} \qquad \therefore \quad a = \frac{5}{6}$$

07 수학적 귀납법

(ii) n=k일 때, (*)이 성립한다고 가정하면

$$a_k=2^k+\frac{1}{k}$$
이므로

$$egin{align} ka_{k+1} &= 2ka_k - rac{k+2}{k+1} = 2k\Big(2^k + rac{1}{k}\Big) - rac{k+2}{k+1} \ &= \boxed{k2^{k+1} + 2} - rac{k+2}{k+1} \ &= k2^{k+1} + \boxed{rac{k}{k+1}} \ \end{array}$$

따라서 $a_{k+1} \! = \! 2^{k+1} \! + \! \frac{1}{k\! +\! 1}$ 이므로 $n\! =\! k\! +\! 1$ 일 때도

(*)이 성립한다.

이때
$$f(k) = k2^{k+1} + 2$$
, $g(k) = \frac{k}{k+1}$ 이므로

$$f(3) \times g(4) = (3 \times 2^4 + 2) \times \frac{4}{5} = 50 \times \frac{4}{5} = 40$$

08 등차수열의 합

등차수열 $\{a_n\}$ 의 첫째항을 a, 공차를 d라고 하면 $a_5+a_{13}=3a_9$ 에서

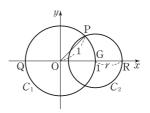
$$(a+4d)+(a+12d)=3(a+8d)$$

 $\therefore a+8d=0$ (1)

$$\begin{split} \sum_{k=1}^{18} a_k &= \frac{9}{2} \text{에서} \\ \sum_{k=1}^{18} a_k &= \frac{18(2a+17d)}{2} \\ &= 18a+153d=18(a+8d)+9d \\ &= 18\times 0+9d=9d=\frac{9}{2} \\ \therefore d &= \frac{1}{2} \\ d &= \frac{1}{2} \stackrel{\triangle}{=} \stackrel{\triangle}{=} \stackrel{\triangle}{=} \stackrel{\triangle}{=} \stackrel{\triangle}{=} \stackrel{\triangle}{=} 12d=-4+12\times \frac{1}{2}=2 \end{split}$$

09 등비중항

 \overline{OP} 는 원 C_1 의 반지름이므로 \overline{OP} =1① 다음 그림과 같이 원 C_2 의 중심을 G라고 하면



$$\overline{OR} = \overline{OG} + \overline{GR} = 1 + r$$
2
 $\overline{QR} = \overline{QG} + \overline{GR} = 2 + r$ 3

①, ②, ③을 ④에 대입하면
$$(1+r)^2 = 1 \times (2+r), \ r^2 + r - 1 = 0$$

$$\therefore \ r = \frac{-1 + \sqrt{5}}{2} \ (\because \ 0 < r < \sqrt{2})$$

10 등비수열의 일반항

등비수열 $\{a_n\}$ 의 첫째항을 a, 공비를 r라고 하면 $a_3 = 4(a_2 - a_1)$ 에서 $ar^2 = 4(ar - a)$ $r^2 - 4r + 4 = 0$ $\therefore r = 2$ $\sum_{k=1}^6 a_k = 15$ 에서 $\frac{a(2^6 - 1)}{2 - 1} = 15, \ 63a = 15$ $\therefore a = \frac{5}{21}$

$$\therefore a_1 + a_3 + a_5 = a + ar^2 + ar^4$$

$$= \frac{5}{21}(1 + 2^2 + 2^4)$$

$$= \frac{5}{21} \times 21 = 5$$

11 수열의 귀납적 정의

주어진 정의에 따라 a_1 부터 순서대로 구하면 a_1 =2는 짝수이므로 a_2 = a_1 -1=2-1=1 a_2 =1은 홀수이므로 a_3 = a_2 +2=1+2=3 a_3 =3은 홀수이므로 a_4 = a_3 +3=3+3=6 a_4 =6은 짝수이므로 a_5 = a_4 -1=6-1=5 a_5 =5는 홀수이므로 a_6 = a_5 +5=5+5=10 a_6 =10은 짝수이므로 a_7 = a_6 -1=10-1=9 따라서 a_7 의 값은 9이다.

