정답과 풀이

4주 전	002
3주 전	014
2주 전	-032
1주 전	041

4주전

학교시험에 꼭 나오는 교과서 문제

● 1일차			본문 10~13쪽
01 -1 ③	01 -2 ⑤	02 -1 4	02 -2②
03 -1 ②	03 -2②	04 -1 ②	04 -2 ③
04 -3 4	04 -4 4	05 -1 ②	05 -2 4
06 -1 ③	06 -2 ⑤		

- **01-1** ① 8의 세제곱근을 x라 하면 x^3 =8 x^3 -8=0, $(x-2)(x^2+2x+4)=0$ $\therefore x=2$ 또는 $x=-1\pm\sqrt{3}i$ 즉 2는 8의 세제곱근 중 하나이다.
 - ② -27의 세제곱근을 x라 하면 $x^3 = -27$ $x^3 + 27 = 0$, $(x+3)(x^2 - 3x + 9) = 0$ $3 + 3\sqrt{3}i$

$$\therefore x = -3 \, \text{Fe} \, x = \frac{3 \pm 3\sqrt{3}i}{2}$$

즉 -27의 세제곱근 중 실수인 것은 -3이다.

- ③ 16의 네제곱근을 x라 하면 x^4 =16 x^4 -16=0, $(x^2+4)(x+2)(x-2)=0$ ∴ x=-2 또는 x=2 또는 x=±2i
- ④ n이 2 이상의 <u>홀수</u>일 때, -5의 n제곱근 중 실수인 것은 $\sqrt[n]{-5}$ 로 1개이다.
- ⑤ n이 2 이상의 짝수일 때, 5의 n제곱근 중 실수 인 것은 $\sqrt[n]{5}$, $-\sqrt[n]{5}$ 로 2개이다.

따라서 옳지 않은 것은 ③이다.

Lecture *n*제곱근

n이 2 이상의 정수일 때, 실수 a의 n제곱근 중 실수 인 것은 다음과 같다.

	a>0	a=0	a<0
n이 홀 수	$\sqrt[n]{a}$	0	$\sqrt[n]{a}$
n이 짝수	$\sqrt[n]{a}$, $-\sqrt[n]{a}$	0	없다.

- 01-2 ① -8의 세제곱근을 x라 하면 $x^3=-8$ $x^3+8=0, (x+2)(x^2-2x+4)=0$ $\therefore x=-2$ 또는 $x=1\pm\sqrt{3}i$ 즉 -8의 세제곱근은 3개이다.
 - ② 81의 네제곱근을 x라 하면 x^4 =81 x^4 -81=0, $(x^2+9)(x+3)(x-3)=0$ $\therefore x=-3$ 또는 x=3 또는 $x=\pm 3i$ 즉 81의 네제곱근 중 실수인 것은 -3, 3이다.

- ③ 0의 제곱근은 0이다.
- ④ n이 2 이상의 짝수일 때, -9의 n제곱근 중 실수인 것은 없다.
- ⑤ n이 2 이상의 홀수일 때, 7의 n제곱근 중 실수 인 것은 $\sqrt[n]{7}$ 로 1개이다.

따라서 옳은 것은 ⑤이다.

다른 풀이

02-2
$$\sqrt[3]{a\sqrt{a\sqrt{a}}} = \sqrt[3]{a} \times \sqrt[3]{\sqrt{a}} \times \sqrt[3]{\sqrt{a}}$$

 $= \sqrt[3]{a} \times \sqrt[6]{a} \times \sqrt[12]{a}$
 $= \sqrt[12]{a^4} \times \sqrt[12]{a^2} \times \sqrt[12]{a}$
 $= \sqrt[12]{a^4} \times a^2 \times a$
 $= \sqrt[12]{a^4} \times a^2 \times a$
 $= \sqrt[12]{a^4} \times a^2 \times a$
 $= \sqrt[12]{a^7}$
 $= a^{\frac{7}{12}}$

다른 풀이

$$\sqrt[3]{a\sqrt{a\sqrt{a}}} = \sqrt[3]{a} \times \sqrt[3]{\sqrt{a}} \times \sqrt[3]{\sqrt{a}}$$

$$= \sqrt[3]{a} \times \sqrt[6]{a} \times \sqrt[12]{a}$$

$$= a^{\frac{1}{3}} \times a^{\frac{1}{6}} \times a^{\frac{1}{12}}$$

$$= a^{\frac{1}{3} + \frac{1}{6} + \frac{1}{12}}$$

$$= a^{\frac{7}{12}}$$

03-1
$$\sqrt[4]{9^3} \times \left(\frac{1}{3}\right)^{-\frac{3}{2}} = \sqrt[4]{(3^2)^3} \times 3^{\frac{3}{2}} = \sqrt[4]{3^6} \times 3^{\frac{3}{2}}$$

$$= 3^{\frac{6}{4}} \times 3^{\frac{3}{2}} = 3^{\frac{6}{4} + \frac{3}{2}}$$

$$= 3^3 = 27$$

03-2
$$\sqrt[5]{3} \times 9^{\frac{2}{5}} = 3^{\frac{1}{5}} \times (3^2)^{\frac{2}{5}}$$

= $3^{\frac{1}{5}} \times 3^{\frac{4}{5}} = 3^{\frac{1}{5} + \frac{4}{5}}$
= $3^1 = 3$

04-1
$$\log_2 5 + \log_2 \frac{4}{5} = \log_2 \left(5 \times \frac{4}{5}\right)$$

= $\log_2 4$
= $\log_2 2^2$
= 2

다른 풀이

$$\log_2 5 + \log_2 \frac{4}{5} = \log_2 5 + (\log_2 4 - \log_2 5)$$

$$= \log_2 4 = \log_2 2^2$$

$$= 2$$

04-2
$$\log_3 7 - \log_3 \frac{7}{81} = \log_3 7 - (\log_3 7 - \log_3 81)$$

= $\log_3 7 - \log_3 7 + \log_3 81$
= $\log_3 81 = \log_3 3^4$
= 4

04-3
$$3 \log_3 3 - \log_3 2 + 2 \log_3 \sqrt{18}$$

 $= \log_3 3^3 - \log_3 2 + \log_3 (\sqrt{18})^2$
 $= \log_3 3^3 - \log_3 2 + \log_3 18$
 $= \log_3 \frac{3^3 \times 18}{2} = \log_3 3^5$
 $= 5$

$$04-4 \log_{2} 18 + \log_{2} \frac{8}{3} - 2 \log_{2} \sqrt{3}$$

$$= \log_{2} 18 + \log_{2} \frac{8}{3} - \log_{2} (\sqrt{3})^{2}$$

$$= \log_{2} 18 + \log_{2} \frac{8}{3} - \log_{2} 3$$

$$= \log_{2} \left(18 \times \frac{8}{3} \div 3 \right)$$

$$= \log_{2} \left(18 \times \frac{8}{3} \times \frac{1}{3} \right)$$

$$= \log_{2} 16 = \log_{2} 2^{4}$$

$$= 4$$

05-1 ①
$$\log 48.2 = \log(4.82 \times 10)$$

 $= \log 10 + \log 4.82$
 $= 1 + 0.683$
 $= 1.683$
② $\log 0.482 = \log(4.82 \times 10^{-1})$
 $= \log 10^{-1} + \log 4.82$
 $= -1 + 0.683$
 $= -0.317$
③ $\log 482 = \log(4.82 \times 10^{2})$
 $= \log 10^{2} + \log 4.82$
 $= 2 + 0.683$
 $= 2.683$
④ $\log 0.00482 = \log(4.82 \times 10^{-3})$
 $= \log 10^{-3} + \log 4.82$
 $= -3 + 0.683$

따라서 옳지 않은 것은 ②이다.

05-2 log 10.5=log(1.05×10)
=log 10+log 1.05
=1+0.0212
=1.0212
∴
$$a$$
=1.0212
log 0.0105=log(1.05×10⁻²)
=log 10⁻²+log 1.05
=-2+0.0212
=-1.9788
∴ b =-1.9788
∴ a - b =1.0212-(-1.9788)=3

06-1
$$\log 12 = \log(2^2 \times 3) = \log 2^2 + \log 3$$

= $2 \log 2 + \log 3 = 2 \times 0.3010 + 0.4771$
= 1.0791

06-2
$$\log 4.5 = \log \frac{9}{2} = \log 9 - \log 2 = \log 3^2 - \log 2$$

= $2 \log 3 - \log 2 = 2 \times 0.4771 - 0.3010$
= 0.6532

● 2일차			본문 14~17쪽
01 -1 ③	01-22	02 -1 ⑤	02 -2 ①
03 -18	03 -21	04 -1 ③	04 -2 ①
05 -1 ③	05 -2 ③	06 -1 ③	06 -2②
07 -1 ③	07 -2 4		

01-1
$$f(x)=2^x, g(x)=\sqrt{x}$$
라 하면
$$f(\beta)=g\left(\frac{1}{4}\right)$$
이므로 $2^\beta=\sqrt{\frac{1}{4}}$
$$2^\beta=\frac{1}{2}=2^{-1} \qquad \therefore \beta=-1$$
 또 $f\left(\frac{1}{4}\right)=g(\alpha)$ 이므로 $2^{\frac{1}{4}}=\sqrt{\alpha}$ 위식의 양변을 제곱하면
$$\alpha=\left(2^{\frac{1}{4}}\right)^2=2^{\frac{1}{2}}$$

$$\therefore \alpha^2+\beta^2=\left(2^{\frac{1}{2}}\right)^2+(-1)^2=2+1=3$$

01-2
$$4 = \left(\frac{1}{2}\right)^x$$
에서 $2^{-x} = 2^2$ 이므로 $x = -2$
 $\therefore A(-2,4)$
 $4 = 2^x$ 에서 $2^x = 2^2$ 이므로 $x = 2$
 $\therefore B(2,4)$
 $\therefore \overline{AB} = 2 - (-2) = 4$

02-1 함수 $y=2^x$ 의 그래프를 x축의 방향으로 m만큼, y축의 방향으로 n만큼 평행이동하면 $y-n=2^{x-m}$ $\therefore y=2^{x-m}+n$ 따라서 m=-2, n=4이므로 m+n=-2+4=2

Lecture 도형의 평행이동

방정식 f(x,y)=0이 나타내는 도형을 x축의 방향으로 m만큼, y축의 방향으로 n만큼 평행이동한 도형의 방정식은 방정식 f(x,y)=0에서 x 대신 x-m, y 대신 y-n을 대입하여 구한다.

02-2 함수
$$y=3^x$$
의 그래프를 x 축의 방향으로 m 만큼, y 축의 방향으로 n 만큼 평행이동하면 $y-n=3^{x-m}$ ∴ $y=3^{x-m}+n$ 이때 $y=9\cdot 3^x+5=3^2\cdot 3^x+5=3^{x+2}+5$ 이므로 $m=-2, n=5$ ∴ $m-n=-2-5=-7$

03-1 2>1이므로 함수
$$y=2^{x-1}$$
은 증가함수이다.
따라서 $x=-1$ 일 때 최솟값은 $m=2^{-2}=\frac{1}{4}$
 $x=2$ 일 때 최댓값은 $M=2^{2-1}=2$
 $\therefore \frac{M}{m}=M\div m=2\div \frac{1}{4}=2\cdot 4=8$

03-2
$$0<\frac{1}{3}<1$$
이므로 함수 $y=\left(\frac{1}{3}\right)^{x+1}$ 은 감소함수이다.
따라서 $x=1$ 일 때 최솟값은 $m=\left(\frac{1}{3}\right)^2=\frac{1}{9}$ $x=-3$ 일 때 최댓값은 $M=\left(\frac{1}{3}\right)^{-2}=9$ $\therefore Mm=9\cdot\frac{1}{9}=1$

04-1 $9^{x^2} = 3^{-x+1}$ 에서 $(3^2)^{x^2} = 3^{-x+1}$ $\therefore 3^{2x^2} = 3^{-x+1}$ 즉 $2x^2 = -x + 1$ 이므로 $2x^2 + x - 1 = 0$ (x+1)(2x-1) = 0 $\therefore x = -1$ 또는 $x = \frac{1}{2}$ 따라서 주어진 방정식을 만족시키는 모든 실수 x의 값의 합은 $-1 + \frac{1}{2} = -\frac{1}{2}$

다른 풀이

이차방정식 $2x^2+x-1=0$ 에서 근과 계수의 관계에 의하여 모든 실수 x의 값의 합은 $-\frac{1}{2}$ 이다.

Lecture 이차방정식의 근과 계수의 관계 이차방정식 $ax^2+bx+c=0$ 의 두 근을 α , β 라 할 때 (1) $\alpha+\beta=-\frac{b}{a}$ (2) $\alpha\beta=\frac{c}{a}$

04-2
$$5^{x^2} - 5^{-x+2} = 0$$
에서 $5^{x^2} = 5^{-x+2}$ 즉 $x^2 = -x + 2$ 이므로 $x^2 + x - 2 = 0$ $(x+2)(x-1) = 0$ $\therefore x = -2$ 또는 $x = 1$ 따라서 주어진 방정식을 만족시키는 모든 실수 x 의 값의 곱은 $-2 \cdot 1 = -2$

이차방정식 $x^2 + x - 2 = 0$ 에서 근과 계수의 관계에 의하 여 모든 실수 x의 값의 곱은 $\frac{-2}{1}$ = -2이다.

05-1
$$2^{2x+1}+3\cdot 2^x-2=0$$
에서 $2\cdot (2^x)^2+3\cdot 2^x-2=0$ $2^x=t\ (t>0)$ 라 하면 $2t^2+3t-2=0$ $(2t-1)(t+2)=0$ $\therefore t=\frac{1}{2}\ (\because t>0)$ 즉 $2^x=\frac{1}{2}=2^{-1}$ 이므로 $x=-1$

05-2
$$2^{2x+3}-4\cdot 2^x-4=0$$
에서 $2^3\cdot (2^x)^2-4\cdot 2^x-4=0$ $2^x=t\ (t>0)$ 라 하면 $8t^2-4t-4=0$ $4(2t^2-t-1)=0$ $4(2t+1)(t-1)=0$ $t=1\ (\because t>0)$ 즉 $2^x=1=2^0$ 이므로 $x=0$

쌍둥이 문제

방정식 $3^{2x-1}-2\cdot 3^x-9=0$ 의 해는?

- (1) x = -1 (2) x = 1
- (3) x = 2

- (4) x = 3
- 5x = -1 또는 x = 2

| 풀이 |

$$3^{2x-1} - 2 \cdot 3^x - 9 = 0$$
에서

$$3^{-1} \cdot (3^x)^2 - 2 \cdot 3^x - 9 = 0$$

$$3^{x}=t(t>0)$$
라 하면 $\frac{1}{3}t^{2}-2t-9=0$

$$\frac{1}{3}(t^2-6t-27)=0$$

$$\frac{1}{3}(t+3)(t-9)=0$$
 : $t=9$ (: $t>0$)

즉
$$3^x = 9 = 3^2$$
이 므로 $x = 2$

P(3)

06-1
$$\left(\frac{1}{10}\right)^{x+1} < \left(\frac{1}{100}\right)^{x}$$
에서 $\left(\frac{1}{10}\right)^{x+1} < \left(\frac{1}{10}\right)^{2x}$ 이때 밑 $\frac{1}{10}$ 은 1보다 작으므로 $x+1 > 2x$ $\therefore x < 1$

06-2
$$\frac{1}{8} < 2^{-x} \le 16$$
에서 $\frac{1}{8} = 2^{-3}$, $16 = 2^4$ 이므로 $2^{-3} < 2^{-x} \le 2^4$ 이때 밑 2는 1보다 크므로 $-3 < -x \le 4$ $\therefore -4 < x < 3$

07-1
$$4^x + 2^{x+1} > 8$$
에서 $(2^x)^2 + 2 \cdot 2^x - 8 > 0$
 $2^x = t \ (t > 0)$ 라 하면 $t^2 + 2t - 8 > 0$
 $(t+4)(t-2) > 0$ $\therefore t < -4$ 또는 $t > 2$
그런데 $t > 0$ 이므로 $t > 2$
즉 $2^x > 2$ 이고 밑 2 는 1 보다 크므로 $x > 1$

07-2
$$16^x - 5 \cdot 4^x + 4 < 0$$
에서 $(4^x)^2 - 5 \cdot 4^x + 4 < 0$
 $4^x = t \ (t > 0)$ 라 하면 $t^2 - 5t + 4 < 0$
 $(t - 1)(t - 4) < 0$ $\therefore 1 < t < 4$
즉 $1 < 4^x < 4$ 에서 $4^0 < 4^x < 4^1$ 이고 밑 4는 1보다
크므로
 $0 < x < 1$

01-1
$$f(4) = \log_4 4 + a \log_4 16$$

 $= \log_4 4 + a \log_4 4^2$
 $= 1 + 2a$
 $f(64) = \log_4 64 + a \log_{64} 16$
 $= \log_4 4^3 + a \log_{4^3} 4^2$
 $= 3 + \frac{2}{3}a$
이때 $f(4) = f(64)$ 이므로 $1 + 2a = 3 + \frac{2}{3}a$
 $\frac{4}{3}a = 2$ $\therefore a = \frac{3}{2}$

01-2
$$(g \circ f)(x) = g(f(x)) = \log_5 \left(\frac{1}{5}\right)^x$$

= $\log_5 5^{-x} = -x$
 $\therefore (g \circ f)(9) = -9$

Lecture 합성함수의 함숫값

두 함수 f,g에 대하여 $(g\circ f)(a)$ 의 값 $\Leftrightarrow (g\circ f)(a) = g(f(a))$ 이므로 f(a)의 값을 구하여 g(x)의 x에 대입한다.

- 02-1 함수 y=log₂ x의 그래프를 x축의 방향으로 m만큼, y축의 방향으로 n만큼 평행이동하면 y-n=log₂(x-m)
 ∴ y=log₂(x-m)+n
 따라서 m=-3, n=-4이므로 m+n=-3+(-4)=-7
- 02-2 함수 y=log⅓x의 그래프를 x축의 방향으로 -2 만큼, y축의 방향으로 3만큼 평행이동하면 y-3=log⅓{x-(-2)}
 ∴ y=log⅓(x+2)+3
 이 그래프가 점 (7, k)를 지나므로 k=log⅓9+3=log₃¹3²+3=-2+3=1
- 03-1 $0 < \frac{1}{2} < 1$ 이므로 함수 $y = \log_{\frac{1}{2}}(x-1) 2$ 는 감소함수이다. 따라서 x = 9일 때 최솟값은 $m = \log_{\frac{1}{2}}8 2 = \log_{2^{-1}}2^3 2 = -3 2 = -5$ x = 3일 때 최댓값은 $M = \log_{\frac{1}{2}}2 2 = \log_{2^{-1}}2 2 = -1 2 = -3$ $\therefore Mm = -3 \cdot (-5) = 15$
- 03-2 2>1이므로 함수 $y=\log_2(x+1)-2$ 는 증가함수이다. 따라서

$$x=1$$
일 때 최솟값은 $m=\log_2 2-2=1-2=-1$ $x=7$ 일 때 최댓값은 $M=\log_2 8-2=\log_2 2^3-2=3-2=1$ $\therefore M+m=1+(-1)=0$

- **04-1** 진수의 조건에서 2x+1>0, x+2>0 $\therefore x>-\frac{1}{2}$ \bigcirc 밑이 같으므로 2x+1=x+2 $\therefore x=1$ 따라서 \bigcirc 에 의하여 구하는 해는 x=1
- 04-2 진수의 조건에서 $x^2-2x+3>0$ 이때 $x^2-2x+3=(x-1)^2+2>0$ 이므로 부등식 $x^2-2x+3>0$ 은 모든 실수 x에 대하여 항상 성립 한다. $\log_3(x^2-2x+3)=1$ 에서 $\log_3(x^2-2x+3)=\log_3 3$ 밑이 같으므로 $x^2-2x+3=3$ 에서 $x^2-2x=0$ x(x-2)=0 $\therefore x=0$ 또는 x=2 따라서 주어진 방정식의 모든 해의 합은 0+2=2
- 05-1 진수의 조건에서 x>0 ······ \bigcirc $\log_2 x = t$ 라 하면 $t^2 t 2 = 0$ (t+1)(t-2) = 0 $\therefore t = -1$ 또는 t = 2 t = -1일 때, $\log_2 x = -1$ 에서 $x = 2^{-1} = \frac{1}{2}$ t = 2일 때, $\log_2 x = 2$ 에서 $x = 2^2 = 4$ 따라서 \bigcirc 에 의하여 구하는 해는 $x = \frac{1}{2}$ 또는 x = 4
- **05-2** 진수의 조건에서 x>0, $x^2>0$ 이므로 x>0 ······ \bigcirc $(\log_2 x)^2 \log_2 x^2 3 = 0$ 에서 $(\log_2 x)^2 2\log_2 x 3 = 0$

$$\log_2 x = t$$
라 하면 $t^2 - 2t - 3 = 0$ $(t+1)(t-3) = 0$ $\therefore t = -1$ 또는 $t = 3$ $t = -1$ 일 때, $\log_2 x = -1$ 에서 $x = 2^{-1} = \frac{1}{2}$ $t = 3$ 일 때, $\log_2 x = 3$ 에서 $x = 2^3 = 8$ 따라서 ①에 의하여 구하는 해는 $x = \frac{1}{2}$ 또는 $x = 8$

쌍둥이 문제

방정식 $(\log_5 x)^2 - 5\log_5 x + 6 = 0$ 의 해를 구하시오.