12 자연수의 거듭제곱의 합

$$\sum_{k=1}^{5} (k+1)^{2} - \sum_{k=1}^{5} (k^{2}+k) = \sum_{k=1}^{5} (k^{2}+2k+1-k^{2}-k)$$

$$= \sum_{k=1}^{5} k + \sum_{k=1}^{5} 1$$

$$= \frac{5 \times 6}{2} + 5 = 20$$

13 등차수열의 합

이차방정식 $x^2-14x+24=0$ 의 근과 계수의 관계에 의 하여

$$a_3 + a_8 = 14$$

수열 $\{a_n\}$ 이 등차수열이고 a_3 에서 a_8 까지 6개의 항이 있으므로

$$\sum_{n=2}^{8} a_n = \frac{6(a_3 + a_8)}{2} = \frac{6 \times 14}{2} = 42$$

14 자연수의 거듭제곱의 합

사각형 $A_n B_n B_{n+1} A_{n+1}$ 은 사다리꼴이고, 네 꼭짓점의 좌 표는 각각

$$A_n(n^2, n), B_n(n^2, 0), A_{n+1}((n+1)^2, n+1),$$

 $B_{n+1}((n+1)^2, 0)$

이므로

$$\overline{A_nB_n} = n$$
, $\overline{A_{n+1}B_{n+1}} = n+1$, $\overline{B_nB_{n+1}} = 2n+1$
 $\therefore S_n = \frac{1}{2} \{n+(n+1)\}(2n+1) = 2n^2 + 2n + \frac{1}{2}$

$$\sum_{n=1}^{10} S_n = \sum_{n=1}^{10} \left(2n^2 + 2n + \frac{1}{2} \right)$$

$$= 2 \sum_{n=1}^{10} n^2 + 2 \sum_{n=1}^{10} n + \sum_{n=1}^{10} \frac{1}{2}$$

$$= 2 \times \frac{10 \times 11 \times 21}{6} + 2 \times \frac{10 \times 11}{2} + \frac{1}{2} \times 10$$

$$= 770 + 110 + 5 = 885$$

15 등비수열의 일반항

등비수열 $\{a_n\}$ 의 공비를 r라고 하면

$$\begin{split} \frac{a_3}{a_2} - \frac{a_6}{a_4} &= \frac{3r^2}{3r} - \frac{3r^5}{3r^3} = r - r^2 = \frac{1}{4} \\ 4r^2 - 4r + 1 &= 0, \ (2r - 1)^2 = 0 \qquad \therefore \ r = \frac{1}{2} \\ a_5 &= ar^4 = 3 \times \left(\frac{1}{2}\right)^4 = \frac{3}{16} \\ \text{따라서 } p &= 16, \ q = 3$$
이므로

16 수열의 귀납적 정의

p+q=19

 $a_1 = 6 \ge 0$ 이므로 $a_2 = 2 - a_1 = 2 - 6 = -4$ $a_2 < 0$ 이므로 $a_3 = a_2 + p = -4 + p$

(i)
$$a_3 = -4 + p \ge 0$$
, 즉 $p \ge 4$ 일 때
$$a_4 = 2 - a_3 = 2 - (-4 + p) = 6 - p = 0$$
에서 $p = 6$

(ii)
$$a_3 = -4 + p < 0$$
, 즉 $p < 4$ 일 때
$$a_4 = a_3 + p = (-4 + p) + p = -4 + 2p = 0$$
에서 $p = 2$

(i), (ii)에서 a_4 =0이 되도록 하는 모든 실수 p의 값의 합은 6+2=8

17 등비수열의 합

등비수열 $\{a_n\}$ 의 첫째항을 a, 공비를 r라고 하면

$$S_3 = 21$$
 에서 $\frac{a(r^3 - 1)}{r - 1} = 21$ ①

$$S_6 = 189$$
에서 $\frac{a(r^6-1)}{r-1} = 189$

$$\therefore \frac{a(r^3-1)(r^3+1)}{r-1} = 189 \qquad \cdots 2$$

①을 ②에 대입하면

$$21(r^3+1)=189, r^3=8$$
 $\therefore r=2$
 $r=2$ 를 ①에 대입하면

$$\frac{a(8-1)}{2-1} = 21 \qquad \therefore a = 3$$

따라서 $a_n=3\times 2^{n-1}$ 이므로 $a_5=3\times 2^{5-1}=48$

18 등비수열의 합

등비수열 $\{a_n\}$ 의 공비를 r라고 하면 조건 (r)에서

$$S_{12}-S_2=a_3+a_4+\cdots+a_{12}$$

$$=r^2(a_1+a_2+\cdots+a_{10})$$

$$=r^2S_{10}=4S_{10}$$

이므로 $r^2=4$ $\therefore r=2$ 또는 r=-2

조건 (나)에서

$$S_{12} - S_{10} = a_{11} + a_{12}$$

$$= 2r^{10} + 2r^{11}$$

$$= 2r^{10}(1+r) < 0$$

$$\therefore r = -2(\because r^2 = 4 > 0$$
이므로 $1+r < 0)$

따라서 등비수열 $\{a_n\}$ 의 첫째항이 2, 공비가 -2이므로 $a_n=2\times (-2)^{4-1}=-16$

19 등차수열의 합의 응용

조건 (4)에서 두 점 $B(1,\ 0)$ 과 $C(2^m,\ m)$ 을 지나는 직선 의 방정식은

$$y = \frac{m}{2^m - 1}(x - 1) \qquad \dots \dots$$

점 D는 x좌표가 2^n 이고 직선 ① 위의 점이므로 점 D의 y좌표는

$$y = \frac{m}{2^m - 1} (2^n - 1)$$

이때 △ABD의 넓이는

$$\frac{1}{2} \times \overline{AB} \times \overline{AD} = \frac{1}{2} \times (2^{n} - 1) \times \frac{m}{2^{m} - 1} (2^{n} - 1)$$
$$= \frac{m}{2} \times \frac{(2^{n} - 1)^{2}}{2^{m} - 1}$$

이므로 조건 (나)에 의하여

$$\frac{m}{2} \times \frac{(2^n - 1)^2}{2^m - 1} \le \frac{m}{2}, \ \frac{(2^n - 1)^2}{2^m - 1} \le 1 \ (\because m > 0)$$

$$(2^{n}-1)^{2} \le 2^{m}-1 (2^{m}-1>0)$$

(i) n=1일 때, $(2^1-1)^2 \le 2^m-1$ 을 만족시키는 가장 작은 자연수 m이 a,이므로

$$1 \le 2^m - 1, \ 2^m \ge 2$$
 : $a_1 = 1$

(ii) *n*=2일 때, (2²−1)²≤2^{*m*}−1을 만족시키는 가장 작은 자연수 *m*이 *a*,이므로

$$9 \le 2^m - 1, 2^m \ge 10$$
 : $a_2 = 4$

(iii) n=3일 때, (2³-1)²≤2^m-1을 만족시키는 가장 작은 자연수 m이 a₂이므로

$$49 \le 2^m - 1, 2^m \ge 50$$
 : $a_3 = 6$

(iv) n=4일 때, (2⁴-1)²≤2^m-1을 만족시키는 가장 작은 자연수 m이 a₄이므로

$$225 \le 2^m - 1, \ 2^m \ge 226 \qquad \therefore \ a_4 = 8$$
:

 $(i)\sim(iv)$ 에서 $a_1=1$, $a_n=2n$ $(n\geq 2)$

$$\therefore \sum_{n=1}^{10} a_n = a_1 + \sum_{n=2}^{10} 2n = 1 + \left(\sum_{n=1}^{10} 2n - 2\right)$$
$$= \sum_{n=1}^{10} 2n - 1$$
$$= 2 \times \frac{10 \times 11}{2} - 1 = 109$$

20 등차수열의 합의 응용

점 (n, 0)을 지나고 x축에 수직인 직선이 직선 l과 만나는 점의 y좌표가 a_n 이므로 a_n 은 n에 관한 일차식으로 나타낼 수 있다. 즉, 수열 $\{a_n\}$ 은 등차수열이다.

등차수열 $\{a_n\}$ 의 공차를 d라고 하면

$$a_7 - a_4 = (a_1 + 6d) - (a_1 + 3d) = 3d$$
이므로

$$3d = 5 - \frac{7}{2} = \frac{3}{2}$$
 $\therefore d = \frac{1}{2}$

$$\mathbb{E}$$
, $a_1 = a_4 - 3d = \frac{7}{2} - 3 \times \frac{1}{2} = 2$

$$\therefore \sum_{k=1}^{25} a_k = \frac{25\left\{2 \times 2 + (25 - 1) \times \frac{1}{2}\right\}}{2}$$
$$= \frac{25 \times 16}{2} = 200$$

다른 풀0

 $a_4 = \frac{7}{2}$ 이고 $a_7 = 5$ 이므로 직선 l은 두 점 $\left(4, \frac{7}{2}\right)$, (7, 5)를 지난다.

직선 l의 기울기는 $\frac{1}{2}$ 이므로 직선 l의 방정식은

$$y = \frac{1}{2}(x-4) + \frac{7}{2} = \frac{1}{2}x + \frac{3}{2}$$

따라서 점 $(n,\,0)$ 을 지나고 x축에 수직인 직선이 직선 l 과 만나는 점의 y좌표가 a_n 이므로 $a_n = \frac{1}{2}n + \frac{3}{2}$

$$\therefore \sum_{k=1}^{25} a_k = \sum_{k=1}^{25} \left(\frac{1}{2} k + \frac{3}{2} \right)$$
$$= \frac{1}{2} \times \frac{25 \times 26}{2} + \frac{3}{2} \times 25 = 200$$