풀이 ----

진수의 조건에서 x>0 ····· ① $\log_5 x = t$ 라 하면 $t^2 - 5t + 6 = 0$ (t-2)(t-3) = 0 $\therefore t = 2$ 또는 t = 3 t = 2일 때, $\log_5 x = 2$ 에서 $x = 5^2 = 25$ t = 3일 때, $\log_5 x = 3$ 에서 $x = 5^3 = 125$ 따라서 ①에 의하여 구하는 해는 x = 25 또는 x = 125

B x=25 또는 x=125

- 06-1 진수의 조건에서 x-5>0+, x-3>0 $\therefore x>5$ \bigcirc $2\log_{\frac{1}{3}}(x-5)>\log_{\frac{1}{3}}(x-3)$ 에서 $\log_{\frac{1}{3}}(x-5)^2>\log_{\frac{1}{3}}(x-3)$ 이때 밑 $\frac{1}{3}$ 은 $0<\frac{1}{3}<1$ 이므로 $(x-5)^2< x-3$ $x^2-10x+25< x-3$, $x^2-11x+28<0$ (x-4)(x-7)<0 $\therefore 4< x<7$ \bigcirc \bigcirc , \bigcirc 의 공통 범위를 구하면 5< x<7따라서 주어진 부등식의 해 중에서 정수인 것은 6 이다.

- $_{\bigcirc}$, $_{\bigcirc}$ 의 공통 범위를 구하면 2< x<3 따라서 a=2,b=3이므로 a+b=2+3=5
- 07-1 진수의 조건에서 x>0, $x^3>0$ x>0 x>0
- **07-2** 진수의 조건에서 4x>0, 8x>0 $\therefore x > 0 \qquad \cdots \bigcirc$ $\log_{\frac{1}{2}} 4x \times \log_{\frac{1}{2}} 8x \le 12$ 에서 $(\log_{\frac{1}{2}}x + \log_{\frac{1}{2}}4)(\log_{\frac{1}{2}}x + \log_{\frac{1}{2}}8) \le 12$ $(\log_{\frac{1}{2}}x + \log_{2^{-1}}2^2)(\log_{\frac{1}{2}}x + \log_{2^{-1}}2^3) \le 12$ $(\log_{\frac{1}{2}}x-2)(\log_{\frac{1}{2}}x-3) \le 12$ $\log_{\frac{1}{2}}x = t$ 라 하면 $(t-2)(t-3) \le 12$ $t^2 - 5t + 6 \le 12$, $t^2 - 5t - 6 \le 0$ $(t+1)(t-6) \le 0$: $-1 \le t \le 6$ 즉 $-1 \le \log_{\frac{1}{2}} x \le 6$ 이므로 $\log_{\frac{1}{2}} 2 \le \log_{\frac{1}{2}} x \le \log_{\frac{1}{2}} \frac{1}{64}$ 이때 밑 $\frac{1}{2}$ 은 $0 < \frac{1}{2} < 1$ 이므로 $\frac{1}{64} \le x \le 2$ ①, ⓒ의 공통 범위를 구하면 $\frac{1}{64} \le x \le 2$ 따라서 $a = \frac{1}{64}, b = 2$ 이므로 $ab = \frac{1}{64} \cdot 2 = \frac{1}{32}$

● 4일차 본문 22~25쪽

01 -1 ①	01 -2②	02 -1 ③	02 -2 ⑤
03 -1 ③	03 -2 ⑤	04 -1 π	04 -2 $\frac{4}{3}\pi$
05 -1 $\frac{12}{13}$	05 -2 -7	06-1 제2사	분면
06- 2 제3사부면		07 -1 (5)	07 -2 4

01-1 (1)
$$-240^{\circ} = 360^{\circ} \times (-1) + 120^{\circ}$$

$$(2)$$
 $-60^{\circ} = 360^{\circ} \times (-1) + 300^{\circ}$

$$3160^{\circ} = 360^{\circ} \times 0 + 160^{\circ}$$

$$420^{\circ} = 360^{\circ} \times 1 + 60^{\circ}$$

$$(5)600^{\circ} = 360^{\circ} \times 1 + 240^{\circ}$$

따라서 각을 나타내는 동경이 120°를 나타내는 동경과 일치하는 것은 ①이다.

오답 피하기

 $360^{\circ} \times n + a^{\circ}$ (n은 정수)에서 a° 는 보통 $0^{\circ} \le a^{\circ} < 360^{\circ}$ 인 것을 택한다.

01-2 (1)
$$-280^{\circ} = 360^{\circ} \times (-1) + 80^{\circ}$$

$$(2) -100^{\circ} = 360^{\circ} \times (-1) + 260^{\circ}$$

$$(3)440^{\circ} = 360^{\circ} \times 1 + 80^{\circ}$$

$$400^{\circ} = 360^{\circ} \times 2 + 80^{\circ}$$

$$(5)$$
 1160° = 360° \times 3+80°

따라서 각을 나타내는 동경이 나머지 넷과 다른 하나는 ②이다.

02-1 ① 120°는 제2사분면의 각이다.

- ② 160°는 제2사분면의 각이다.
- ③ 200°는 제3사분면의 각이다.
- ④ 495°=360°×1+135°이므로 제2사분면의 각 이다.
- ⑤ $510^{\circ} = 360^{\circ} \times 1 + 150^{\circ}$ 이므로 제2사분면의 각이다.

따라서 각을 나타내는 동경이 나머지 넷과 다른 사분면에 속하는 것은 ③이다.

- ② −80°=360°×(−1)+280°이므로 제4사분 면의 각이다.
- ③ 70°는 제1사분면의 각이다.
- ④ 130°는 제2사분면의 각이다.
- ⑤ $580^{\circ} = 360^{\circ} \times 1 + 220^{\circ}$ 이므로 제3사분면의 각이다.

따라서 제3사분면의 각은 ⑤이다.

03-1 ①
$$36^{\circ} = 36 \times \frac{\pi}{180} = \frac{\pi}{5}$$

$$2\frac{3}{5}\pi = \frac{3}{5}\pi \times \frac{180^{\circ}}{\pi} = 108^{\circ}$$

$$3210^{\circ} = 210 \times \frac{\pi}{180} = \frac{7}{6}\pi$$

$$(4)240^{\circ} = 240 \times \frac{\pi}{180} = \frac{4}{3}\pi$$

$$5\frac{8}{3}\pi = \frac{8}{3}\pi \times \frac{180^{\circ}}{\pi} = 480^{\circ}$$

따라서 옳지 않은 것은 ③이다.

03-2 ①
$$30^{\circ} = 30 \times \frac{\pi}{180} = \frac{\pi}{6}$$

$$2\frac{5}{18}\pi = \frac{5}{18}\pi \times \frac{180^{\circ}}{\pi} = 50^{\circ}$$

$$3150^{\circ} = 150 \times \frac{\pi}{180} = \frac{5}{6}\pi$$

$$4270^{\circ} = 270 \times \frac{\pi}{180} = \frac{3}{2}\pi$$

$$(5)\frac{7}{3}\pi = \frac{7}{3}\pi \times \frac{180^{\circ}}{\pi} = 420^{\circ}$$

따라서 옳지 않은 것은 ⑤이다.

04-1 부채꼴의 중심각의 크기를
$$\theta$$
라 하면 $6\theta = 6\pi$ $\therefore \theta = \pi$

04-2 부채꼴의 중심각의 크기를
$$\theta$$
라 하면

$$\frac{1}{2} \cdot 3^2 \cdot \theta = 6\pi$$
이므로 $\frac{9}{2}\theta = 6\pi$

$$\theta = \frac{4}{3}\pi$$

05-1
$$\overline{OP} = \sqrt{(-5)^2 + 12^2} = \sqrt{169} = 13$$
이므로 $\sin \theta = \frac{12}{\overline{OP}} = \frac{12}{13}$

05-2
$$\overline{OP} = \sqrt{12^2 + 5^2} = \sqrt{169} = 13$$
이므로 $\sin \theta = \frac{5}{\overline{OP}} = \frac{5}{13}, \cos \theta = \frac{12}{\overline{OP}} = \frac{12}{13}$

$$\therefore 13(\sin \theta - \cos \theta) = 13\left(\frac{5}{13} - \frac{12}{13}\right) = -7$$

- **06-1** $\sin\theta > 0$ 에서 각 θ 는 제1사분면 또는 제2사분면 의 각이다. $\tan\theta < 0$ 에서 각 θ 는 제2사분면 또는 제4사분면 의 각이다. 따라서 각 θ 는 제2사분면의 각이다.
- 06-2 $\cos \theta < 0$ 에서 각 θ 는 제2사분면 또는 제3사분면 의 각이다. $\tan \theta > 0$ 에서 각 θ 는 제1사분면 또는 제3사분면 의 각이다. 따라서 각 θ 는 제3사분면의 각이다.

07-1
$$\sin^2\theta + \cos^2\theta = 1$$
에서 $\sin^2\theta = 1 - \cos^2\theta = 1 - \left(-\frac{1}{2}\right)^2 = \frac{3}{4}$ 이때 θ 가 제3사분면의 각이므로 $\sin\theta < 0$ $\therefore \sin\theta = -\frac{\sqrt{3}}{2}$ 또 $\tan\theta = \frac{\sin\theta}{\cos\theta} = \frac{-\frac{\sqrt{3}}{2}}{-\frac{1}{2}} = \sqrt{3}$ $\therefore \sin\theta + \tan\theta = -\frac{\sqrt{3}}{2} + \sqrt{3}$ $= \frac{\sqrt{3}}{2}$

07-2
$$\sin^2 \theta + \cos^2 \theta = 1$$
의 양변을 $\cos^2 \theta$ 로 나누면 $\tan^2 \theta + 1 = \frac{1}{\cos^2 \theta}$ $\frac{1}{\cos^2 \theta} = \left(-\frac{4}{3}\right)^2 + 1 = \frac{25}{9}$ $\cos^2 \theta = \frac{9}{25}$ 이때 $\frac{3}{2}\pi < \theta < 2\pi$ 이므로 $\cos \theta > 0$ $\cos \theta = \frac{3}{5}$

08-1
$$\sin \theta + \cos \theta = \frac{\sqrt{3}}{2}$$
의 양변을 제곱하면
$$\sin^2 \theta + 2 \sin \theta \cos \theta + \cos^2 \theta = \frac{3}{4}$$

$$1 + 2 \sin \theta \cos \theta = \frac{3}{4} \qquad \therefore \sin \theta \cos \theta = -\frac{1}{8}$$

$$\therefore \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} = \frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta \cos \theta}$$

$$= \frac{1}{-\frac{1}{8}} = -8$$

08-2
$$\sin \theta + \cos \theta = \frac{1}{2}$$
의 양변을 제곱하면 $\sin^2 \theta + 2 \sin \theta \cos \theta + \cos^2 \theta = \frac{1}{4}$
 $1 + 2 \sin \theta \cos \theta = \frac{1}{4}$ $\therefore \sin \theta \cos \theta = -\frac{3}{8}$
 $\therefore \sin^3 \theta + \cos^3 \theta$
 $= (\sin \theta + \cos \theta)$
 $\cdot (\sin^2 \theta - \sin \theta \cos \theta + \cos^2 \theta)$
 $= \frac{1}{2} \left\{ 1 - \left(-\frac{3}{8} \right) \right\}$
 $= \frac{1}{2} \cdot \frac{11}{8} = \frac{11}{16}$

● 5일차			본문 26~29쪽
01 -1 4	01 -2 ③	02 -1 4	02 -2 ⑤
03 -1 ⑤	03 -2 ②	04-1 $\frac{1}{2}$	04-2 $-\frac{3}{2}$
04 -3 ②	04 -4 ②	05 -1 4	05 -2③
06-1 $\frac{1}{2}$	06 -2 $\frac{3}{2}\pi$		

01-1 ①
$$f\left(\frac{\pi}{6}\right) = \sin\frac{\pi}{6} = \frac{1}{2}$$

- ② 함수 f(x)의 주기가 2π 이므로 $f(x+2\pi)=f(x)$
- ③ 함수 f(x)의 치역은 $\{f(x) | -1 \le f(x) \le 1\}$ 이므로 함수 f(x)의 최솟값은 -1이다.
- ④, ⑤ 함수 y=f(x)의 그래프는 원점에 대하여 대칭이므로

$$f\left(\frac{\pi}{2} - x\right) = f\left(-\left(x - \frac{\pi}{2}\right)\right) = -f\left(x - \frac{\pi}{2}\right)$$

따라서 옳지 않은 것은 ④이다.

오답 피하기

함수 y=f(x)의 그래프가 원점에 대하여 대칭이면 f(-x) = -f(x)

- **01-2** ① $f\left(\frac{\pi}{3}\right) = \cos\frac{\pi}{3} = \frac{1}{2}$
 - ② 함수 f(x)의 주기가 2π 이므로 $f(x-2\pi)=f(x)$
 - ③ 함수 f(x)의 치역은 $\{f(x) | -1 \le f(x) \le 1\}$ 이므로 함수 f(x)의 최댓값은 1이다.
 - ④. ⑤ 함수 y=f(x)의 그래프는 y축에 대하여 대 칭이므로

$$f\left(\frac{\pi}{2} - x\right) = f\left(-\left(x - \frac{\pi}{2}\right)\right) = f\left(x - \frac{\pi}{2}\right)$$

따라서 옳지 않은 것은 ③이다.

오답 피하기

함수 y = f(x)의 그래프가 y축에 대하여 대칭이면 f(-x) = f(x)

- 02-1 각각의 함수의 주기는 다음과 같다.

$$22\pi$$
 $3\frac{\pi}{|2|} = \frac{\pi}{2}$

$$4\frac{2\pi}{|2|} = 7$$

$$4\frac{2\pi}{|2|} = \pi$$
 $5\frac{2\pi}{\left|\frac{1}{2}\right|} = 4\pi$

따라서 주기가 π 인 함수는 ④이다.

- 02-2 각각의 함수의 주기는 다음과 같다.
 - $\bigcirc 2\pi$

$$2\frac{2\pi}{|4|} = \frac{\pi}{2}$$

- $3\frac{\pi}{|2|} = \frac{\pi}{2}$ $4\frac{2\pi}{|2|} = \pi$
- $\boxed{5} \frac{2\pi}{\left|\frac{1}{2}\right|} = 4\pi$

따라서 주기가 4π인 함수는 ⑤이다.

- **03-1** ① 주기는 π 이다.
 - ② 최댓값과 최솟값은 없다
 - ③ 정의역은 $n\pi + \frac{\pi}{2}(n$ 은 정수)를 제외한 실수 전 체의 집합이다.
 - ④ 그래프는 원점에 대하여 대칭이다. 따라서 옳은 것은 ⑤이다.
- 03-2 ① 치역은 실수 전체의 집합이다.
 - ② 주기는 $\frac{\pi}{\left|\frac{1}{2}\right|} = 3\pi$ 이므로 $f(x+3\pi) = f(x)$
 - ③ 그래프는 워점에 대하여 대칭이다
 - ④ $\frac{x}{3} = n\pi + \frac{\pi}{2}$ 에서 $x = 3n\pi + \frac{3}{2}\pi$ (n은 정수)
 - ⑤ 함수 $y=2\tan\left(-\frac{x}{3}\right)$ 의 그래프와 y축에 대하 여 대칭이다

따라서 옳은 것은 ②이다.

04-1 $\sin \frac{49}{6} \pi = \sin \left(8\pi + \frac{\pi}{6} \right) = \sin \frac{\pi}{6} = \frac{1}{2}$

Lecture 삼각함수의 각 변환하기

- (1) $\frac{n}{2}\pi \pm \theta$ (n은 정수)가 속한 사분면에서 삼각함수 의 부호가 양이면 '+', 음이면 '-'를 붙인다. $(단, \theta)$ 는 예각으로 생각한다.)
- $(2)\frac{n}{2}\pi\pm\theta$ 에서 n이 짝수이면 그대로, n이 홀수이면 $\sin \to \cos, \cos \to \sin, \tan \to \frac{1}{\tan}$ 로 바꾼다.

04-2
$$\sin\left(-\frac{7}{3}\pi\right) = -\sin\frac{7}{3}\pi = -\sin\left(2\pi + \frac{\pi}{3}\right)$$

= $-\sin\frac{\pi}{3} = -\frac{\sqrt{3}}{2}$

$$\tan\frac{4}{3}\pi = \tan\left(\pi + \frac{\pi}{3}\right) = \tan\frac{\pi}{3} = \sqrt{3}$$
$$\therefore \sin\left(-\frac{7}{3}\pi\right)\tan\frac{4}{3}\pi = -\frac{\sqrt{3}}{2}\cdot\sqrt{3} = -\frac{3}{2}$$

04-3
$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$$
, $\cos(4\pi + \theta) = \cos\theta$
 $\cos\left(\frac{3}{2}\pi - \theta\right) = -\sin\theta$, $\sin(\pi - \theta) = \sin\theta$
 \therefore (주어진 식) = $\frac{1 + \cos\theta}{1 + \cos\theta} \times \frac{1 - \sin\theta}{1 - \sin\theta} = 1$

04-4
$$\cos\left(\frac{3}{2}\pi + \theta\right) = \sin\theta, \cos(\pi - \theta) = -\cos\theta$$
 $\cos\left(\frac{3}{2}\pi - \theta\right) = -\sin\theta, \sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$

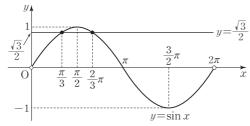
$$\therefore (주어진 심) = \frac{\sin\theta}{1 - \cos\theta} \times \frac{-\sin\theta}{1 + \cos\theta}$$

$$= \frac{-\sin^2\theta}{1 - \cos^2\theta}$$

$$= \frac{-\sin^2\theta}{\sin^2\theta}$$

$$= -1$$

05-1 $2 \sin x - \sqrt{3} = 0$ 에서 $\sin x = \frac{\sqrt{3}}{2}$ $0 < x < 2\pi$ 일 때, 함수 $y = \sin x$ 의 그래프와 직선 $y = \frac{\sqrt{3}}{2}$ 은 다음 그림과 같으므로 교점의 x좌표는 $\frac{\pi}{3}, \frac{2}{3}\pi$ 이다.

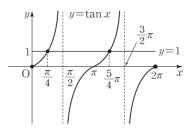


따라서 구하는 방정식의 해는 $x=\frac{\pi}{3}$ 또는 $x=\frac{2}{3}\pi$ $\therefore \frac{\pi}{3}+\frac{2}{3}\pi=\pi$

05-2 $\cos x \neq 0$ 일 때, 양변을 $\cos x$ 로 나누면

$$\frac{\sin x}{\cos x} = 1$$
 $\therefore \tan x = 1$

 $0 \le x \le 2\pi$ 일 때, 함수 $y = \tan x$ 의 그래프와 직선 y = 1은 다음 그림과 같으므로 교점의 x좌표는 $\frac{\pi}{4}$, $\frac{5}{4}\pi$ 이다.



즉 구하는 방정식의 해는

$$x = \frac{\pi}{4}$$
 또는 $x = \frac{5}{4}\pi$

따라서
$$\alpha = \frac{\pi}{4}$$
, $\beta = \frac{5}{4}\pi$ ($\alpha < \beta$)이므로

$$\beta - \alpha = \frac{5}{4}\pi - \frac{\pi}{4} = \pi$$

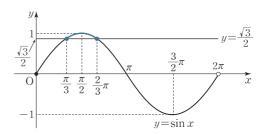
오답 피하기

$$\cos x=0$$
일 때, $x=\frac{\pi}{2}$ 또는 $x=\frac{3}{2}\pi$ 이다.

이때
$$\sin \frac{\pi}{2} = 1$$
, $\sin \frac{3}{2}\pi = -1$ 로 $\sin x \neq \cos x$ 이다.

따라서
$$x=\frac{\pi}{2}$$
와 $x=\frac{3}{2}\pi$ 는 해가 아니다.