21 ∑의 성질

$$\sum_{k=6}^{10} a_k = \sum_{k=1}^{10} a_k - \sum_{k=1}^{5} a_k$$
$$= (10^2 - 2 \times 10) - (5^2 - 2 \times 5) = 65$$

$$\sum_{k=1}^{n} a_k = n^2 - 2n$$
에서

(i) n=1일 때.

$$a_1 = S_1 = -1$$

(ii) n≥2일 때,

$$a_n = \sum_{k=1}^{n} a_k - \sum_{k=1}^{n-1} a_k$$

= $(n^2 - 2n) - \{(n-1)^2 - 2(n-1)\}$
= $2n - 3$

이때 $a_1 = -1$ 은 $a_n = 2n - 3$ 에 n = 1을 대입한 것과 같으므로 $a_n = 2n - 3$

수열 $\{a_n\}$ 은 첫째항이 -1이고 공차가 2인 등차수열이므로 a_6 , a_7 , a_8 , a_9 , a_{10} 은 등차수열을 이룬다.

$$\therefore \sum_{k=6}^{10} (2n-3) = \frac{5\{(2\times6-3)+(2\times10-3)\}}{2} = 65$$

22 수열의 귀납적 정의

주어진 정의에 따라 a_1 부터 순서대로 구하면

$$a_1 = \frac{2}{5} \le 1$$
이므로 $a_2 = 2 \times \frac{2}{5} = \frac{4}{5}$

$$a_2 = \frac{4}{5} \le 1$$
이므로 $a_3 = 2 \times \frac{4}{5} = \frac{8}{5}$

$$a_3 = \frac{8}{5} > 1$$
이므로 $a_4 = -\frac{8}{5} + 2 = \frac{2}{5}$

$$a_4 = \frac{2}{5} \le 1$$
이므로 $a_5 = 2 \times \frac{2}{5} = \frac{4}{5}$

따라서 자연수 n에 대하여

$$a_{3n-2} = \frac{2}{5}$$
, $a_{3n-1} = \frac{4}{5}$, $a_{3n} = \frac{8}{5}$

$$\therefore a_4 + a_{17} = a_{3 \times 2 - 2} + a_{3 \times 6 - 1}$$
$$= \frac{2}{5} + \frac{4}{5} = \frac{6}{5}$$

23 등차수열의 일반항

첫째항이 2인 등차수열 $\{a_n\}$ 의 공차를 d라고 하면 수열 $\{a_n\}$ 의 일반항은

$$a_n = 2 + (n-1)d$$

수열 $\{3a_{n+1}-a_n\}$ 은 공차가 6인 등차수열이므로

$$\begin{array}{l} (3a_{n+2}-a_{n+1})-(3a_{n+1}-a_n)\!=\!6\text{old}\\ 3a_{n+2}-4a_{n+1}\!+\!a_n\!=\!6\\ 3\{2\!+\!(n\!+\!1)d\}\!-\!4(2\!+\!nd)\!+\!\{2\!+\!(n\!-\!1)d\}\!=\!6\\ 6\!+\!3nd\!+\!3d\!-\!8\!-\!4nd\!+\!2\!+\!nd\!-\!d\!=\!6\\ 2d\!=\!6 \qquad \therefore d\!=\!3\\ \therefore a_{10}\!=\!2\!+\!(10\!-\!1)\!\times\!3\!=\!29 \end{array}$$

등차수열 $\{a_n\}$ 의 공차를 d라고 하면 n이 1 증가할 때마다 $3a_{n+1}$ 은 3d씩 증가하고 $-a_n$ 은 d씩 감소하므로

수열 $\{3a_{n+1}-a_n\}$ 은 n이 1 증가할 때마다 2d씩 증가한다. 즉, 수열 $\{3a_{n+1}-a_n\}$ 의 공차가 2d이므로

$$2d=6$$
 $\therefore d=3$

$$a_{10}=2+(10-1)\times 3=29$$

24 등차수열의 활용

등차수열 $\{a_n\}$ 의 공차를 d라고 하면 조건 (개)에서

$$a_1+(a_1+d)+(a_1+2d)=159$$

 $\therefore a_1+d=53$ ①

조건 (내)에서

$$(a_m - 2d) + (a_m - d) + a_m = 96$$

$$\therefore a_m - d = 32$$
 ②

①+②를 하면

$$a_1 + a_m = 85$$
 3

또 조건 (나)에서

$$\sum_{k=1}^{m} a_k = \frac{m(a_1 + a_m)}{2} = \frac{m \times 85}{2} = 425$$

$$m = 10$$

③에서
$$a_1+a_m=a_1+a_{10}=a_1+(a_1+9d)=85$$

 $2a_1+9d=85$ ④

①, ④를 연립하여 풀면

$$a_1 = 56, d = -3$$

$$\therefore a_{11} = 56 + 10 \times (-3) = 26$$