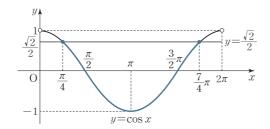
06-1 $0 \le x < 2\pi$ 일 때, 함수 $y = \sin x$ 의 그래프와 직선 $y = \frac{\sqrt{3}}{2}$ 은 다음 그림과 같으므로 주어진 부등식의 해는 $\frac{\pi}{3} \le x \le \frac{2}{3}\pi$



때라서
$$a = \frac{\pi}{3}$$
, $b = \frac{2}{3}\pi$ 이므로 $\cos(b-a) = \cos\left(\frac{2}{3}\pi - \frac{\pi}{3}\right)$ $= \cos\frac{\pi}{3} = \frac{1}{2}$

06-2
$$2\cos x - \sqrt{2} \le 0$$
에서 $\cos x \le \frac{\sqrt{2}}{2}$ $0 < x < 2\pi$ 일 때, 함수 $y = \cos x$ 의 그래프와 직선 $y = \frac{\sqrt{2}}{2}$ 는 다음 그림과 같으므로 주어진 부등식의

$$y=\frac{\sqrt{2}}{2}$$
는 다음 그림과 같으므로 주어?
해는 $\frac{\pi}{4} \le x \le \frac{7}{4}\pi$



따라서
$$a = \frac{\pi}{4}, b = \frac{7}{4}$$
\pi이므로
$$b - a = \frac{7}{4}\pi - \frac{\pi}{4} = \frac{6}{4}\pi = \frac{3}{2}\pi$$

● 6일차			본문 30~33쪽
01 -15	01 -2 $\sqrt{6}$	02 -1 ⑤	02 -2 ⑤
03 -1 ⑤	03 -2③	03 -3 ②	03 -4 ③
04 -1 ②	04 -2 4	05 -1 4	05 -2 ⑤
06 -1 12	06 -26	07 -1 ②	07 -2 ⑤

01-1 삼각형 ABC에서

 $C = 180^{\circ} - (75^{\circ} + 60^{\circ}) = 45^{\circ}$ 외접원의 반지름의 길이를 R라 하면 사인법칙에 এটাপ $\frac{5\sqrt{2}}{\sin 45^{\circ}} = 2R$

$$\frac{5\sqrt{2}}{\frac{\sqrt{2}}{2}} = 2R, 10 = 2R$$
 : $R = 5$

01-2 사인법칙에 의하여
$$\frac{a}{\sin 60^\circ} = \frac{2}{\sin 45^\circ}$$
이므로
$$a = \frac{2}{\sin 45^\circ} \cdot \sin 60^\circ$$
$$= \frac{2}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2} = \sqrt{6}$$

02-1 삼각형 ABC의 외접원의 반지름의 길이를 R라 하면 사인법칙에 의하여

$$\sin A = \frac{a}{2R}, \sin B = \frac{b}{2R}, \sin C = \frac{c}{2R}$$

위의 식을 주어진 등식에 대입하면

$$\left(\frac{a}{2R}\right)^2 + \left(\frac{b}{2R}\right)^2 = \left(\frac{c}{2R}\right)^2$$

$$\therefore a^2+b^2=c^2$$

따라서 \triangle ABC는 C=90°인 직각삼각형이다.

Lecture 삼각형의 모양

삼각형 ABC에서

- (1) a = b = c
 - ⇒ △ABC는 정삼각형이다.
- (2) a=b 또는 b=c 또는 c=a
 - ⇒ △ABC는 이등변삼각형이다.
- (3) $a^2 + b^2 = c^2$
 - \Rightarrow \triangle ABC는 $C=90^{\circ}$ 인 직각삼각형이다.
- **02-**2 삼각형 ABC에서 $A+B+C=180^{\circ}$

$$\therefore A + B = 180^{\circ} - C$$

즉 $\sin(A+B) = \sin(180^{\circ}-C) = \sin C$ 이므로 $\sin^2(A+B) = \sin^2 A + \sin^2 B$

$$\sin^2 C = \sin^2 A + \sin^2 B$$

이때 외접원의 반지름의 길이를 R라 하면 사인법 칙에 의하여

$$\sin A = \frac{a}{2R}$$
, $\sin B = \frac{b}{2R}$, $\sin C = \frac{c}{2R}$

위의 식을 🗇에 대입하면

$$\left(\frac{c}{2R}\right)^2 = \left(\frac{a}{2R}\right)^2 + \left(\frac{b}{2R}\right)^2$$

$$\therefore c^2 = a^2 + b^2$$

따라서 \triangle ABC는 C=90°인 직각삼각형이다.

03-1 코사인법칙에 의하여

$$a^2 = 8^2 + 7^2 - 2 \cdot 8 \cdot 7 \cdot \cos 120^\circ$$

=64+49+56=169

$$\therefore a=13 \ (\because a>0)$$

03-2 코사인법칙에 의하여

$$c^{2}=3^{2}+4^{2}-2\cdot 3\cdot 4\cdot \cos 60^{\circ}$$

=9+16-12=13
\therefore\tau c=\sqrt{13} (\therefore\tau c>0)

03-3 코사인법칙에 의하여
$$b^2 = (3\sqrt{2})^2 + 4^2 - 2 \cdot 3\sqrt{2} \cdot 4 \cdot \cos \frac{\pi}{4}$$
$$= 18 + 16 - 24 = 10$$
$$\therefore b = \sqrt{10} \ (\because b > 0)$$

03-4 코사인법칙에 의하여
$$c^2 = 6^2 + (5\sqrt{3})^2 - 2 \cdot 6 \cdot 5\sqrt{3} \cdot \cos \frac{\pi}{6}$$
$$= 36 + 75 - 90 = 21$$
$$\therefore c = \sqrt{21} \ (\because c > 0)$$

04-1
$$\cos C = \frac{6^2 + 4^2 - 5^2}{2 \cdot 6 \cdot 4} = \frac{9}{16}$$
이므로 $16 \cos C = 16 \cdot \frac{9}{16} = 9$

04-2 삼각형 ABC에서 길이가 3인 변의 대각이 크기가 가장 작은 각이므로
$$\cos A = \frac{5^2 + 6^2 - 3^2}{2 \cdot 5 \cdot 6} = \frac{13}{15}$$

05-1
$$2 \sin A = 3 \sin B = 4 \sin C = k (k \neq 0)$$
로 놓으면 $\sin A = \frac{k}{2}, \sin B = \frac{k}{3}, \sin C = \frac{k}{4}$
 $\therefore a : b : c = \sin A : \sin B : \sin C$
 $= \frac{k}{2} : \frac{k}{3} : \frac{k}{4}$
 $= 6 : 4 : 3$
따라서 $a = 6l, b = 4l, c = 3l (l > 0)$ 이라 하면 $\cos B = \frac{(3l)^2 + (6l)^2 - (4l)^2}{2 \cdot 3l \cdot 6l}$
 $= \frac{29l^2}{36l^2} = \frac{29}{36}$

05-2
$$3 \sin A = 3 \sin B = 4 \sin C = k (k \neq 0)$$
로 놓으면 $\sin A = \frac{k}{3}, \sin B = \frac{k}{3}, \sin C = \frac{k}{4}$
 $\therefore a:b:c = \sin A:\sin B:\sin C$
 $= \frac{k}{3}:\frac{k}{3}:\frac{k}{4}$
 $= 4:4:3$
따라서 $a = 4l, b = 4l, c = 3l (l > 0)$ 이라 하면 $\cos C = \frac{(4l)^2 + (4l)^2 - (3l)^2}{2 \cdot 4l \cdot 4l}$
 $= \frac{23l^2}{22l^2} = \frac{23}{32}$

06-1 삼각형 ABC의 넓이는
$$\frac{1}{2} \cdot 8 \cdot 6 \cdot \sin 30^{\circ} = \frac{1}{2} \cdot 8 \cdot 6 \cdot \frac{1}{2} = 12$$

06-2 삼각형 ABC의 넓이는
$$\frac{1}{2} \cdot 4 \cdot 6 \cdot \sin 150^{\circ} = \frac{1}{2} \cdot 4 \cdot 6 \cdot \frac{1}{2} = 6$$

07-1 삼각형 ABC의 넓이를 *S*라 하면
$$S = \frac{abc}{4R}$$
이므로 $24 = \frac{abc}{4 \cdot 5}$
$$∴ abc = 480$$
따라서 △ABC의 세 변의 길이의 곱은 480이다.

반지름의 길이가 5인 원에 내접하는 삼각형 ABC \Rightarrow 반지름의 길이가 5인 원은 삼각형 ABC의 외접원

07-2
$$A=180^{\circ} \cdot \frac{1}{6}=30^{\circ}$$

 $B=180^{\circ} \cdot \frac{2}{6}=60^{\circ}$
 $C=180^{\circ} \cdot \frac{3}{6}=90^{\circ}$
따라서 삼각형 ABC의 넓이는
 $2 \cdot 4^{2} \cdot \sin 30^{\circ} \cdot \sin 60^{\circ} \cdot \sin 90^{\circ}$
 $=2 \cdot 16 \cdot \frac{1}{2} \cdot \frac{\sqrt{3}}{2} \cdot 1=8\sqrt{3}$

3주전

학교시험에 자주 나오는 대표 기출 24

● 1일차			본문 36~39쪽
01 -1 ②	01 -2 ⑤	01 -3 ①	
02 -1 ③	02 -2 ③	02 -3 ②	02 -4 ③
03 -1 ①	03 -2 4	03 -3 ②	03 -4 ③
04 -1 ②	04 -2 ⑤	04 -3 ③	04 -4 ①

대표기출 01 거듭제곱근의 뜻

꼭 알고 있을 개념

n이 2 이상의 정수일 때, 실수 a의 n제곱근 중 실수 인 것은 다음과 같다.

	a>0	a=0	a<0
n이 홀수	$\sqrt[n]{a}$	0	$\sqrt[n]{a}$
n이 짝수	$\sqrt[n]{a}, -\sqrt[n]{a}$	0	없다.

- **01-1** ① a < 0일 때, a의 제곱근 중 실수인 것은 없다.
 - ② a의 세제곱근 중 실수인 것은 $\sqrt[3]{a}$ 로 항상 존재한다.
 - ③ a의 n제곱근은 방정식 $x^n = a$ 의 근이므로 n개 이다
 - ④, ⑤ n이 짝수이고 a<0이면 방정식 x^n =a의 실근은 없다.

따라서 옳은 것은 ②이다.

- 01-2 -64의 세제곱근 중 실수인 것은 $\sqrt[3]{-64} = \sqrt[3]{(-4)^3} = -4$ 이므로 a = -4 256의 네제곱근 중 음수인 것은 $-\sqrt[4]{256} = -\sqrt[4]{4^4} = -4$ 이므로 b = -4 $\therefore ab = -4 \cdot (-4) = 16$

 $\therefore x = \pm \sqrt{2}$ 또는 $x = \pm \sqrt{2}i$ 즉 $\sqrt{16}$ 의 네제곱근 중 실수인 것은 $\pm \sqrt{2}$ 로 2 개이다

a. n이 짝수일 때, $\sqrt[n]{a^n} = |a|$ n이 홀수일 때, $\sqrt[n]{a^n} = a$ 따라서 옳은 것은 C이다.

오답 피하기

a의 n제곱근은 복소수 범위에서 n개이다.

대표 기출 02 거듭제곱근의 성질

꼭 **알고** 있을 개념

a>0, b>0이고 m, n이 2 이상의 정수일 때

$$(1) \sqrt[n]{a} \sqrt[n]{b} = \sqrt[n]{ab}$$

$$(2) \frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$$

$$(3) (\sqrt[n]{a})^m = \sqrt[n]{a^m}$$

$$(4) \sqrt[m]{\sqrt[n]{a}} = \sqrt[mn]{a}$$

$$(5) \sqrt[np]{a} \sqrt[mp]{a^m} = \sqrt[n]{a^m} (p + 9)$$
 당의 정수)

02-1 $(\sqrt{2\sqrt[3]{4}})^3 = \sqrt{(2\sqrt[3]{4})^3} = \sqrt{32}$ 이때 $5^2 < 32 < 6^2$ 이므로 $5 < \sqrt{32} < 6$ 따라서 $(\sqrt{2\sqrt[3]{4}})^3$ 보다 작은 자연수 중 가장 큰 것은 5이다.

02-2
$$\sqrt[5]{9} \times \sqrt[5]{27} = \sqrt[5]{9} \times 27 = \sqrt[5]{3^2 \times 3^3} = \sqrt[5]{3^5} = 3$$

Lecture 지수법칙

a, b가 실수이고 m, n이 양의 정수일 때

(1)
$$a^{m}a^{n} = a^{m+n}$$
 (2) $(a^{m})^{n} = a^{mn}$
(3) $(ab)^{n} = a^{n}b^{n}$ (4) $\left(\frac{a}{b}\right)^{n} = \frac{a^{n}}{b^{n}}$ $(b \neq 0)$
(5) $a^{m} \div a^{n} = \frac{a^{m}}{a^{n}} = \begin{cases} a^{m-n} & (m > n) \\ 1 & (m=n) & (a \neq 0) \\ \frac{1}{a^{n-m}} & (m < n) \end{cases}$

02-3
$$\sqrt[6]{ab^4} \times \sqrt{ab^4} \div \sqrt[3]{a^2b^5} = \frac{\sqrt[6]{ab^4} \times \sqrt[6]{a^3b^{12}}}{\sqrt[6]{a^4b^{10}}}$$

$$= \sqrt[6]{\frac{a^4b^{16}}{a^4b^{10}}} = \sqrt[6]{b^6}$$

$$= b$$

02-4
$$\sqrt{a\sqrt{a}} \times \sqrt[6]{a^4b^7} \div \sqrt[3]{a^5b} = \sqrt{a \times a^{\frac{1}{2}}} \times \sqrt[6]{a^4b^7} \div \sqrt[3]{a^5b}$$

$$= a^{\frac{3}{4}} \times a^{\frac{2}{3}}b^{\frac{7}{6}} \div a^{\frac{5}{3}}b^{\frac{1}{3}}$$

$$= a^{\frac{3}{4} + \frac{2}{3} - \frac{5}{3}}b^{\frac{7}{6} - \frac{1}{3}}$$

$$= a^{-\frac{1}{4}}b^{\frac{5}{6}}$$

즉
$$x = -\frac{1}{4}, y = \frac{5}{6}$$
이므로 $x+y = -\frac{1}{4} + \frac{5}{6} = \frac{7}{12}$

Lecture 지수의 확장

(1) $a \neq 0$ 이고 n이 양의 정수일 때

$$a^0 = 1$$
, $a^{-n} = \frac{1}{a^n}$

(2) a > 0이고 $m, n (n \ge 2)$ 이 정수일 때

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}, a^{\frac{1}{n}} = \sqrt[n]{a}$$

(3) a > 0. b > 0이고 x. y가 실수일 때

$$\bigcirc a^x a^y = a^{x+y}$$

$$\Im (a^x)^y = a^{xy}$$

대표기출 03 로그의 뜻과 성질

꼭 알고 있을 개념

a>0, $a\neq 1$, M>0, N>0일 때

- $(1) \log_a 1 = 0, \log_a a = 1$
- $(2) \log_a MN = \log_a M + \log_a N$

$$(3)\log_a \frac{M}{N} = \log_a M - \log_a N$$

$$(4) \log_a M^k = k \log_a M (k$$
는 실수)

03-1
$$\log_{12} 3 + \log_{12} 4 = \log_{12} (3 \times 4) = \log_{12} 12 = 1$$

03-2
$$k=2 \log_2 \sqrt{3} - \log_2 6 + 6 \log_2 \sqrt{2}$$

 $= \log_2 (\sqrt{3})^2 - \log_2 6 + \log_2 (\sqrt{2})^6$
 $= \log_2 3 - \log_2 6 + \log_2 8$
 $= \log_2 \left(\frac{3 \times 8}{6}\right)$
 $= \log_2 4$
 $= \log_2 2^2$
 $= 2$
∴ $\log_k 32 = \log_2 32 = \log_2 2^5 = 5$

03-3 이차방정식의 근과 계수의 관계에 의하여

$$\alpha + \beta = -\frac{-5}{1} = 5, \alpha\beta = \frac{3}{1} = 3$$
$$\therefore \log_3(\alpha + 1) + \log_3(\beta + 1)$$

$$\log_3(\alpha+1) + \log_3(\beta+1)$$

$$=\log_3(\alpha+1)(\beta+1)$$

$$=\log_3(\alpha\beta+\alpha+\beta+1)$$

$$=\log_3(3+5+1)$$

$$=\log_3 9$$

$$=\log_3 3^2$$

$$=2$$

Lecture 이차방정식의 근과 계수의 관계

이차방정식 $ax^2+bx+c=0$ 의 두 근을 α , β 라 할 때

(1)
$$\alpha + \beta = -\frac{b}{a}$$
 (2) $\alpha\beta = \frac{c}{a}$

(2)
$$\alpha\beta = \frac{c}{a}$$

$$= \log_{2} \frac{1}{2} + \log_{2} \frac{2}{3} + \log_{2} \frac{3}{4} + \dots + \log_{2} \frac{15}{16}$$

$$= \log_{2} \left(\frac{1}{2} \times \frac{2}{3} \times \frac{3}{4} \times \dots \times \frac{15}{16} \right)$$

$$= \log_{2} \frac{1}{16} = \log_{2} 2^{-4} = -4$$

대표기출 04 상용로그와 그 성질

꼭 알고 있을 개념

양수 A에 대하여 $\log A = k$ 일 때

$$(1) \log 10^n = n, \log A^n = n \log A = nk$$

$$(2) \log(10^n \times A) = \log 10^n + \log A = n + k$$

04-1
$$\log 23.7 = \log(10 \times 2.37) = \log 10 + \log 2.37$$

= 1+0.3747=1.3747

04-2
$$\log x = 3.749 = 3 + 0.749 = \log 10^3 + \log 5.61$$

= $\log(1000 \times 5.61) = \log 5610$

$$x = 5610$$

$$\log y = -1.251 = -2 + 0.749$$

$$= \log 10^{-2} + \log 5.61$$

$$= \log \left(\frac{1}{100} \times 5.61\right)$$

$$= \log 0.0561$$

$$\therefore y = 0.0561$$

$$04-3 \log \left(\frac{5}{6}\right)^{100} = 100 \log \frac{5}{6}$$

$$= 100(\log 5 - \log 6)$$

$$= 100 \left\{ \log \frac{10}{2} - \log(2 \times 3) \right\}$$

$$= 100 \{1 - \log 2 - (\log 2 + \log 3)\}$$

$$= 100(1 - 2 \log 2 - \log 3)$$

$$= 100(1 - 2 \times 0.3010 - 0.4771)$$

$$= -7.91$$

04-4
$$\log \sqrt{x}$$
와 $\log x^2$ 의 차가 정수이므로 $\log x^2 - \log \sqrt{x} = 2 \log x - \frac{1}{2} \log x$ $= \frac{3}{2} \log x$ $= (정수)$ $1 < \log x < 2$ 이므로 $\frac{3}{2} < \frac{3}{2} \log x < 3$ 이때 $\frac{3}{2} \log x$ 가 정수이므로 $\frac{3}{2} \log x = 2$ $\log x = \frac{4}{3}$ $\therefore x = 10^{\frac{4}{3}} = \sqrt[3]{10^4} = 10\sqrt[3]{10}$

Lecture 상용로그의 차

두 상용로그의 차가 정수이면 두 상용로그의 소수 부분이 같다. 즉 $\log A$ 와 $\log B$ 의 차가 정수이면 $\log A - \log B =$ (정수)

쌍둥이 문제

10 < x < 100이고 $\log x$ 와 $\log \frac{1}{x}$ 의 차가 정수일 때, x의 값은?

- $\bigcirc 100$
- $\bigcirc{2} 10\sqrt{10}$
- (3) 10

- $\bigcirc 4) 10\sqrt{10}$
- (5) 100

[풀이]

 $\log x$ 와 $\log \frac{1}{x}$ 의 차가 정수이므로

$$\log x - \log \frac{1}{x} = \log x - (-\log x)$$
$$= 2 \log x$$
$$= (정수)$$

10 < x < 1000|므로 $1 < \log x < 2$

 $\therefore 2 < 2 \log x < 4$

이때 $2\log x$ 가 정수이므로 $2\log x=3$

$$\log x = \frac{3}{2} \qquad \therefore x = 10^{\frac{3}{2}} = \sqrt{10^3} = 10\sqrt{10}$$

(4)

● 2일차			본문 40~43쪽
05 -12	05 -2 ⑤	05 -3 ②	05 -4 6
06 -1 ③	06 -2②	06 -3 ①	06 -4 ③
07 -1 ①	07 -2 4	07 -3 ③	07 -4 4
08-1 4	08 -2 ⑤	08 -3 ②	08 -4 ③

대표기출 05 지수함수와 그래프

꼭 **알고** 있을 개념

지수함수 $y=a^x$ $(a>0, a\neq 1)$ 의 그래프를

(1) x축의 방향으로 m만큼, y축의 방향으로 n만큼 평행이동한 그래프의 식은

$$y=a^{x-m}+n$$

- (2) x축에 대하여 대칭이동한 그래프의 식은 $y=-a^x$
- (3) y축에 대하여 대칭이동한 그래프의 식은 $y=a^{-x}=\left(\frac{1}{a}\right)^x$
- (4) 원점에 대하여 대칭이동한 그래프의 식은 $y\!=\!-a^{-x}\!=\!-\!\left(\frac{1}{a}\right)^{\!x}$
- **05-1** 함수 $y=2^{x-1}-1$ 의 그래프를 x축의 방향으로 a 만큼, y축의 방향으로 b만큼 평행이동하면

$$y-b=2^{(x-a)-1}-1$$

$$\therefore y = 2^{x-a-1} + b - 1$$

즉
$$-a-1=0$$
, $b-1=0$ 이므로

$$a = -1, b = 1$$

$$b-a=1-(-1)=2$$

Lecture 도형의 평행이동

방정식 f(x,y)=0이 나타내는 도형을 x축의 방향으로 a만큼, y축의 방향으로 b만큼 평행이동한 도형의 방정식은

$$f(\underbrace{x\!-\!a,y\!-\!b})\!=\!0$$
 \longrightarrow x 대신 $x\!-\!a,y$ 대신 $y\!-\!b$ 를 대입

- **05-2** 함수 $y=2^x$ 의 그래프를 y축에 대하여 대칭이동하면 $y=2^{-x}$
 - 이 그래프를 x축의 방향으로 3만큼, y축의 방향으로 5만큼 평행이동하면 $y-5=2^{-(x-3)}$

$$\therefore y = 2^{-x+3} + 5 = 2^3 \cdot 2^{-x} + 5$$

$$=8\cdot(\frac{1}{2})^{x}+5$$

Lecture 도형의 대칭이동

방정식 f(x,y)=0이 나타내는 도형을

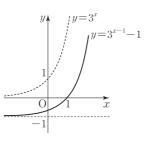
 $^{(1)}$ x축에 대하여 대칭이동한 도형의 방정식은

 $f(x, -y) = 0 \Rightarrow y$ 대신 -y를 대입

- (2) y축에 대하여 대칭이동한 도형의 방정식은 $f(-x,y)=0 \Rightarrow x$ 대신 -x를 대입
- (3) 원점에 대하여 대칭이동한 도형의 방정식은 f(-x, -y) = 0

 $\Rightarrow x$ 대신 -x, y 대신 -y를 대입

- (4) 직선 y=x에 대하여 대칭이동한 도형의 방정식은 $f(y,x)=0 \Rightarrow x$ 와 y를 바꾼다.
- 05-3 함수 $y=3^{x-1}-1$ 의 그 래프는 함수 $y=3^x$ 의 그 래프를 x축의 방향으로 1만큼, y축의 방향으로 -1만큼 평행이동한 것이므로 그래프는 오른쪽그림과 같다.



- ① 치역은 $\{y | y > -1\}$ 이다.
- ② 그래프는 제2사분면을 지나지 않는다.
- ③ x의 값이 증가하면 y의 값도 증가한다.
- ⑤ 그래프의 점근선의 방정식은 y=-1이다. 따라서 옳지 않은 것은 ②이다.
- **05-**4 함수 $y=3^x$ 의 그래프를 y축의 방향으로 b만큼 평행이동하면 $y=3^x+b$

이 그래프가 점 (1,0)을 지나므로

 $0=3^1+b$: b=-3

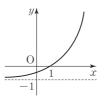
즉 구하는 그래프의 식은 $y=3^x-3$ 이고 이 그래 프가 점 (0, a)를 지나므로

 $a=3^{0}-3=1-3=-2$

 $ab = -2 \cdot (-3) = 6$

쌍둥이 문제

오른쪽 그림은 함수 $y=2^{x-a}$ 의 그래프를 y축의 방향으로 b만큼 평행이동 한 그래프이다. 이때 a-b의 값은?



- $\widehat{(1)} 2$
- (2) 1
- (3) 0

- **4** 1
- \bigcirc 2

풀이

함수 $y=2^{x-a}$ 의 그래프를 y축의 방향으로 b만큼 평행이동하면 $y=2^{x-a}+b$

이 그래프의 점근선의 방정식이 y = -10 므로 b = -1

즉 함수 $y=2^{x-a}-1$ 의 그래프가 점 (1,0)을 지나 므로 $0=2^{1-a}-1$

$$2^{1-a}=1$$
, $1-a=0$ $\therefore a=1$

$$a-b=1-(-1)=2$$

(5)

대표 기출 06 지수함수의 최대·최소

꼭 알고 있을 개념

정의역이 $\{x | m \le x \le n\}$ 인 지수함수 $y = a^x$ 은

- (1) a > 1이면 x = m일 때 최솟값 a^m , x = n일 때 최 댓값 a^n 을 갖는다.
- (2) 0 < a < 1이면 x = m일 때 최댓값 a^m , x = n일 때 최숫값 a^n 을 갖는다.
- **06-1** 함수 $y = \left(\frac{1}{2}\right)^{x+1} + 2$ 에서 밑 $\frac{1}{2}$ 은 1보다 작으므로

함수 $y = \left(\frac{1}{2}\right)^{x+1} + 2$ 는 감소함수이다. 따라서

x=-3일 때 최댓값은

$$M = \left(\frac{1}{2}\right)^{-2} + 2 = 6$$

x=1일 때 최솟값은

$$m = \left(\frac{1}{2}\right)^2 + 2 = \frac{9}{4}$$

 $\therefore 2Mm = 2 \cdot 6 \cdot \frac{9}{4} = 27$

06-2 함수 $y = \left(\frac{1}{3}\right)^{x-1} - b$ 에서 밑 $\frac{1}{3}$ 은 1보다 작으므로 함수 $y = \left(\frac{1}{3}\right)^{x-1} - b$ 는 감소함수이다.

즉 x=0일 때 최댓값은

$$y = \left(\frac{1}{3}\right)^{-1} - b = 3 - b$$
이므로 $3 - b = 1$

 $\therefore b=2$

따라서 함수
$$y = \left(\frac{1}{3}\right)^{x-1} - 2$$
의 최솟값은 $x = 3$ 일 때 $y = \left(\frac{1}{3}\right)^2 - 2 = -\frac{17}{9}$

06-3
$$y=2^{x^2-4x-1}$$
에서 $f(x)=x^2-4x-1$ 로 놓으면 $y=2^{f(x)}$ 이고, $f(x)=(x-2)^2-5$ $-1\leq x\leq 3$ 에서 $f(-1)=4$, $f(2)=-5$, $f(3)=-4$ 이므로 $-5\leq f(x)\leq 4$ 이때 밑 2는 1보다 크므로 함수 $y=2^{f(x)}$ 은 $f(x)$ 가 최대일 때 최댓값을 갖고, $f(x)$ 가 최소일 때 최 숫값을 갖는다.

f(x)=4일 때 최댓값은

$$M = 2^4 = 16$$

f(x) = -5일 때 최솟값은

$$m=2^{-5}=\frac{1}{32}$$

$$\therefore 4Mm = 4 \cdot 16 \cdot \frac{1}{32} = 2$$

Lecture 함수 $y=a^{f(x)}$ $(a>0,a \neq 1)$ 의 최대ㆍ최소

(1) a > 1일 때 f(x)가 최대이면 y도 최대이다. f(x)가 최소이면 y도 최소이다.

(2) 0 < a < 1일 때

f(x)가 최대이면 y는 최소이다.

f(x)가 최소이면 y는 최대이다.

06-4
$$y=a^{x^2-2x}$$
에서 $f(x)=x^2-2x$ 로 놓으면 $y=a^{f(x)}$ 이고, $f(x)=(x-1)^2-1$ $-1 \le x \le 2$ 에서 $f(-1)=3$, $f(1)=-1$, $f(2)=0$ 이므로 $-1 \le f(x) \le 3$ 이때 밑 a 는 1보다 작으므로 함수 $y=a^{f(x)}$ 은 $f(x)$ 가 최대일 때 최솟값을 갖고, $f(x)$ 가 최소일 때 최댓값을 갖는다.

$$f(x) = -1$$
일 때 최댓값은 $y = a^{-1}$ 이므로 $a^{-1} = 2, \frac{1}{a} = 2$ $\therefore a = \frac{1}{2}$

대표 기출 07 지수방정식의 풀이

꼭 알고 있을 개념

(1) 밑을 같게 할 수 있는 경우 방정식 $2^{-x+1} = 2^{2x-5}$ 의 해를 구해 보자. 밑이 2로 같으므로 -x+1=2x-5-3x=-6 $\therefore x=2$

(2) a^x 꼴이 반복되는 경우 $a^x = t$ 로 치환하고 t에 대한 방정식을 푼다. 이때 $a^x > 0$ 이므로 t > 0임에 주의하다.

07-1 $\frac{1}{4}$ =2⁻²이므로 2^{-x+1}=2⁻² -x+1=-2 \therefore x=3

07-2 $4^x - 2^{x+2} - 32 = 0$ 에서 $(2^x)^2 - 4 \cdot 2^x - 32 = 0$ $2^x = t \ (t > 0)$ 라 하면 $t^2 - 4t - 32 = 0$ (t+4)(t-8) = 0 $\therefore t = 8 \ (\because t > 0)$ 즉 $2^x = 8 = 2^3$ 이므로 x = 3

오답 피하기

 $2^{x} > 0$ 이므로 t > 0임에 주의한다.

쌍둥이 문제

방정식 $4^x - 3 \cdot 2^{x+1} + 8 = 0$ 의 모든 실근의 합은?

 \bigcirc 1

(2)2

3 3

 $\stackrel{\textstyle \bigcirc}{4}$ 4

(5) 5

[풀이]

 $4^x - 3 \cdot 2^{x+1} + 8 = 0$ 에서 $(2^x)^2 - 6 \cdot 2^x + 8 = 0$ $2^x = t$ (t > 0)라 하면 $t^2 - 6t + 8 = 0$ (t - 2)(t - 4) = 0 $\therefore t = 2$ 또는 t = 4 t = 2일 때, $2^x = 2$ 에서 x = 1 t = 4일 때, $2^x = 4 = 2^2$ 에서 x = 2 따라서 주어진 방정식의 모든 실근의 합은 1 + 2 = 3

3

07-3 $9^x - 3^{x+2} + 8 = 0$ 에서 $(3^x)^2 - 9 \cdot 3^x + 8 = 0$ $3^x = t \ (t > 0)$ 라 하면 $t^2 - 9t + 8 = 0$ ····· ① 이때 주어진 방정식의 두 근이 α , β 이므로 방정식 ①의 두 근은 3^α , 3^β 이다.

이차방정식 ①에서 근과 계수의 관계에 의하여 $3^{\alpha}+3^{\beta}=9, 3^{\alpha}\cdot 3^{\beta}=8$ $\therefore 3^{2\alpha}+3^{2\beta}=(3^{\alpha}+3^{\beta})^2-2\cdot 3^{\alpha}\cdot 3^{\beta}=9^2-2\cdot 8=65$

다른 풀이

 $9^x - 3^{x+2} + 8 = 0$ 에서 $(3^x)^2 - 9 \cdot 3^x + 8 = 0$ $3^x = t$ (t > 0)라 하면 $t^2 - 9t + 8 = 0$ (t-1)(t-8) = 0 $\therefore t = 1$ 또는 t = 8 이때 $a < \beta$ 라 하면 주어진 방정식의 두 근이 a, β 이므로 $3^a = 1$, $3^\beta = 8$ $\therefore 3^{2a} + 3^{2\beta} = (3^a)^2 + (3^\beta)^2 = 1^2 + 8^2 = 65$

Lecture 이차방정식의 근과 계수의 관계

이치방정식 $ax^2+bx+c=$ 0의 두 근을 a, β 라 할 때 (1) $a+\beta=-\frac{b}{a}$ (2) $a\beta=\frac{c}{a}$

07-4 $25^x - 5^{x+2} + k = 0$ 에서 $(5^x)^2 - 25 \cdot 5^x + k = 0$ $5^x = t$ (t > 0)라 하면 $t^2 - 25t + k = 0$ ····· ① 주어진 방정식의 두 근을 α , β 라 하면 방정식 ①의 두 근은 5^a , 5^b 이다. 이차방정식 ①에서 근과 계수의 관계에 의하여 $5^a \cdot 5^b = k$ 이때 $\alpha + \beta = 2$ 이므로 $k = 5^a \cdot 5^b = 5^{a+b} = 5^2 = 25$

대표기출 08 지수부등식의 풀이

꼭 알고 있을 개념

- (1) 밑을 같게 할 수 있는 경우 주어진 부등식을 $a^{f(x)} < a^{g(x)} \ (a>0, a \neq 1)$ 꼴로 변형한 후
 - ① a > 1이면 f(x) < g(x)
 - ② 0 < a < 1이면 f(x) > g(x)
- (2) a^x 꼴이 반복되는 경우 $a^x = t$ 로 치환하고 t에 대한 부등식을 푼다. 이때 $a^x > 0$ 이므로 t > 0임에 주의한다.

08-1
$$\left(\frac{1}{4}\right)^{-x+3} = \left(\frac{1}{2}\right)^{-2x+6}$$
이므로 $\left(\frac{1}{2}\right)^{-x+2} \le \left(\frac{1}{2}\right)^{-2x+6}$

08-2 $9^{-x-5} = \left(\frac{1}{9}\right)^{x+5} = \left(\frac{1}{3}\right)^{2x+10}$ 이므로 $\left(\frac{1}{3}\right)^{3x+1} \ge \left(\frac{1}{3}\right)^{2x+10}$ 이때 밑 $\frac{1}{3}$ 은 1보다 작으므로 $3x+1 \le 2x+10$ $\therefore x \le 9$ 따라서 주어진 부등식을 만족시키는 자연수 x는 $1, 2, 3, \cdots, 9$ 로 그 개수는 9이다.

08-4 $9^x - 4 \cdot 3^{x+1} + 27 \le 0$ 에서 $(3^x)^2 - 12 \cdot 3^x + 27 \le 0$ $3^x = t \ (t > 0)$ 라 하면 $t^2 - 12t + 27 \le 0$ $(t - 3)(t - 9) \le 0$ $\therefore 3 \le t \le 9$ 즉 $3 \le 3^x \le 9$ 이므로 $3 \le 3^x \le 3^2$ 이때 밑 $3 \ge 1$ 보다 크므로 $1 \le x \le 2$ 따라서 주어진 부등식을 만족시키는 정수 $x \ge 1$, 2이므로 그 합은 1 + 2 = 3

● 3일차			본문 44~47쪽
09 -12	09 -2 4	09 -3 ③	
10 -1 ⑤	10 -2 ④	10 -3 ③	10 -4 ①
11 -1 ③	11 -2②	11 -3 4	11-4 4
12 -1 ④	12 -2③	12 -3 ③	12 -4 ⑤

대표 기출 09 로그함수와 그래프

꼭 알고 있을 개념

로그함수 $y = \log_a x (a > 0, a \neq 1)$ 의 그래프를

(1) x축의 방향으로 m만큼, y축의 방향으로 n만큼 평행이동한 그래프의 식은

 $y = \log_a(x - m) + n$

- (2) x축에 대하여 대칭이동한 그래프의 식은 $y = -\log_a x$
- (3) y축에 대하여 대칭이동한 그래프의 식은 $y = \log_a(-x)$
- (4) 원점에 대하여 대칭이동한 그래프의 식은 $y = -\log_a(-x)$
- **09-1** 함수 $y = \log_2(x+3) + 3$ 의 그래프를 x축의 방향으로 p만큼, y축의 방향으로 q만큼 평행이동하면 $y-q = \log_2(x-p+3) + 3$

 $\therefore y = \log_2(x - p + 3) + q + 3 \qquad \cdots \qquad \bigcirc$

 $y = \log_2 4(x-2) - 2$ 에서

 $y = \log_2(x-2) + \log_2 4 - 2$

 $=\log_2(x-2)$

....(L)

이때 ③과 ⓒ의 그래프가 일치하므로

-p+3=-2, q+3=0

 $\therefore p=5, q=-3$

 $\therefore p+q=5+(-3)=2$

- 09-2 ㄱ. 치역은 실수 전체의 집합이다.
 - -1 > 0에서 x > 1 즉 정의역은 $\{x | x > 1\}$ 이다.
 - 다. 그래프는 함수 $y = \log_3 x$ 의 그래프를 x축의 방향으로 1만큼, y축의 방향으로 -2만큼 평행이동한 것이다.
 - =. 그래프의 점근선의 방정식은 x=1이다. 따라서 옳은 것은 \cup , \cup 이다.
- **09-3** 주어진 그래프에서 점근선의 방정식은 x = -2

함수 $y = \log_2(x-a) + b$ 의 그래프의 점근선의 방 정식은 x=a

 $\therefore a = -2$

즉 함수 $y=\log_2(x+2)+b$ 의 그래프가 점 (0,2)

를 지나므로 $2 = \log_2 2 + b$

2=1+b $\therefore b=1$

 $\therefore a+b=-2+1=-1$

쌍둥이 문제

함수

 $y = \log_{\frac{1}{a}}(x+a) - b$

의 그래프가 오른쪽 그림과 같을 때, 상수

a, b에 대하여 a+b

의 값은?

- ① 1 ④ 4
- 2 2
- (5) 5
- (5)

[풀이 }---

주어진 그래프에서 점근선의 방정식은 x=-3 함수 $y=\log_{\frac{1}{2}}(x+a)-b$ 의 그래프의 점근선의 방

정식은 x = -a

 $\therefore a=3$

즉 함수 $y = \log_{\frac{1}{a}}(x+3) - b$ 의 그래프가 원점을

지나므로 $0 = \log_{\frac{1}{3}} 3 - b$

0 = -1 - b : b = -1

 $\therefore a+b=3+(-1)=2$

日(2)

 $y = \log_{\frac{1}{2}}(x+a) - b$

(3) 3

대표 기출 10 로그함수의 최대·최소

꼭 알고 있을 개념

정의역이 $\{x \mid m \le x \le n\}$ 인 로그함수 $y = \log_a x$ 는

- (1) a>1이면 x=m일 때 최솟값 $\log_a m$, x=n일 때 최댓값 $\log_a n$ 을 갖는다.
- (2) 0 < a < 1이면 x = m일 때 최댓값 $\log_a m$, x = n일 때 최솟값 $\log_a n$ 을 갖는다.
- **10-1** $y = \log_3(x+4) 3$ 에서 밑 3은 1보다 크므로 함수 $y = \log_3(x+4) 3$ 은 증가함수이다. 즉x = -1일 때 최솟값은

 $y = \log_3 3 - 3 = 1 - 3 = -2$

$$x=5$$
일 때 최댓값은 $y=\log_3 9-3=\log_3 3^2-3=2-3=-1$ 따라서 $p=5, a=-1, q=-1, b=-2$ 이므로 $p-(q+a+b)=5-\{-1+(-1)+(-2)\}$ = 9

10-2
$$y = \log_2(x^2 - 2x + 5)$$
에서 $f(x) = x^2 - 2x + 5$ 로 놓으면 $y = \log_2 f(x)$ 이고, $f(x) = (x - 1)^2 + 4$ $-1 \le x \le 2$ 에서 $f(-1) = 8$, $f(1) = 4$, $f(2) = 5$ 이므로 $4 \le f(x) \le 8$ 이때 밑 2는 1보다 크므로 함수 $y = \log_2 f(x)$ 는 $f(x)$ 가 최대일 때 최댓값을 갖고, $f(x)$ 가 최소일 때 최솟값을 갖는다. $f(x) = 8$ 일 때 최댓값은 $M = \log_2 8 = \log_2 2^3 = 3$ $f(x) = 4$ 일 때 최솟값은 $m = \log_2 4 = \log_2 2^2 = 2$

Lecture 함수 $y = \log_a f(x)$ $(a > 0, a \ne 1)$ 의 최대·최소

(1) a>1일 때 f(x)가 최대이면 y도 최대이다. f(x)가 최소이면 y도 최소이다. (2) 0< a<1일 때

M+m=3+2=5

f(x)가 최대이면 y는 최소이다. f(x)가 최소이면 y는 최대이다.

10-3 진수의 조건에서
$$x+4>0$$
, $2-x>0$ 즉 $x>-4$, $x<2$ 이므로 $-4< x<2$ $y=\log_{\frac{1}{3}}(x+4)+\log_{\frac{1}{3}}(2-x)$ $=\log_{\frac{1}{3}}(x+4)(2-x)$ $=\log_{\frac{1}{3}}(-x^2-2x+8)$ $f(x)=-x^2-2x+8$ 로 놓으면 $y=\log_{\frac{1}{3}}f(x)$ 이고, $f(x)=-(x+1)^2+9$ (단, $-4< x<2$) 즉 함수 $f(x)$ 는 $x=-1$ 에서 최댓값 9를 갖는다. 이때 $y=\log_{\frac{1}{3}}f(x)$ 에서 밑 $\frac{1}{3}$ 은 1보다 작으므로 함수 $y=\log_{\frac{1}{3}}f(x)$ 는 $f(x)$ 가 최대일 때 최솟값을 갖는다.

따라서 주어진 함수는
$$f(x)=9$$
, 즉 $x=-1$ 일 때 최솟값은 $y=\log_{\frac{1}{3}}9=\log_{\frac{1}{3}}\left(\frac{1}{3}\right)^{-2}=-2$ 이므로 $p=-1, a=-2$ $\therefore ap=-2\cdot (-1)=2$

- 10-4 진수의 조건에서 $-x^2+6x+7>0$ 이므로 $x^2-6x-7<0$, (x+1)(x-7)<0 $\therefore -1< x<7$ $f(x)=-x^2+6x+7$ 이라 하면 $y=\log_a f(x)$ 이고, $f(x)=-(x-3)^2+16$ (단, -1< x<7) -1< x<7에서 f(-1)=0, f(3)=16, f(7)=0이므로 $0< f(x)\le 16$ 이때 $y=\log_a f(x)$ 에서 밑이 a이므로 (i) a>1일 때 함수 $y=\log_a f(x)$ 는 f(x)가 최대일 때 최댓 값을 가지므로 f(x)=16일 때 최댓값은 $y=\log_a 16$ 즉 $\log_a 16=4$ 이므로 $a^4=16$ $\therefore a=2$ ($\because a>1$) 때
 - .. a=2 ($\forall a>1$) (ii) 0 < a < 1일 때 함수 $y = \log_a f(x)$ 는 f(x)가 최소일 때 최댓값 을 갖는다. 그런데 f(x)는 최솟값이 없으므로 조건을 만족시키는 a의 값은 존재하지 않는다. (i) (ii)에서 a=2

대표 기출 11 로그방정식의 풀이

꼭 알고 있을 개념

- (1) 밑을 같게 할 수 있는 경우 방정식 $\log_3(x+1)=2$ 의 해를 구해 보자. 진수의 조건에서 x+1>0 $\therefore x>-1$ $\log_3(x+1)=2$ 에서 $\log_3(x+1)=\log_3 3^2$ x+1=9 $\therefore x=8$ 진수의 조건을 만족시킨다.
- (2) $\log_a x$ 꼴이 반복되는 경우 $\log_a x = t$ 로 치환하고 t에 대한 방정식을 푼다. 이때 진수의 조건을 반드시 확인한다.
- **11-**1 진수의 조건에서 x-2>0, 2x-1>0 $\therefore x>2$ $\cdots\cdots$ \bigcirc $\log_{\frac{1}{3}}(x-2)\!=\!\log_{\frac{1}{9}}(2x-1)$ 에서

- **11-2** 진수의 조건에서 x>0, x+1>0 $\therefore x > 0 \qquad \cdots$ $\log_6 x + \log_6(x+1) = 1$ 에서 $\log_6 x(x+1) = 1$ 즉 $\log_6 x(x+1) = \log_6 6$ 이므로 $x(x+1)=6, x^2+x-6=0$ (x+3)(x-2)=0 $\therefore x = -3 \, \text{E} = x = 2$ 이때 \bigcirc 에 의하여 x=2 $\therefore \alpha=2$ $\therefore \alpha^2 = 2^2 = 4$
- **11-3** 진수의 조건에서 x>0 $\log_3 x = t$ 라 하면 $t^2 + 4t - 3 = 0$ ① 이때 주어진 방정식의 두 근이 α . β 이므로 방정식 \bigcirc 의 두 근은 $\log_3 \alpha$, $\log_3 \beta$ 이다. 이차방정식 ①에서 근과 계수의 관계에 의하여 $\log_3 \alpha + \log_3 \beta = -4$ 이므로 $\log_3 \alpha \beta = -4$ $\therefore \alpha\beta = 3^{-4} = \frac{1}{81}$

쌍둥이 문제

방정식 $(\log_2 x)^2 + \log_2 x^2 - 8 = 0$ 의 두 근을 α , β 라 할 때, $\log_2 \alpha \beta$ 의 값은?

(3) 0

- (1) 2
- (2) -1
- (4) 1
- (5)2

[풀이]

진수의 조건에서 x>0

 $(\log_2 x)^2 + \log_2 x^2 - 8 = 0$ 에서

 $(\log_2 x)^2 + 2\log_2 x - 8 = 0$

 $\log_2 x = t$ 라 하면 $t^2 + 2t - 8 = 0$

이때 주어진 방정식의 두 근이 α , β 이므로 방정식 \bigcirc 의 두 근은 $\log_2 \alpha$, $\log_2 \beta$ 이다.

이차방정식 ③에서 근과 계수의 관계에 의하여

 $\log_2 \alpha + \log_2 \beta = -2$ $\therefore \log_2 \alpha \beta = -2$

图(1)

11-4 $(\log_2 x)^2 - \log_2 x^5 + a = 0$ 의 한 근이 x = 2이므로 $(\log_2 2)^2 - \log_2 2^5 + a = 0, 1^2 - 5 + a = 0$ $\therefore a=4$ 즉 방정식 $(\log_2 x)^2 - \log_2 x^5 + 4 = 0$ 의 진수의 조건에서 x>0 $(\log_2 x)^2 - \log_2 x^5 + 4 = 0$ 에서 $(\log_2 x)^2 - 5\log_2 x + 4 = 0$ $\log_2 x = t$ 라 하면 $t^2 - 5t + 4 = 0$ (t-1)(t-4)=0 : $t=1 \ \text{$\Xi$} = 4$ t=1일 때, $\log_2 x=1$ 에서 x=2t=4일 때, $\log_2 x=4$ 에서 $x=2^4=16$ 따라서 다른 한 근은 x=16이다.

대표 기출 12 로그부등식의 풀이

꼭 알고 있을 개념

- (1) 믿을 같게 할 수 있는 경우 주어진 부등식을 $\log_a f(x) < \log_a g(x)$ 꼴로 변 형한 후
 - ① a > 1이면 0 < f(x) < g(x)
 - ② 0 < a < 1이면 f(x) > g(x) > 0
- $(2) \log_a x$ 꼴이 반복되는 경우 $\log_a x = t$ 로 치환하고 t에 대한 부등식을 푼다. 이때 진수의 조건을 반드시 확인한다.
- **12-1** 진수의 조건에서 x-1>0 $\therefore x > 1 \qquad \cdots \bigcirc$ $\log_{\frac{1}{2}}(x-1) > -2$ $\log_{\frac{1}{3}}(x-1) > \log_{\frac{1}{3}}(\frac{1}{3})^{-2}$ $\log_{\frac{1}{3}}(x-1) > \log_{\frac{1}{3}}9$ 이때 $\frac{1}{3}$ 은 1보다 작으므로 x-1<9 $\therefore x < 10$ ①, ①의 공통 범위를 구하면 1<*x*<10 따라서 $\alpha=1$, $\beta=10$ 이므로 $\alpha + \beta = 1 + 10 = 11$
- **12-**2 진수의 조건에서 x+2>0, x+14>0 $\therefore x > -2$ $\log_{\frac{1}{2}}(x+2) > \log_{\frac{1}{4}}(x+14)$ 에서

- 12-3 진수의 조건에서 $\log_2 x > 0$, x > 0 $\log_2 x > 0$ 에서 $\log_2 x > \log_2 1$ 이므로 x > 1 x > 1 x > 1 x > 1 y > 1
- 12-4 진수의 조건에서 8x>0, $\frac{x}{4}>0$ $\therefore x>0$ \bigcirc $(\log_{\frac{1}{2}}8x)\left(\log_{2}\frac{x}{4}\right)>0$ 에서 $(\log_{\frac{1}{2}}x+\log_{\frac{1}{2}}8)(\log_{2}x-\log_{2}4)>0$ $(\log_{2^{-1}}x+\log_{2^{-1}}2^{3})(\log_{2}x-\log_{2}2^{2})>0$ $(-\log_{2}x-3)(\log_{2}x-2)>0$ $\log_{2}x=t$ 라 하면 (-t-3)(t-2)>0 $(t+3)(t-2)<0 \qquad \therefore -3< t<2$ $\stackrel{=}{\rightarrow} -3<\log_{2}x<2$ 이므로 $\log_{2}2^{-3}<\log_{2}x<\log_{2}2^{2}$ 이때 밑 2는 1보다 크므로 $\frac{1}{8}$ <x<4 \bigcirc \bigcirc , \bigcirc 의 공통 범위를 구하면 $\frac{1}{8}$ <x<4 따라서 $\alpha=\frac{1}{8}$, $\beta=4$ 이므로 $\alpha\beta=\frac{1}{8}\cdot 4=\frac{1}{2}$

● 4일차			본문 48~51쪽
13 -1 ⑤	13 -2 ③	13 -3 4	13 -4 ⑤
14 -1 ③	14 -2 ④	14 -3 4	14 -4 ③
15 -1 ①	15 -2 ③	15 -3②	15 -4 ③
16 -1 ①	16- 2③	16 -3 ①	16 -4②

대표 기출 13 각과 동경의 위치

꼭 알고 있을 개념

(1) 동경의 위치

 $\theta = 360^{\circ} \times n + \alpha^{\circ}$ (n은 정수, $0^{\circ} \le \alpha^{\circ} < 360^{\circ}$)이면 각 α° 를 나타내는 동경과 각 θ 를 나타내는 동경이 일치한다.

(2) 호도법과 육십분법 사이의 관계

$$1$$
(라디안) $=\frac{180^{\circ}}{\pi}$, $1^{\circ}=\frac{\pi}{180}$ (라디안)

- **13-1** ① $-480^{\circ} = 360^{\circ} \times (-2) + 240^{\circ}$ 이므로 제3사분 면의 각이다.
 - ② $\frac{10}{3}\pi = 2\pi \times 1 + \frac{4}{3}\pi$ 이고 $\frac{4}{3}\pi = \frac{4}{3}\pi \times \frac{180^{\circ}}{\pi} = 240^{\circ}$ 이므로 제3사분면의 각이다
 - ③ $-\frac{2}{3}\pi = 2\pi \times (-1) + \frac{4}{3}\pi$ 이고 $\frac{4}{3}\pi = \frac{4}{3}\pi \times \frac{180^{\circ}}{\pi} = 240^{\circ}$ 이므로 제3사분면의 각이다.
 - ④ 제3사분면의 각이다.

따라서 각을 나타내는 동경이 나머지 넷과 다른 사분면에 속하는 것은 ⑤이다.

13-2 각 θ 를 나타내는 동경과 각 5θ 를 나타내는 동경이 일치하므로

$$5\theta - \theta = 2n\pi (n$$
은 정수)

$$4\theta = 2n\pi$$
 $\therefore \theta = \frac{n}{2}\pi$ \cdots

$$0 < \theta < \pi$$
이므로 $0 < \frac{n}{2}\pi < \pi$

$$\therefore 0 < n < 2$$

이때 n은 정수이므로 n=1n=1을 \bigcirc 에 대입하면 $\theta=\frac{\pi}{2}$

Lecture 두 동경이 일치할 조건

두 각 α . β 를 나타내는 동경이 일치 하면

 $\beta - \alpha = 2n\pi$ (n은 정수)

13-3 각 θ 를 나타내는 동경과 각 5θ 를 나타내는 동경이 원점에 대하여 대칭이므로

$$5\theta - \theta = (2n+1)\pi (n$$
은 정수)

$$4\theta = (2n+1)\pi$$

$$4\theta = (2n+1)\pi$$
 $\therefore \theta = \frac{2n+1}{4}\pi$ \cdots

$$0 < \theta < \frac{\pi}{2}$$
이므로 $0 < \frac{2n+1}{4}\pi < \frac{\pi}{2}$

$$0 < 2n + 1 < 2$$

$$0 < 2n + 1 < 2$$
 $\therefore -\frac{1}{2} < n < \frac{1}{2}$

이때 n은 정수이므로 n=0

n=0을 \bigcirc 에 대입하면 $\theta=\frac{\pi}{4}$

$$\therefore \sin \theta = \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}$$

Lecture 두 동경이 원점에 대하여 대칭일 조건

두 각 α , β 를 나타내는 동경이 원점에 대하여 대칭이면

$$\beta - \alpha = (2n+1)\pi$$
 (n은 정수)

13-4 각 4θ 를 나타내는 동경과 각 2θ 를 나타내는 동경 이 x축에 대하여 대칭이므로

$$4\theta+2\theta=2n\pi$$
 (n은 정수)

$$6\theta = 2n\pi$$

$$6\theta = 2n\pi$$
 $\therefore \theta = \frac{n}{3}\pi$

$$0 \le \theta \le \frac{\pi}{2}$$
이므로 $0 \le \frac{n}{3}\pi \le \frac{\pi}{2}$

$$\therefore 0 \le n \le \frac{3}{2}$$

이때 n은 정수이므로 n=0 또는 n=1

이것을 →에 각각 대입하면

$$\theta = 0$$
 또는 $\theta = \frac{\pi}{3}$

$$\therefore \cos 0 + \cos \frac{\pi}{3} = 1 + \frac{1}{2} = \frac{3}{2}$$

두 동경이 x축, y축에 대하여 대칭일

두 각 α , β 를 나타내는 동경이 다음과 같이 좌표축에 대하여 대칭의 때

레이어 레잉근 레			
x축에 대하여 대칭	<i>y</i> 축에 대하여 대칭		
β α α α	$ \begin{array}{c} y \\ \beta \\ \alpha \\ 0 \end{array} $		
$\alpha + \beta = 2n\pi$	$\alpha + \beta = (2n+1)\pi$		
(<i>n</i> 은 정수)	(<i>n</i> 은 정수)		

대표기출 14 부채꼴의 호의 길이와 넓이

꼭 알고 있을 개념

반지름의 길이가 γ . 중심각의 크기가 θ (라디안)인 부 채꼴의 호의 길이를 l. 넓이를 S라 하면

(1)
$$l = r\theta$$

(2)
$$S = \frac{1}{2}r^2\theta = \frac{1}{2}rl$$

14-1 부채꼴의 반지름의 길이를 r라 하면 부채꼴의 호 의 길이가 π 이므로 $r \cdot \frac{2}{3}\pi = \pi$ $\therefore r = \frac{3}{2}$ 따라서 부채꼴의 넓이는 $\frac{1}{2} \cdot \frac{3}{2} \cdot \pi = \frac{3}{4} \pi$

14-2 부채꼴의 넓이가 6π 이므로

$$\frac{1}{2}r \cdot 4\pi = 6\pi$$
 $\therefore r = 3$

$$\therefore \gamma = 3$$

부채꼴의 호의 길이가
$$4\pi$$
이므로

$$3\theta = 4\pi$$

$$3\theta = 4\pi$$
 $\therefore \theta = \frac{4}{3}\pi$

$$\therefore \frac{\theta}{r} = \theta \div r = \frac{4}{3}\pi \div 3 = \frac{4}{3}\pi \cdot \frac{1}{3} = \frac{4}{9}\pi$$

14-3 부채꼴의 중심각의 크기를 θ 라 하면 부채꼴의 호 의 길이는 4θ

즉 부채꼴의 둘레의 길이는 $2\cdot 4+4\theta=16$ 이므로 $4\theta=8$ \therefore $\theta=2$

오답 피하기

반지름의 길이가 r이고 호의 길이가 l인 부채꼴의 둘레의 길이는 2r+l임에 주의한다.

14-4 ①
$$S = \frac{1}{2} \cdot 6 \cdot 2 = 6$$

②
$$l = 6\theta = 4\pi$$
이므로 $\theta = \frac{2}{3}\pi = 120^{\circ}$

③
$$S = \frac{1}{2} \cdot 6^2 \cdot \theta = \pi$$
이므로 $\theta = \frac{\pi}{18} = 10^\circ$

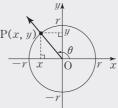
④
$$\theta = 30^{\circ} = \frac{\pi}{6}$$
이므로 $l = 6 \cdot \frac{\pi}{6} = \pi$

따라서 옳은 것은 ③이다.

대표기출 15 삼각함수의 뜻

꼭 **알고** 있을 개념

좌표평면에서 일반각 θ 를 나타 y대는 동경과 원점 O를 중심으 P(x,y)로 하고 반지름의 길이가 r인 원의 교점을 P(x,y)라 하면



$$(1) r = \overline{OP} = \sqrt{x^2 + y^2}$$

$$(2)\sin\theta = \frac{y}{r}, \cos\theta = \frac{x}{r}, \tan\theta = \frac{y}{x}(x \neq 0)$$

15-1
$$\overline{OP} = \sqrt{(-4)^2 + (-3)^2} = 5$$
이므로 $\cos \theta = \frac{-4}{5} = -\frac{4}{5}$

15-2
$$\overline{OP} = \sqrt{(\sqrt{3})^2 + 1^2} = 2$$
이므로 $\sin \alpha = \frac{1}{2}$ $\overline{OQ} = \sqrt{(-1)^2 + (-\sqrt{3})^2} = 2$ 이므로 $\cos \beta = \frac{-1}{2} = -\frac{1}{2}$ $\therefore \sin \alpha + \cos \beta = \frac{1}{2} + \left(-\frac{1}{2}\right) = 0$

15-3
$$x-2y-6=0, x+y=0$$
을 연립하여 풀면 $x=2, y=-2$ \therefore $P(2,-2)$ $\overline{OP}=\sqrt{2^2+(-2)^2}=2\sqrt{2}$ 이므로 $\sin\theta=\frac{-2}{2\sqrt{2}}=-\frac{\sqrt{2}}{2}$ $\cos\theta=\frac{2}{2\sqrt{2}}=\frac{\sqrt{2}}{2}$ $\tan\theta=\frac{-2}{2}=-1$ \therefore $\sin\theta\cos\theta+\tan\theta=-\frac{\sqrt{2}}{2}\cdot\frac{\sqrt{2}}{2}+(-1)$

 $=-\frac{1}{2}+(-1)$

 $=-\frac{3}{2}$

15-4 각
$$\theta$$
가 제3사분면의 각이므로 $\sin \theta < 0$, $\cos \theta < 0$, $\tan \theta > 0$ ③ $\sin \theta \cos \theta > 0$ ④ $\sin \theta \tan \theta < 0$ ⑤ $\cos \theta \tan \theta < 0$ 따라서 값의 부호가 양수인 것은 ③이다.

대표 기출 16 삼각함수 사이의 관계

꼭 알고 있을 개념

(1)
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$(2)\sin^2\theta+\cos^2\theta=1$$

16-1
$$\sin^2\theta + \cos^2\theta = 1$$
이므로 $\cos^2\theta = 1 - \sin^2\theta = 1 - \left(-\frac{5}{13}\right)^2 = \frac{144}{169}$ 이때 각 θ 가 제3사분면의 각이므로 $\cos\theta < 0$ $\therefore \cos\theta = -\sqrt{\frac{144}{169}} = -\frac{12}{13}$

16-2
$$\sin^2\theta + \cos^2\theta = 1$$
이므로
$$\sin^2\theta = 1 - \cos^2\theta = 1 - \left(\frac{\sqrt{2}}{2}\right)^2 = \frac{1}{2}$$

이때 $\frac{3}{2}\pi < \theta < 2\pi$, 즉 각 θ 가 제4사분면의 각이므 로 $\sin \theta < 0$

$$\therefore \tan \theta - \sqrt{2} \sin \theta = -1 - \sqrt{2} \cdot \left(-\frac{\sqrt{2}}{2} \right)$$

$$= -1 - (-1)$$

$$= 0$$

16-3 $\sin \theta + \cos \theta = \frac{1}{3}$ 의 양변을 제곱하면 $\sin^2\theta + 2\sin\theta\cos\theta + \cos^2\theta = \frac{1}{9}$ $1+2\sin\theta\cos\theta = \frac{1}{9}$ $\therefore \sin\theta\cos\theta = -\frac{4}{9}$ $\therefore \frac{\cos \theta}{\sin \theta} + \frac{\sin \theta}{\cos \theta} = \frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta \cos \theta}$ $=\frac{1}{-\frac{4}{9}}$ $=-\frac{9}{4}$

쌍둥이 문제

 $\sin \theta - \cos \theta = \frac{1}{2}$ 일 때, $\tan \theta + \frac{1}{\tan \theta}$ 의 값은?

$$0\frac{1}{3}$$
 $0\frac{2}{3}$ $0\frac{4}{3}$

$$2\frac{2}{3}$$

$$3\frac{4}{3}$$

$$(5)\frac{8}{3}$$

 $\sin \theta - \cos \theta = \frac{1}{2}$ 의 양변을 제곱하면

 $\sin^2\theta - 2\sin\theta\cos\theta + \cos^2\theta = \frac{1}{4}$

 $1-2\sin\theta\cos\theta = \frac{1}{4}$ $\therefore \sin\theta\cos\theta = \frac{3}{8}$

3 (5)

16-4 이차방정식의 근과 계수의 관계에 의하여 $\sin \theta + \cos \theta = \frac{1}{2}, \sin \theta \cos \theta = \frac{k}{2}$ $\sin \theta + \cos \theta = \frac{1}{2}$ 의 양변을 제곱하면 $\sin^2\theta + 2\sin\theta\cos\theta + \cos^2\theta = \frac{1}{4}$ $1+2\sin\theta\cos\theta=\frac{1}{4}$ $\therefore \sin \theta \cos \theta = -\frac{3}{8}$ 즉 $\frac{k}{2} = -\frac{3}{8}$ 이므로 $k = -\frac{3}{4}$

● 5일차			본문 52~55쪽
17 -1 ③	17 -2 ④		
18 -1 ③	18 -2 ①	18 -3②	18 -4 ①
19 -1 4	19 -2 4		
20 -1 ⑤	20 -2 ②	20 -3 4	

대표 기출 17 삼각함수의 그래프의 성질

꼭 **알고** 있을 개념

삼각함수	최댓값	최솟값	주기
$y = a\sin(bx+c) + d$	a +d	- a +d	$\frac{2\pi}{ b }$
$y = a\cos(bx+c)+d$	a +d	- a +d	$\frac{2\pi}{ b }$
$y=a\tan(bx+c)+d$	없다.	없다.	$\frac{\pi}{ b }$

17-1 각각의 함수의 주기를 구하면 다음과 같다.

$$2\frac{2\pi}{|4|} = \frac{\pi}{2}$$

따라서 f(x)=f(x-2)를 만족시키는 함수는 ③ 이다.

Lecture 주기함수

① 함수 f에서 정의역에 속하는 모든 x에 대하여 f(x+k)=f(x)

를 만족시키는 0이 아닌 상수 k가 존재할 때, 함수 f를 주기함수라 하고, k의 값 중에서 최소인 양수를 주기라 한다.

- ② 주기가 k인 함수 f(x)
 - $\Rightarrow f(x) = f(x+k) = f(x+2k)$ $= f(x+3k) = \cdots$
 - $\Rightarrow f(x) = f(x+nk)$ (단, n은 정수)

쌍둥이 문제

다음 함수 중 모든 실수 x에 대하여 $f(x+\sqrt{2})=f(x)$ 를 만족시키는 것은?

- (1) $f(x) = \tan 2\pi x \sqrt{2}$
- $2 f(x) = 3 \cos \frac{\sqrt{2}}{2} \pi x$
- $(3) f(x) = \sqrt{2} \sin \frac{\sqrt{2}}{2} \pi x$
- $4 f(x) = -\sin\sqrt{2}\pi x$
- $(5) f(x) = \cos \pi x + \sqrt{2}$

[풀이]----

각각의 함수의 주기를 구하면 다음과 같다.

- ① $\frac{\pi}{|2\pi|} = \frac{1}{2}$
- ②, ③ $\frac{2\pi}{\left|\frac{\sqrt{2}}{2}\pi\right|} = \frac{4}{\sqrt{2}} = 2\sqrt{2}$
- $4 \frac{2\pi}{|\sqrt{2}\pi|} = \frac{2}{\sqrt{2}} = \sqrt{2}$

따라서 $f(x+\sqrt{2})=f(x)$ 를 만족시키는 함수는 ④ 이다.

a 4

- **17**-2 ㄱ. 주기는 $\frac{\pi}{\left|\frac{1}{2}\right|} = 2\pi$ 이다.
 - ㄴ 최솟값은 없다.
 - $\Box \frac{x}{2} = n\pi + \frac{\pi}{2}$ $\exists x = 2n\pi + \pi$

즉 점근선의 방정식은 $x{=}2n\pi{+}\pi{\,}(n$ 은 정수) 따라서 옳은 것은 ㄱ, ㄷ이다.

대표 기출 18 일반각에 대한 삼각함수의 성질

꼭 알고 있을 개념

- (1) $2n\pi + \theta$ (n은 정수)의 삼각함수 $\sin(2n\pi + \theta) = \sin \theta$
 - $\cos(2n\pi+\theta)=\cos\theta$
 - $\tan(2n\pi+\theta)=\tan\theta$
- $(2) \theta$ 의 삼각함수
 - $\sin(-\theta) = -\sin\theta$
 - $\cos(-\theta) = \cos\theta$
 - $\tan(-\theta) = -\tan\theta$
- (3) $\pi \pm \theta$ 의 삼각함수

$$\sin(\pi+\theta) = -\sin\theta, \sin(\pi-\theta) = \sin\theta$$

$$\cos(\pi\!+\!\theta)\!=\!-\cos\theta,\cos(\pi\!-\!\theta)\!=\!-\cos\theta$$

$$\tan(\pi+\theta) = \tan\theta, \tan(\pi-\theta) = -\tan\theta$$

 $(4)\frac{\pi}{2}\pm\theta$ 의 삼각함수

$$\sin\left(\frac{\pi}{2} + \theta\right) = \cos\theta, \sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$$

$$\cos\left(\frac{\pi}{2} + \theta\right) = -\sin\theta, \cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$$

$$\tan\left(\frac{\pi}{2} + \theta\right) = -\frac{1}{\tan\theta}, \tan\left(\frac{\pi}{2} - \theta\right) = \frac{1}{\tan\theta}$$

18-1 $\sin 120^\circ = \sin(180^\circ - 60^\circ) = \sin 60^\circ = \frac{\sqrt{3}}{2}$

$$\tan 225^{\circ} = \tan(180^{\circ} + 45^{\circ}) = \tan 45^{\circ} = 1$$

$$\cos\frac{5}{6}\pi = \cos\left(\pi - \frac{\pi}{6}\right) = -\cos\frac{\pi}{6} = -\frac{\sqrt{3}}{2}$$

$$\therefore (주어진 식) = \frac{\sqrt{3}}{2} + 1 - \left(-\frac{\sqrt{3}}{2}\right)$$
$$= 1 + \sqrt{3}$$

18-2
$$\sin \frac{7}{2}\pi = \sin\left(4\pi - \frac{\pi}{2}\right) = \sin\left(-\frac{\pi}{2}\right)$$
 $= -\sin\frac{\pi}{2} = -1$
 $\cos\left(-\frac{\pi}{3}\right) = \cos\frac{\pi}{3} = \frac{1}{2}$
 $\tan\frac{5}{6}\pi = \tan\left(\pi - \frac{\pi}{6}\right) = -\tan\frac{\pi}{6} = -\frac{\sqrt{3}}{3}$
 $\sin\left(\frac{\pi}{2} + \frac{\pi}{6}\right) = \cos\frac{\pi}{6} = \frac{\sqrt{3}}{2}$
 $\therefore (주어진 신) = -1 \cdot \frac{1}{2} + \left(-\frac{\sqrt{3}}{3}\right) \cdot \frac{\sqrt{3}}{2}$
 $= -\frac{1}{2} + \left(-\frac{1}{2}\right)$

18-3
$$\sin(\pi+\theta) = -\sin\theta$$
, $\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$
 $\tan(-\theta) = -\tan\theta$
이때 $2x - 5y + 10 = 0$ 에서 $y = \frac{2}{5}x + 2$ 이므로
 $\tan\theta = \frac{2}{5}$
 \therefore (주어진 식)= $-\sin\theta + \sin\theta + (-\tan\theta)$
 $= -\tan\theta$
 $= -\frac{2}{5}$

Lecture 직선의 기울기

직선 y=ax+b $(a \ne 0)$ 가 x축의 양의 방향과 이루는 각의 크기를 θ 라 하면 (기울기 $)=\tan\theta=a$

18-4
$$\sin\left(\frac{3}{2}\pi - \theta\right) = -\cos\theta$$
, $\cos(2\pi - \theta) = \cos\theta$
 $\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$, $\cos\left(\frac{\pi}{2} + \theta\right) = -\sin\theta$
 \therefore (주어진 심)
 $= -\cos\theta + \cos\theta + \cos\theta + (-\sin\theta)$
 $= \cos\theta - \sin\theta$

대표 기출 19 삼각함수의 미정계수의 결정

꼭 **알고** 있을 개념

함수 $y=a\sin(bx+c)+d$ 또는 $y=a\cos(bx+c)+d$ 의 그래프에서

- (1) *a*, *d*의 값은 최댓값 또는 최솟값을 결정한다. ⇒ 최댓값: |*a*|+*d*, 최솟값: −|*a*|+*d*
- (2) b의 값은 주기를 결정한다. \Rightarrow 주기: $\frac{2\pi}{|b|}$
- (3) *b*, *c*, *d* 의 값은 평행이동을 결정한다.

$$\Rightarrow y = a \sin b \left(x + \frac{c}{b} \right) + d$$
이므로 함수
$$y = a \sin b x$$
의 그래프를 x 축의 방향으로
$$-\frac{c}{b}$$
만큼, y 축의 방향으로 d 만큼 평행이동

19-1 주어진 그래프에서 함수의 최댓값이
$$2$$
, 최솟값이 -2 이므로 $|a|=2$ 이때 $a>0$ 이므로 $a=2$

주기는
$$\frac{5}{4}\pi - \frac{\pi}{4} = \pi$$
이므로 $\frac{2\pi}{|b|} = \pi$ 에서 $|b| = 2$ 이때 $b > 0$ 이므로 $b = 2$ $\therefore a + b = 2 + 2 = 4$

쌍둥이 문제

함수 $f(x) = a \sin \frac{x}{b} + c$ 의 주기가 6π , 최댓 값이 5, 최솟값이 -3일 때, 상수 a, b, c에 대하여 a+bc의 값은? (단, a>0, b>0)

$$(1) - 7$$

$$(2) - 3$$

$$\mathfrak{G}$$
 0

[풀이]-----

함수 $f(x) = a \sin \frac{x}{h} + c$ 의 주기가 6π 이므로

$$\frac{2\pi}{\left|\frac{1}{b}\right|} = 6\pi, \left|\frac{1}{b}\right| = \frac{1}{3}$$

이때 b > 0이므로 b = 3

a > 0이고 최댓값이 5이므로

$$a+c=5$$

또 최솟값이 -3이므로

$$-a+c=-3$$
 ······ ©

①, ⑥을 연립하여 풀면

$$a = 4.c = 1$$

$$a + bc = 4 + 3 \cdot 1 = 7$$

3 (5)

19-2 주어진 그래프에서 함수의 최댓값이 2, 최솟값이

$$-2$$
이므로 $|a|=2$

이때
$$a > 0$$
이므로 $a = 2$

주기는
$$\frac{3}{4}\pi - \left(-\frac{\pi}{4}\right) = \pi$$
이므로

$$\frac{2\pi}{|b|}$$
= π 에서 $|b|=2$

이때 b>0이므로 b=2

또 $0 \le c \le \pi$ 에서 주어진 그래프는 함수

 $y=2\sin 2x$ 의 그래프를 x축의 방향으로 $-\frac{\pi}{4}$ 만 큼 평행이동한 것이므로

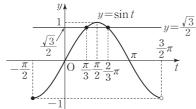
$$f(x) = 2\sin 2\left\{x - \left(-\frac{\pi}{4}\right)\right\} = 2\sin\left(2x + \frac{\pi}{2}\right)$$

$$\therefore f\left(\frac{\pi}{6}\right) = 2\sin\left(\frac{\pi}{3} + \frac{\pi}{2}\right) = 2\cos\frac{\pi}{3}$$
$$= 2\cdot\frac{1}{2} = 1$$

대표 기출 20 삼각함수를 포함한 방정식과 부등식

꼭 알고 있을 개념

- (1) 방정식 $\sin x = \frac{\sqrt{3}}{2}$ 의 해는 함수 $y = \sin x$ 의 그 래프와 직선 $y = \frac{\sqrt{3}}{2}$ 의 교점의 x좌표이다.
- (2) 부등식 $\cos x < \frac{1}{2}$ 의 해는 함수 $y = \cos x$ 의 그래 프가 직선 $y = \frac{1}{2}$ 보다 아래쪽에 있는 부분의 x의 값의 범위이다.
- **20-1** $\cos^2 x = 1 \sin^2 x$ 이므로 $(1 \sin^2 x) \sin x 1 = 0$, $\sin^2 x + \sin x = 0$ $\sin x (\sin x + 1) = 0$ 이때 $0 \le x < 2\pi$ 에서 $-1 \le \sin x \le 1$ 이므로 $\sin x = 0$ 또는 $\sin x = -1$ (i) $\sin x = 0$ 일 때, x = 0 또는 $x = \pi$ (ii) $\sin x = -1$ 일 때, $x = \frac{3}{2}\pi$ 따라서 모든 해의 합은 $0 + \pi + \frac{3}{2}\pi = \frac{5}{2}\pi$
- **20-2** $2x \frac{\pi}{2} = t$ 라 하면 $0 \le x < \pi$ 에서 $0 \le 2x < 2\pi$, $-\frac{\pi}{2} \le 2x \frac{\pi}{2} < \frac{3}{2}\pi$ $\therefore -\frac{\pi}{2} \le t < \frac{3}{2}\pi$ $\sin\left(2x \frac{\pi}{2}\right) = \frac{\sqrt{3}}{2}$ 에서 $\sin t = \frac{\sqrt{3}}{2}$ 이때 $-\frac{\pi}{2} \le t < \frac{3}{2}\pi$ 에서 함수 $y = \sin t$ 의 그래프 와 직선 $y = \frac{\sqrt{3}}{2}$ 의 교점은 다음 그림과 같으므로 $t = \frac{\pi}{3}$ 또는 $t = \frac{2}{3}\pi$



즉 $2x - \frac{\pi}{2} = \frac{\pi}{3}$ 또는 $2x - \frac{\pi}{2} = \frac{2}{3}\pi$ 이므로 $x = \frac{5}{12}\pi$ 또는 $x = \frac{7}{12}\pi$ 따라서 모든 해의 합은 $\frac{5}{12}\pi + \frac{7}{12}\pi = \pi$

20-3 $2\cos x - \sqrt{3} < 0$ 에서 $\cos x < \frac{\sqrt{3}}{2}$

 $0 \le x < 2\pi$ 일 때, 함수 $y = \cos x$ 의 그래프와 직선 $y = \frac{\sqrt{3}}{2}$ 은 다음 그림과 같으므로 주어진 부등식의 해는 $\frac{\pi}{6} < x < \frac{11}{6}\pi$



즉
$$a=\frac{\pi}{6}, b=\frac{11}{6}\pi$$
이므로

$$\frac{b}{a} = \frac{\frac{11}{6}\pi}{\frac{\pi}{6}} = 11$$

● 6일차			본문 56~59쪽
21 -1 ①	21 -2 ⑤	21 -3 4	21-4 ④
22 -1 ①	22 -2 ②	22 -3 ②	
23 -1 2	23 -2 ⑤	23 -3 ②	23 -4 4
24 -1 ②	24 -2 4	24 -3 ③	24 -4 ⑤

대표 기출 21 사인법칙

꼭 알고 있을 개념

삼각형 ABC의 외접원의 반지름의 길이를 R라 하면 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$

21-1 $B = 180^{\circ} - (45^{\circ} + 105^{\circ}) = 30^{\circ}$

삼각형 ABC의 외접원의 반지름의 길이를 R라 하면 사인법칙에 의하여

$$2R = \frac{2}{\sin 30^{\circ}} = 4 \qquad \therefore R = 2$$

따라서 삼각형 ABC의 외접원의 반지름의 길이는 2이다.

21-2
$$B = 180^{\circ} - (75^{\circ} + 60^{\circ}) = 45^{\circ}$$

사인법칙에 의하여

$$\frac{b}{\sin B} = 2 \cdot 2 \text{ MeV} \frac{b}{\sin 45^{\circ}} = 4$$

$$\therefore b = 4 \cdot \frac{\sqrt{2}}{2} = 2\sqrt{2}$$

$$\frac{c}{\sin C} = 2 \cdot 2 \text{ MeV} \frac{c}{\sin 60^{\circ}} = 4$$

$$\therefore c = 4 \cdot \frac{\sqrt{3}}{2} = 2\sqrt{3}$$

$$\therefore bc = 2\sqrt{2} \cdot 2\sqrt{3} = 4\sqrt{6}$$

21-3
$$\widehat{AB}$$
 : \widehat{BC} : \widehat{CA} = 3 : 4 : 5에서

C:*A*:*B*=3:4:5이므로

$$C = 180^{\circ} \cdot \frac{3}{12} = 45^{\circ}$$

이때 사인법칙에 의하여 $\frac{c}{\sin C} = 2 \cdot 4$

$$\frac{c}{\sin 45^{\circ}} = 8$$

$$\therefore c = 8 \cdot \frac{\sqrt{2}}{2} = 4\sqrt{2}$$

21-4 삼각형 ABC의 외접원의 반지름의 길이를 *R*라 하면 사인법칙에 의하여

$$\sin A = \frac{a}{2R}$$
, $\sin B = \frac{b}{2R}$, $\sin C = \frac{c}{2R}$

위의 식을 주어진 등식에 대입하면

$$\left(\frac{a}{2R}\right)^2 = \left(\frac{b}{2R}\right)^2 - \left(\frac{c}{2R}\right)^2$$

$$a^2 = b^2 - c^2$$

$$\therefore a^2 + c^2 = b^2$$

따라서 \triangle ABC는 $B=90^{\circ}$ 인 직각삼각형이다.

대표 기출 22 코사인법칙

꼭 알고 있을 개념

삼각형 ABC에서

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$b^2 = c^2 + a^2 - 2ca\cos B$$

$$c^2 = a^2 + b^2 - 2ab\cos C$$

22-1 코사인법칙에 의하여

$$c^2 = (\sqrt{3})^2 + 4^2 - 2 \cdot \sqrt{3} \cdot 4 \cdot \cos 30^\circ$$

= 3+16-12=7

$$\therefore c = \sqrt{7} (\because c > 0)$$

22-2 코사인법칙에 의하여

$$b^2 = 1^2 + 6^2 - 2 \cdot 1 \cdot 6 \cdot \cos 60^\circ$$

$$=1+36-6=31$$

$$\therefore b = \sqrt{31} \ (\because b > 0)$$

22-3 삼각형 ABC에서 코사인법칙에 의하여

$$b^2 = 2^2 + 3^2 - 2 \cdot 2 \cdot 3 \cdot \cos 120^\circ$$

$$=4+9+6=19$$

$$\therefore b = \sqrt{19} (:: b > 0)$$

사각형 ABCP에서 원에 내접하는 사각형의 대각

$$P = 180^{\circ} - 120^{\circ} = 60^{\circ}$$

삼각형 ACP에서 코사인법칙에 의하여

$$(\sqrt{19})^2 = x^2 + y^2 - 2xy \cos 60^\circ$$

$$19 = x^2 + y^2 - xy = (x+y)^2 - 3xy$$

$$\therefore xy = \frac{(x+y)^2 - 19}{3} = \frac{8^2 - 19}{3} = 15$$

대표기출 23 코사인법칙과 각의 크기

꼭 알고 있을 개념

삼각형 ABC에서

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

$$\cos B = \frac{c^2 + a^2 - b^2}{2ca}$$

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

23-1 코사인법칙에 의하여

$$\cos C = \frac{7^2 + 8^2 - 9^2}{2 \cdot 7 \cdot 8} = \frac{2}{7}$$
이므로

$$7\cos C = 7 \cdot \frac{2}{7} = 2$$

23-2
$$\frac{\sin A}{2} = \frac{\sin B}{3} = \frac{\sin C}{2} = k (k \neq 0)$$
로 놓으면 $\sin A = 2k$, $\sin B = 3k$, $\sin C = 2k$ $\therefore a : b : c = \sin A : \sin B : \sin C$ $= 2k : 3k : 2k$ $= 2 : 3 : 2$ 따라서 $a = 2l$, $b = 3l$, $c = 2l (l > 0)$ 이라 하면 $\cos C = \frac{(2l)^2 + (3l)^2 - (2l)^2}{2 \cdot 2l \cdot 3l} = \frac{3}{4}$

- 23-3 $12 \sin A = 15 \sin B = 20 \sin C = k (k \neq 0)$ 로 놓으면 $\sin A = \frac{k}{12}, \sin B = \frac{k}{15}, \sin C = \frac{k}{20}$ $\therefore a : b : c = \sin A : \sin B : \sin C$ $= \frac{k}{12} : \frac{k}{15} : \frac{k}{20}$ = 5 : 4 : 3 따라서 a = 5l, b = 4l, c = 3l (l > 0)이라 하면 $\cos A = \frac{(4l)^2 + (3l)^2 (5l)^2}{2 \cdot 4l \cdot 3l} = 0$
- 23-4 코사인법칙에 의하여 $\cos B = \frac{c^2 + a^2 b^2}{2ca}, \cos A = \frac{b^2 + c^2 a^2}{2bc}$ 위의 식을 주어진 등식에 대입하면 $a \cdot \frac{c^2 + a^2 b^2}{2ca} b \cdot \frac{b^2 + c^2 a^2}{2bc} = -c$ $c^2 + a^2 b^2 (b^2 + c^2 a^2) = -2c^2$ $2a^2 2b^2 + 2c^2 = 0$ $\therefore b^2 = a^2 + c^2$ 따라서 $\triangle ABC \vdash B = 90^\circ$ 인 직각삼각형이다.

대표 기출 24 삼각형의 넓이

꼭 알고 있을 개념

삼각형 ABC의 넓이를 S, 외접원의 반지름의 길이 를 R라 하면

$$(1) S = \frac{1}{2}bc \sin A = \frac{1}{2}ca \sin B = \frac{1}{2}ab \sin C$$

$$(2) S = \frac{abc}{4R} = 2R^2 \sin A \sin B \sin C$$

24-1
$$\triangle ABC = \frac{1}{2} \cdot 4 \cdot 3 \cdot \sin 60^{\circ}$$

$$= \frac{1}{2} \cdot 4 \cdot 3 \cdot \frac{\sqrt{3}}{2}$$
$$= 3\sqrt{3}$$

24-2 코사인법칙에 의하여
$$\cos A = \frac{7^2 + 6^2 - 8^2}{2 \cdot 7 \cdot 6} = \frac{1}{4}$$
이므로
$$\sin A = \sqrt{1 - \cos^2 A} = \sqrt{1 - \left(\frac{1}{4}\right)^2} = \frac{\sqrt{15}}{4}$$
$$\therefore \triangle ABC = \frac{1}{2} \cdot 7 \cdot 6 \cdot \sin A$$
$$= \frac{1}{2} \cdot 7 \cdot 6 \cdot \frac{\sqrt{15}}{4}$$
$$= \frac{21\sqrt{15}}{4}$$

따라서 평행사변형 ABCD의 넓이는 $2\triangle ABD = 2 \cdot 6\sqrt{3} = 12\sqrt{3}$

24-4 코사인법칙에 의하여
$$7^2 = b^2 + c^2 - 2bc \cos 60^\circ$$
$$49 = b^2 + c^2 - bc = (b+c)^2 - 3bc$$
이때 $b+c=13$ 이므로
$$49 = 13^2 - 3bc \qquad \therefore bc = 40$$
$$\therefore \triangle ABC = \frac{1}{2} \cdot bc \cdot \sin 60^\circ$$
$$= \frac{1}{2} \cdot 40 \cdot \frac{\sqrt{3}}{2}$$
$$= 10\sqrt{3}$$

2주전

학교시험에 나오는 **창의융합**, **코딩 서술형** 기출 문제

● 1일차

본문 62~63쪽

1	-1	2
		_

1-26

2-22

1-1 문제 제대로 읽기

 $\sqrt[3]{-512}$ 의 세제곱근 중 실수인 것을 a라 하고 2-a의 네제곱근 중 양수인 것을 b라 할 때, $\left(\frac{a}{b}\right)^2$ 의 값을 구하고, 풀이 과정을 쓰시오. [6점]

$$\sqrt[3]{-512} = \sqrt[3]{(-8)^3} = -8$$

-8의 세제곱근 중 실수인 것은

$$\sqrt[3]{-8} = \sqrt[3]{(-2)^3} = -2$$
이므로 $a = -2$

2-a=2-(-2)=4

4의 네제곱근 중 양수인 것은

 $\sqrt[4]{4} = \sqrt[4]{2^2} = \sqrt{2}$ 이므로 $b = \sqrt{2}$

② 2점

$$\therefore \left(\frac{a}{b}\right)^2 = \left(\frac{-2}{\sqrt{2}}\right)^2 = \frac{(-2)^2}{(\sqrt{2})^2} = \frac{4}{2} = 2$$

❸ 2점

2점

Lecture *n*제곱근

n이 2 이상의 정수일 때, 실수 a의 n제곱근 중 실수인 것은 다음과 같다.

	a>0	a=0	a<0
<i>n</i> 이 홀수	$\sqrt[n]{a}$	0	$\sqrt[n]{a}$
<i>n</i> 이 짝수	$\sqrt[n]{a}, -\sqrt[n]{a}$	0	없다.

1-2 문제 제대로 읽기

두 집합 $A = \{2, 3, 4, 5\}, B = \{b | b = a - 5, a \in A\}$ 에

대하여 $a \in A$, $b \in B$ 일 때, 집합

$$C = \{x \mid x = \sqrt[a]{\overline{b}}, x = 2$$
실수}

의 원소의 개수를 구하고, 풀이 과정을 쓰시오. [7점]

$$B = \{-3, -2, -1, 0\}$$
이므로

① 1점

- (i) a=2일 때, $\sqrt{-3}$, $\sqrt{-2}$, $\sqrt{-1}$ 은 실수가 아니고 $\sqrt{0}=0$ 은 실수이다.
- (ii) a=3일 때, $\sqrt[3]{-3}$, $\sqrt[3]{-1}$ =−1, $\sqrt[3]{0}$ =0은 모두실수이다.
- (iii) a=4일 때, $\sqrt[4]{-3}$, $\sqrt[4]{-1}$ 은 실수가 아니고 $\sqrt[4]{0}=0$ 은 실수이다.
- (iv) a=5일 때, $\sqrt[5]{-3}$, $\sqrt[5]{-2}$, $\sqrt[5]{-1}=-1$, $\sqrt[5]{0}=0$ 은 모두 실수이다.

(i)~(iv)에서

$$C = \{-1, 0, \sqrt[3]{-3}, \sqrt[3]{-2}, \sqrt[5]{-3}, \sqrt[5]{-2}\}$$

- 2 5점

따라서 집합 C의 원소의 개수는 6이다.

❸ 1점

오답 피하기

a=2, 3, 4, 5일 때, 모두 0이 실수이지만 집합의 원소는 중복되는 것은 하나로 본다.

2-1 문제 제대로 읽기

다음 식의 값을 구하고, 풀이 과정을 쓰시오. [6점]

$$\log\left(1 - \frac{1}{2}\right) + \log\left(1 - \frac{1}{3}\right) + \log\left(1 - \frac{1}{4}\right) + \cdots$$

$$+ \log\left(1 - \frac{1}{100}\right)$$

$$= \log\frac{1}{2} + \log\frac{2}{3} + \log\frac{3}{4} + \cdots + \log\frac{99}{100}$$

$$= \log\left(\frac{1}{2} \times \frac{2}{3} \times \frac{3}{\cancel{A}} \times \cdots \times \frac{99}{100}\right)$$

$$= \log\frac{1}{100}$$

 $=\log 10^{-2} = -2$

2 2점

4점

2-2 문제 제대로 읽기

함수
$$f(x) = \log_a \left(1 + \frac{1}{x+3}\right)$$
에 대하여

$$f(1)+f(2)+f(3)+\cdots+f(60)=4$$

일 때, 상수 a의 값을 구하고, 풀이 과정을 쓰시오.

[7점]

로그의 밑의 조건에서 a>0, $a\neq 1$

$$f(x) = \log_a \left(1 + \frac{1}{x+3}\right) = \log_a \frac{x+4}{x+3}$$
이므로
$$f(1) + f(2) + f(3) + \dots + f(60)$$

$$= \log_a \frac{5}{4} + \log_a \frac{6}{5} + \log_a \frac{7}{6} + \dots + \log_a \frac{64}{63}$$

$$= \log_a \left(\frac{5}{4} \times \frac{6}{5} \times \frac{7}{6} \times \dots \times \frac{64}{63}\right)$$

$$= \log_a \frac{64}{4} = \log_a 16$$
② 3점

즉 log_a 16=4이므로 a^4 =16= 2^4

 $\therefore a=2 (::a>0)$

❸ 2점

● 2일치

본문 64~65쪽

3-1 22

 $3-2\frac{7}{2}$

4-1 $k \le 2\sqrt{3}$

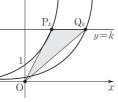
4-2 $0 \le a \le 8$

3-1 문제 제대로 읽기

오른쪽 그림과 같이 두 함수

 $y=2^{x}, y=2^{x-2}$ 의 그래프와 직 선 y=k의 교점을 각각 P_{k}, Q_{k}

라 하자. $\triangle OQ_kP_k$ 의 넓이를 S_k 라 할 때, $S_1+S_4+S_7+S_{10}$ 의



값을 구하고, 풀이 과정을 쓰시오. (단, k는 자연수이고, $^{\text{QEOI 0M}}$ 이는 원점이다.) [6점]

점 P_k 의 좌표를 $(a, 2^a)$ 이라 하면 점 Q_k 와 점 P_k 는 y좌표 가 같으므로 점 Q_k 의 y좌표는 2^a 이다.

점 Q_k 는 함수 $y=2^{x-2}$ 의 그래프 위의 점이므로 $2^a=2^{x-2}$ 에서 a=x-2

 $\therefore x = a + 2$

즉 점 Q_k 의 좌표가 $(a+2, 2^a)$ 이므로

$$\overline{\mathbf{P}_{k}\mathbf{Q}_{k}} = (a+2)-a=2$$

따라서 $\overline{P_kQ_k}$ 의 길이는 k의 값에 관계없이 항상 2이므로 $S_k=\frac{1}{2}\cdot\overline{P_kQ_k}\cdot k=\frac{1}{2}\cdot2\cdot k=k$

$$S_1 + S_4 + S_7 + S_{10} = 1 + 4 + 7 + 10 = 22$$

- 🔞 1점

2 2점

① 3점

3-2 문제 제대로 읽기

오른쪽 그림과 같이 함수 $y=\frac{1}{2^x}$

 $y = \frac{1}{2^x} \qquad y \qquad y = 2^{2x}$ A
B
C
C
x

의 그래프 위의 점 A를 지나고 x 축에 평행한 직선이 함수 $y=2^{2x}$

의 그래프와 만나는 점을 B라 하

고, 점 B를 지나고 y축에 평행한

직선이 함수 $y = \frac{1}{2^x}$ 의 그래프와 만나는 점을 C라 하자.

 $\overline{AB}=3$ 일 때, \overline{BC} 의 길이를 구하고, 풀이 과정을 쓰시오. (단, 점 A는 제2사분면 위에 있다.) [7점]

점 A의 좌표를 $\left(a,\frac{1}{2^a}\right)(a<0)$ 이라 하면 점 A와 점 B는 y좌표가 같으므로 점 B의 y좌표는 $\frac{1}{2^a}$ 이다.

점 B는 함수 $y=2^{2x}$ 의 그래프 위의 점이므로 $\frac{1}{2^a}=2^{2x}$ 에서 $2^{-a}=2^{2x}$

$$2x = -a$$
 $\therefore x = -\frac{a}{2}$

$$\therefore B\left(-\frac{a}{2}, \frac{1}{2^a}\right)$$

또 점 B와 점 C는 x좌표가 같으므로 점 C의 x좌표는 $-\frac{a}{2}$ 이다. 점 C는 함수 $y=\frac{1}{2^x}$ 의 그래프 위의 점이므로

$$y = \frac{1}{2^{-\frac{a}{2}}} = 2^{\frac{a}{2}}$$

$$\therefore \mathsf{C}\!\left(-\frac{a}{2},2^{\frac{a}{2}}\right)$$

- ● 3점

이때
$$\overline{AB}$$
=3이므로 $-\frac{a}{2}$ $-a$ =3 $\therefore a$ = -2

따라서 B(1,4), $C\left(1,\frac{1}{2}\right)$ 이므로

$$\overline{\mathrm{BC}} = 4 - \frac{1}{2} = \frac{7}{2}$$

-- ❸ 2점

1점

2 2점

4-1 문제 제대로 읽기

모든 실수 x에 대하여 부등식 $4^x - k \cdot 2^x + 3 \ge 0$ 이 성립 할 때, 실수 k의 값의 범위를 구하고, 풀이 과정을 쓰시오. [7점]

$$4^{x}-k\cdot 2^{x}+3\geq 0$$
에서 $(2^{x})^{2}-k\cdot 2^{x}+3\geq 0$ $2^{x}=t\ (t>0)$ 라 하면 $t^{2}-kt+3\geq 0$ $\left(t-\frac{k}{2}\right)^{2}+3-\frac{k^{2}}{4}\geq 0$ ····· \bigcirc

주어진 부등식이 모든 실수 x에 대하여 성립하려면 부등식 \bigcirc 이 t>0인 모든 실수 t에 대하여 성립해야 한다.

$$f(t) = \left(t - \frac{k}{2}\right)^2 + 3 - \frac{k^2}{4}$$
이라 하면

 $(i)\frac{k}{2} > 0$, 즉 k > 0일 때

$$f(t)$$
는 $t = \frac{k}{2}$ 에서 최솟값

$$3 - \frac{k^2}{4}$$
을 가지므로

$$3 - \frac{k^2}{4} \ge 0, k^2 - 12 \le 0$$

 $(k+2\sqrt{3})(k-2\sqrt{3}) \le 0$

 $\therefore -2\sqrt{3} \le k \le 2\sqrt{3}$

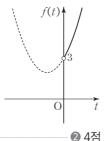
이때 k>0이므로

 $0 < k \le 2\sqrt{3}$

 $(ii)\frac{k}{2} \le 0$, 즉 $k \le 0$ 일 때

t=0이면 $f(0)=3\ge 0$ 이므로 t>0인 모든 실수 t에 대하여 부등 식 \bigcirc 이 성립한다.

 $\therefore k \leq 0$



(i), (ii)에서 $k \le 2\sqrt{3}$

--- ❸ 2점

4-2 문제 제대로 읽기

모든 실수 x에 대하여 부등식

 $4^{x}-(a-4)2^{x+1}+2a\geq 0$

이 성립할 때, 실수 a의 값의 범위를 구하고, 풀이 과정 $\xrightarrow{\Delta Z}$ $\xrightarrow{\Delta Z}$ 을 쓰시오. [7점]

$$4^x - (a-4)2^{x+1} + 2a \ge 0$$
에서 $(2^x)^2 - 2(a-4)2^x + 2a \ge 0$ $2^x = t \ (t > 0)$ 라 하면 $t^2 - 2(a-4)t + 2a \ge 0$ $\{t - (a-4)\}^2 - a^2 + 10a - 16 \ge 0$ \cdots \bigcirc 주어진 부등식이 모든 실수 x 에 대하여 성립하려면 부등식 \bigcirc 이 $t > 0$ 인 모든 실수 t 에 대하여 성립해야 한다.

 $f(t) = \{t - (a-4)\}^2 - a^2 + 10a - 16$ 이라 하면

(i) a-4>0, 즉 a>4일 때

f(t)는 t=a-4에서 최솟값 $-a^2+10a-16$ 을 가지므로 $-a^2+10a-16 \ge 0$

 $a^2 - 10a + 16 \le 0$

 $(a-2)(a-8) \le 0$

∴ 2≤*a*≤8

이때 a>4이므로

 $4 < a \le 8$

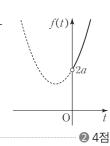
(ii) a-4≤0. 즉 a≤4일 때

t=0이면 $f(0)=2a\geq 0$ 이어야 하

므로 $a \ge 0$

이때 $a \le 4$ 이므로

 $0 \le a \le 4$



(i), (ii)에서 0≤a≤8

❸ 2점

1점

● 3일차

본문 66~67쪽

5-1 38

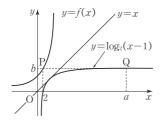
5-2 $\frac{5}{2}$

6-17.4

6-2 2

5-1 문제 제대로 읽기

다음 그림과 같이 함수 y=f(x)의 그래프는 함수 $y=\log_2(x-1)$ 의 그래프와 직선 y=x에 대하여 대칭 이다. 두 점 P(2,b), Q(a,b)가 각각 함수 y=f(x), $y=\log_2(x-1)$ 의 그래프 위의 점일 때, a+b의 값을 구하고, 풀이 과정을 쓰시오. [7점]



함수 y=f(x)의 그래프와 함수 $y=\log_2(x-1)$ 의 그래프가 직선 y=x에 대하여 대칭이므로 두 함수 y=f(x), $y=\log_2(x-1)$ 은 서로 역함수 관계이다.

점 P(2, b)는 함수 y=f(x)의 그래프 위의 점이므로 점 (b, 2)는 함수 $y=\log_2(x-1)$ 의 그래프 위의 점이다. 즉 $2=\log_2(b-1)$ 이므로 $b-1=2^2$

 $\therefore b=5$

또 점 $\mathrm{Q}(a,b)$, 즉 $\mathrm{Q}(a,5)$ 는 함수 $y\!=\!\log_2(x\!-\!1)$ 의 그 래프 위의 점이므로 $5\!=\!\log_2(a\!-\!1)$

$$a-1=2^{5}$$

∴ *a*=33

a+b=33+5=38

❸ 1점

2 4점

1 2점

Lecture 로그함수의 역함수

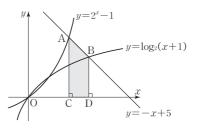
a>0, $a\ne1$ 일 때, 로그함수 $f(x)=\log_a x$ 의 역함수를 g(x) 라 하면

 $(1) g(x) = a^x$

(2) $f(p) = q \iff g(q) = p$

5-2 문제 제대로 읽기

다음 그림과 같이 두 함수 $y=2^x-1$, $y=\log_2(x+1)$ 의 그래프와 직선 y=-x+5의 교점을 각각 A, B라 하고, 두 점 A, B에서 x축에 내린 수선의 발을 각각 C, D라하자. 점 A의 좌표가 (2,3)일 때, \square ACDB의 넓이를 구하고, 풀이 과정을 쓰시오. [7점]



 $y=2^x-1$ 에서 $2^x=y+1$

위의 식의 양변에 밑이 2인 로그를 취하면

 $x = \log_2(y+1)$

x와 y를 서로 바꾸면 $y = \log_2(x+1)$

즉 두 함수 $y=2^x-1$, $y=\log_2(x+1)$ 은 서로 역함수 관계이므로 두 함수의 그래프는 직선 y=x에 대하여 대칭이다.

① 2점

이때 직선 AB와 직선 y=x는 서로 수직이므로 점 A(2,3)의 직선 y=x에 대한 대칭점은 점 B이고, 점 B의 좌표는 B(3,2)이다.

:: C(2,0), D(3,0)

2 3점

따라서 \overline{AC} =3, \overline{BD} =2, \overline{CD} =1이므로

$$\Box ACDB = \frac{1}{2}(2+3) \cdot 1 = \frac{5}{2}$$

- ❸ 2점

6-1 문제 제대로 읽기

어떤 용액의 수소 이온 농도가 $x \mod/L$ 라 할 때, 이 용액의 산성도를 나타내는 pH는 $\log\frac{1}{x}$ 이라 한다. 어떤 용액의 수소 이온 농도가 $3.98\times10^{-8}\mod/L$ 일 때, 이 용액의 pH를 구하고, 풀이 과정을 쓰시오.

(단, log 3.98=0.6으로 계산한다.) [6점]

수소 이온 농도가 $x \mod/L$ 일 때, 이 용액의 산성도는 $pH = log \frac{1}{r}$ 이므로 수소 이온 농도가 $3.98 \times 10^{-8} \, \mathrm{mol/L}$ 인 용액의 산성도는

$$pH = log \frac{1}{3.98 \times 10^{-8}}$$

- $= -\log(3.98 \times 10^{-8})$
- = $-\log 3.98 \log 10^{-8}$
- $= -\log 3.98 + 8$
- =-0.6+8=7.4

4점

1 2점

6-2 문제 제대로 읽기

별의 등급 m과 별의 밝기 I 사이에는 다음과 같은 관 계식이 성립한다.

별의 밝기가 3인 별 A의 별의 등급이 3.5일 때, 별의 밝 기가 12인 별 B의 별의 등급을 구하고, 풀이 과정을 쓰 시오. (단. log 2=0.3으로 계산한다.) [7점]

별 A의 별의 등급이 3.5, 밝기가 3이므로 m=3.5, I=3

 $3.5 = C - 2.5 \log 3$

 $C = 3.5 + 2.5 \log 3$

1 2점

따라서 별 B의 별의 등급은

 $m = (3.5 + 2.5 \log 3) - 2.5 \log 12$

- $=3.5+2.5 \log 3-2.5 \log (2^2 \times 3)$
- $=3.5+2.5 \log 3-2.5(2 \log 2+\log 3)$
- $=3.5+2.5 \log 3-5 \log 2-2.5 \log 3$
- $=3.5-5\log 2$
- $=3.5-5\times0.3$
- =3.5-1.5=2

❸ 3점

2 2점

● 4일차

본문 68~69쪽

- **7**-1 $\frac{2}{5}\pi$ 또는 $\frac{4}{5}\pi$
- **7**-2 제1사분면, 제2사분면, 제3사분면
- **8**-12
- **8**-2 $a = -\frac{2}{3}$, $\sin^3 \theta + \cos^3 \theta = -\frac{13}{27}$

7-1 문제 제대로 읽기

 $0 < \theta < \pi$ 이고 각 2θ 를 나타내는 동경과 각 3θ 를 나타 내는 동경이 x축에 대하여 대칭일 때, 각 θ 의 크기를 모 두 구하고, 풀이 과정을 쓰시오 [7점]

각 2θ 를 나타내는 동경과 각 3θ 를 나타내는 동경이 x축 에 대하여 대칭이므로

 $2\theta+3\theta=2n\pi$ (n은 정수)

 $5\theta = 2n\pi$

$$\therefore \theta = \frac{2n}{5}\pi \qquad \cdots$$

 $0 < \theta < \pi$ 이므로 $0 < \frac{2n}{5}\pi < \pi$

- $\therefore 0 < n < \frac{5}{2}$
- 이때 n은 정수이므로
- n=1 또는 n=2

2 3점

3점

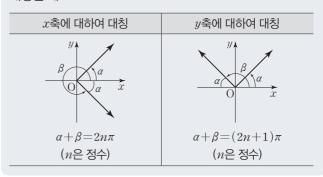
3 1점

이것을 🗇에 대입하면

$$\theta = \frac{2}{5}\pi \, \mathbb{E} = \frac{4}{5}\pi$$

Lecture 두 동경이 x축, y축에 대하여 대칭일 조건

두 각 α . β 를 나타내는 동경이 다음과 같이 좌표축에 대하여 대칭일 때



7-2 문제 제대로 읽기

각 θ 가 제1사분면의 각일 때, 각 $\frac{\theta}{3}$ 를 나타내는 동경이 존재할 수 있는 사분면을 모두 구하고, 풀이 과정을 쓰시오. [7점]

각 θ 가 제1사분면의 각이므로

$$2n\pi < \theta < 2n\pi + \frac{\pi}{2} (n$$
은 정수)

$$\therefore \frac{2n}{3}\pi < \frac{\theta}{3} < \frac{2n}{3}\pi + \frac{\pi}{6}$$

● 2점

(i)
$$n=3k$$
 $(k$ 는 정수)일 때
$$2k\pi<\frac{\theta}{3}<2k\pi+\frac{\pi}{6}$$
 즉 $\frac{\theta}{3}$ 는 제1사분면의 각이다.

(ii)
$$n=3k+1$$
 (k 는 정수)일 때 $2k\pi+\frac{2}{3}\pi<\frac{\theta}{3}<2k\pi+\frac{5}{6}\pi$ 즉 $\frac{\theta}{2}$ 는 제2사분면의 각이다.

(iii) n=3k+2 (k는 정수)일 때 $2k\pi+\frac{4}{3}\pi<\frac{\theta}{3}<2k\pi+\frac{3}{2}\pi$

즉 $\frac{\theta}{3}$ 는 제3사분면의 각이다.

(i)~(ii)에서 각 $\frac{\theta}{3}$ 를 나타내는 동경이 존재할 수 있는 사 분면은 제1사분면 또는 제2사분면 또는 제3사분면이다.

Lecture 사분면의 각

- (1) 각 θ 가 제1사분면의 각이면 $2n\pi\!<\!\theta\!<\!2n\pi\!+\!\frac{\pi}{2}\left(n$ 은 정수)
- (2) 각 θ 가 제2사분면의 각이면 $2n\pi + \frac{\pi}{2} < \theta < 2n\pi + \pi \ (n$ 은 정수)
- (3) 각 θ 가 제3사분면의 각이면 $2n\pi + \pi < \theta < 2n\pi + \frac{3}{2}\pi \ (n$ 은 정수)
- (4) 각 θ 가 제4사분면의 각이면 $2n\pi + \frac{3}{2}\pi < \theta < 2n\pi + 2\pi \ (n$ 은 정수)

8-1 문제 제대로 읽기

x에 대한 이차방정식 $x^2 - 2\sqrt{2}x + k = 0$ 의 두 근이

 $\frac{1}{\sin \theta}$, $\frac{1}{\cos \theta}$ 일 때, 상수 k의 값을 구하고, 풀이 과정을 쓰시오. (단, $0^{\circ} < \theta < 90^{\circ}$) [7점]

이차방정식의 근과 계수의 관계에 의하여

$$\frac{1}{\sin \theta} + \frac{1}{\cos \theta} = 2\sqrt{2}$$

$$\frac{1}{\sin \theta} \cdot \frac{1}{\cos \theta} = \frac{1}{\sin \theta \cos \theta} = k \qquad \dots \dots \bigcirc$$

이때 $0^{\circ} < \theta < 90^{\circ}$ 이므로 $\sin \theta > 0$, $\cos \theta > 0$

$$\therefore \frac{1}{\sin \theta \cos \theta} > 0, \stackrel{\sim}{=} k > 0$$

$$1 \qquad 1 \qquad \cos \theta + \cos \theta$$

 $\frac{1}{\sin \theta} + \frac{1}{\cos \theta} = 2\sqrt{2}$ 에서 $\frac{\sin \theta + \cos \theta}{\sin \theta \cos \theta} = 2\sqrt{2}$ 위의 식에 ①을 대입하면 $k(\sin \theta + \cos \theta) = 2\sqrt{2}$

위의 식에 \bigcirc 을 내입하면 $R(\sin \theta + \cos \theta) = 2\sqrt{2}$ 위의 식의 양변을 제곱하면 $k^2(\sin^2 \theta + 2\sin \theta \cos \theta + \cos^2 \theta) = 8$

$$k^{2}\left(1+\frac{2}{k}\right)=8 \left(:: \bigcirc, \sin^{2}\theta+\cos^{2}\theta=1\right)$$

 $k^2 + 2k = 8, k^2 + 2k - 8 = 0$

③ 2점

4점

1점

Lecture 이차방정식의 근과 계수의 관계

(k+4)(k-2)=0 : k=2 (: k>0)

이차방정식 $ax^2+bx+c=0$ 의 두 근을 lpha, eta라 할 때

$$(1) \alpha + \beta = -\frac{b}{a} \qquad (2) \alpha \beta = \frac{c}{a}$$

8-2 문제 제대로 읽기

x에 대한 이차방정식 $3x^2+x+2a=0$ 의 두 근이 $\sin \theta$, $\cos \theta$ 일 때, 실수 a의 값과 $\sin^3 \theta + \cos^3 \theta$ 의 값을 각각 구하고, 풀이 과정을 쓰시오. [7점]

이차방정식의 근과 계수의 관계에 의하여 $\sin\theta + \cos\theta = -\frac{1}{3}$, $\sin\theta\cos\theta = \frac{2a}{3}$

- 🛈 1점

 $\sin \theta + \cos \theta = -\frac{1}{3}$ 의 양변을 제곱하면 $\sin^2 \theta + 2 \sin \theta \cos \theta + \cos^2 \theta = \frac{1}{9}$

 $1+2\sin\theta\cos\theta=\frac{1}{9}, 2\sin\theta\cos\theta=-\frac{8}{9}$

 $\therefore \sin\theta \cos\theta = -\frac{4}{9}$

즉
$$\frac{2a}{3} = -\frac{4}{9}$$
이므로 $a = -\frac{2}{3}$

 $\therefore \sin^3 \theta + \cos^3 \theta$ $= (\sin \theta + \cos \theta)^3 - 3\sin \theta \cos \theta (\sin \theta + \cos \theta)$ $= \left(-\frac{1}{3}\right)^3 - 3 \cdot \left(-\frac{4}{9}\right) \cdot \left(-\frac{1}{3}\right)$ $= -\frac{1}{27} - \frac{4}{9} = -\frac{13}{27}$

- ❸ 3점

2 3점

Lecture 곱셈 공식의 변형

(1)
$$a^2+b^2=(a+b)^2-2ab$$

 $=(a-b)^2+2ab$
 (2) $a^3+b^3=(a+b)^3-3ab(a+b)$
 (3) $a^3-b^3=(a-b)^3+3ab(a-b)$

● 5일차

본문 70~71쪽

9-1 $-\frac{2}{3}$

9-21

10-1 4

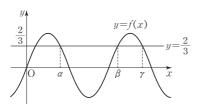
10-2 26

9-1 문제 제대로 읽기

다음 그림과 같이 함수 $f(x) = \sin x$ 의 그래프와 직선

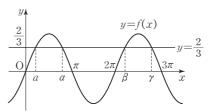
 $y=\frac{2}{3}$ 의 교점 중에서 이웃하는 세 점의 x좌표를 차례

대로 α , β , γ 라 할 때, $f(\alpha+\beta+\gamma)$ 의 값을 구하고, 풀이 과정을 쓰시오. [7점]



 $0< x<\frac{\pi}{2}$ 에서 $\sin x=\frac{2}{3}$ 를 만족시키는 x의 값을 a라 하면 $\sin a=\frac{2}{3}$

또 다음 그림에서 $a+\gamma=3\pi$, $\alpha+\beta=3\pi$ 이므로 $a+\alpha+\beta+\gamma=6\pi$



따라서 $\alpha+\beta+\gamma=6\pi-a$ 이므로

$$f(\alpha+\beta+\gamma) = \sin(\alpha+\beta+\gamma) = \sin(6\pi-\alpha)$$
$$= -\sin \alpha = -\frac{2}{3}$$

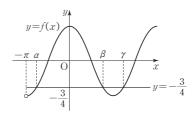
2 3점

4점

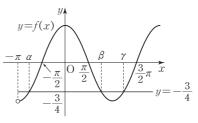
9-2 문제 제대로 읽기

다음 그림과 같이 함수 $f(x) = \cos x$ 의 그래프와 직선 $y = -\frac{3}{4}$ 의 교점의 x좌표를 작은 것부터 차례대로 α , β ,

 γ 라 할 때, $f(\alpha+2\beta+\gamma)$ 의 값을 구하고, 풀이 과정을 쓰시오. $(\mathbf{F},x>-\pi)$ [7점]



함수 $y=\cos x$ 의 그래프는 y축에 대하여 대칭이므로 다음 그림에서 $\alpha=-\beta$, $\beta+\gamma=2\pi$



따라서 $\alpha+2\beta+\gamma=-\beta+2\beta+\gamma=\beta+\gamma$ 이므로

$$\therefore f(\alpha+2\beta+\gamma) = \cos(\alpha+2\beta+\gamma) = \cos(\beta+\gamma)$$
$$= \cos 2\pi = 1$$

2 3점

4점

10-1 문제 제대로 읽기

함수 $f(x) = a \sin \frac{x}{h} + c$ 의 주기가 4π 이고 최댓값이

4, 최솟값이 -2일 때, 상수 a, b, c에 대하여 $\underbrace{a+b-c}$ 의 값을 구하고, 풀이 과정을 쓰시오.

(단, a>0, b>0) [7점]

주어진 함수의 주기가 4π 이고 b>0이므로

$$\frac{2\pi}{\left|\frac{1}{b}\right|} = 4\pi, 2b\pi = 4\pi \qquad \therefore b = 2$$

1 3점

또 a>0이고 주어진 함수의 최댓값이 4, 최솟값이 -2이 므로 a+c=4, -a+c=-2 위의 두 식을 연립하여 풀면 a=3, c=1

② 3점

$$a+b-c=3+2-1=4$$

❸ 1점

10-2 문제 제대로 읽기

함수 $f(x) = a \cos\left(\frac{3}{2}\pi - \frac{x}{b}\right) + b$ 의 주기가 2π 이고

최솟값이 -5, $f\left(\frac{\pi}{6}\right) = \frac{5}{2}$ 일 때, 상수 a, b, p에 대하여 a+b+p의 값을 구하고, 풀이 과정을 쓰시오.

^{질문의핵심} (단, a>0, p>0) [7점]

주어진 함수의 주기가 2π 이고 p>0이므로

$$\frac{2\pi}{\left|\frac{1}{p}\right|} = 2\pi, 2p\pi = 2\pi \qquad \therefore p=1$$

$$\therefore f(x) = a \cos\left(\frac{3}{2}\pi - x\right) + b$$

또 a>0이고 주어진 함수의 최솟값이 -5이므로

$$-a+b=-5$$

.....

이때
$$f\left(\frac{\pi}{6}\right) = \frac{5}{2}$$
이므로

$$f\left(\frac{\pi}{6}\right) = a\cos\left(\frac{3}{2}\pi - \frac{\pi}{6}\right) + b$$
$$= -a\sin\frac{\pi}{6} + b$$
$$= -\frac{1}{2}a + b = \frac{5}{2} \qquad \cdots \cdots \bigcirc$$

 \bigcirc , \bigcirc 을 연립하여 풀면 a=15, b=10

$$a+b+p=15+10+1=26$$

❸ 1점

2 3점

● 6일차

본문 72~73쪽

11-1 $20\sqrt{19}\pi$ m

11-2 (1)
$$\frac{1}{5}$$
 (2) $\frac{2\sqrt{6}}{5}$ (3) $6\sqrt{6}$

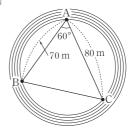
12-1 (1) 6 (2)
$$\frac{12\sqrt{2}}{7}$$

12-2 (1)
$$24\sqrt{3}$$
 (2) $\frac{24}{5}$

11-1 문제 제대로 읽기

다음 그림과 같이 원 모양인 트랙의 안쪽 경계 위에 세지점 A, B, C를 잡고 $\overline{AB}=70 \text{ m}$, $\overline{AC}=80 \text{ m}$.

∠BAC=60°임을 측정하였다. 이때 트랙의 안쪽 둘레 드 조건 의 길이를 구하고, 풀이 과정을 쓰시오. [7점]



코사인법칙에 의하여

$$\overline{BC}^2 = 80^2 + 70^2 - 2 \cdot 80 \cdot 70 \cos 60^\circ$$
= 5700

$$\therefore \overline{BC} = 10\sqrt{57} \text{ (m)}$$

1 3점

원 모양인 트랙의 안쪽 둘레, 즉 삼각형 ABC의 외접원의 반지름의 길이를 R라 하면 사인법칙에 의하여

$$2R = \frac{\overline{BC}}{\sin(\angle BAC)} = \frac{10\sqrt{57}}{\sin 60^{\circ}} = 20\sqrt{19}$$

$$\therefore R=10\sqrt{19} \text{ (m)}$$

1 3점

따라서 트랙의 안쪽 둘레의 길이는

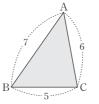
$$2\pi R = 2\pi \cdot 10\sqrt{19} = 20\sqrt{19}\pi \text{ (m)}$$

---- ❸ 1점

② 3점

11-2 문제 제대로 읽기

오른쪽 그림과 같은 삼각형 ABC에 서 a=5, b=6, c=7일 때, 다음을 구하고, 풀이 과정을 쓰시오. [6점]



1 2점

2 2점

 $(1)\cos C$ 의 값 $^{\text{\tiny \tiny 2PC}}$ 작성

(1) 코사인법칙에 의하여

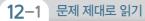
$$\cos C = \frac{5^2 + 6^2 - 7^2}{2 \cdot 5 \cdot 6} = \frac{1}{5}$$

 $(2) 0^{\circ} < C < 180^{\circ}$ 이므로 $\sin C > 0$

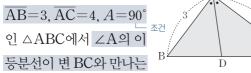
$$\therefore \sin C = \sqrt{1 - \cos^2 C} = \sqrt{1 - \left(\frac{1}{5}\right)^2} = \frac{2\sqrt{6}}{5}$$

(3) $\triangle ABC = \frac{1}{2} \cdot 5 \cdot 6 \cdot \sin C = \frac{1}{2} \cdot 5 \cdot 6 \cdot \frac{2\sqrt{6}}{5}$

 $=6\sqrt{6}$ ❸ 2점



오른쪽 그림과 같이



점을 D라 할 때, 다음을 구하고, 풀이 과정을 쓰시오. [6점]

(1) <u>△ABC의</u> 넓이 _{질문의 핵심}

(2) \overline{AD} 의 길이

(1) $\triangle ABC = \frac{1}{2} \cdot 3 \cdot 4 = 6$

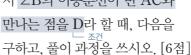
(2) $\overline{AD} = x$ 라 하면 $\triangle ABC = \triangle ABD + \triangle ADC$ 에서 $6 = \frac{1}{2} \cdot 3 \cdot x \cdot \sin 45^{\circ} + \frac{1}{2} \cdot 4 \cdot x \cdot \sin 45^{\circ}$ $6 = \frac{3\sqrt{2}}{4}x + \sqrt{2}x, \frac{7\sqrt{2}}{4}x = 6$ $\therefore x = \frac{12\sqrt{2}}{7}$

② 4점

12-2 문제 제대로 읽기

오른쪽 그림과 같이 $\overline{AB}=12$, BC=8, B=120°인 △ABC에

서 ∠B의 이등분선이 변 AC와



(1) <u>△ABC의</u> 넓이 _{질문의 핵심}

(2) BD의 길이

(1) $\triangle ABC = \frac{1}{2} \cdot 12 \cdot 8 \cdot \sin 120^\circ$ $=\frac{1}{2} \cdot 12 \cdot 8 \cdot \frac{\sqrt{3}}{2}$ $=24\sqrt{3}$

(2) $\overline{BD} = x$ 라 하면 $\triangle ABC = \triangle ABD + \triangle BCD$ 에서

$$24\sqrt{3} = \frac{1}{2} \cdot 12 \cdot x \cdot \sin 60^{\circ} + \frac{1}{2} \cdot 8 \cdot x \cdot \sin 60^{\circ}$$
$$24\sqrt{3} = 3\sqrt{3}x + 2\sqrt{3}x, 5\sqrt{3}x = 24\sqrt{3}$$

$$\therefore x = \frac{24}{5}$$

② 3점

1 3점

미리 풀어보는 우리 학교 중간고사

● 1일차 본문 76~79쪽 **01** (5) **02** ② 03(1) 04(2) **05** ③ 06 4 **07** ⑤ 08 4 **09** ③ 103 **11** ⑤ **12** ③ **13** ③ 143 **15** ④ 16 ① **17** ⑤ [서술형 1] 8 [서술형 2] 55

01 ①
$$\sqrt{4} = \sqrt{2^2} = 2$$

② $\sqrt[3]{-8} = \sqrt[3]{(-2)^3} = -2$
③ 25의 제곱근은 -5 , 5의 2개이다.
④ -1 의 세제곱근 중 실수인 것은 $\sqrt[3]{-1} = \sqrt[3]{(-1)^3} = -1$
⑤ -27 의 세제곱근 중 실수인 것은

[서술형 3] 9

 $\sqrt[3]{-27} = \sqrt[3]{(-3)^3} = -3$ 의 1개이다. 따라서 옳지 않은 것은 $\sqrt[3]{}$ 이다.

02
$$9^{\frac{3}{2}} \div 27^{\frac{2}{3}} \times 3^{-1} = (3^2)^{\frac{3}{2}} \div (3^3)^{\frac{2}{3}} \times 3^{-1}$$

= $3^3 \div 3^2 \times 3^{-1}$
= $3^{3-2+(-1)}$
= $3^0 = 1$

03 $\log_5 10 + 2 \log_5 2 - \log_5 8$ = $\log_5 (2 \times 5) + 2 \log_5 2 - \log_5 2^3$ = $\log_5 2 + \log_5 5 + 2 \log_5 2 - 3 \log_5 2$ = 1

04
$$\log_{12} 72 = \frac{\log 72}{\log 12} = \frac{\log(2^3 \times 3^2)}{\log(2^2 \times 3)}$$

= $\frac{3 \log 2 + 2 \log 3}{2 \log 2 + \log 3}$
= $\frac{3a + 2b}{2a + b}$

05 $\log_2 2^2 < \log_2 5 < \log_2 2^3$ 이므로 $2 < \log_2 5 < 3$ 즉 $\log_2 5$ 의 정수 부분은 2이므로 a = 2 또 소수 부분은 $\log_2 5 - 2$ 이므로 $b = \log_2 5 - 2 = \log_2 5 - \log_2 2^2 = \log_2 \frac{5}{4}$ $\therefore 4(a+2^b) = 4\left(2+2^{\log_2 \frac{5}{4}}\right) = 4\left(2+\frac{5}{4}\right) = 13$

오답 피하기

 $k=2^{\log_2\frac{5}{4}}$ 이라 하고 양변에 밑이 2인 로그를 취하면 $\log_2 k=\log_2 2^{\log_2\frac{5}{4}}=\log_2\frac{5}{4} imes\log_2 2=\log_2\frac{5}{4}$ $\therefore k=\frac{5}{4}$

Lecture 로그의 정수 부분과 소수 부분

양수 M과 정수 n에 대하여 $a^n \le M < a^{n+1} (a > 1)$ 이면 (1) $n \le \log_a M < n+1$

 $\log_a M - n$

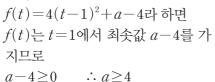
(1) $n \le \log_a M < n + 1$ (2) $\log_a M$ 의 정수 부분은 n이고 소수 부분은

06 함수 $y=a^x$ 의 그래프가 점 (2,9)를 지나므로 $9=a^2$ 에서 $a^2=3^2$ $\therefore a=3(\because a>0)$ 즉 함수 $y=3^x$ 의 그래프가 점 (-2,b)를 지나므로 $b=3^{-2}=\frac{1}{9}$ $\therefore 6ab=6\cdot 3\cdot \frac{1}{9}=2$

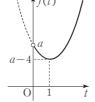
07 $0 < \frac{1}{2} < 1$ 이므로 함수 $y = \left(\frac{1}{2}\right)^{x-1}$ 은 감소함수이다. 따라서 x = -2일 때 최댓값은 $M = \left(\frac{1}{2}\right)^{-3} = 2^3 = 8$ x = 0일 때 최솟값은 $m = \left(\frac{1}{2}\right)^{-1} = 2^1 = 2$ $\therefore M + m = 8 + 2 = 10$

08
$$4^{x+1}-2^{x+3}+a \ge 0$$
에서 $4\cdot (2^x)^2-8\cdot 2^x+a \ge 0$ $2^x=t\ (t>0)$ 라 하면 $4t^2-8t+a \ge 0$ $4(t-1)^2+a-4\ge 0$ ······ \bigcirc

주어진 부등식이 모든 실수 x에 대하여 성립하려면 부등식 \bigcirc 이 t>0인 모든 실수 t에 대하여 성립해야 한다.



따라서 실수 a의 최솟값은 4이다



- **09** 함수 $y = \log_3 x$ 의 그래프가 점 (3, a)를 지나므로 $a = \log_3 3 = 1$ 또 함수 $y = \log_3 x$ 의 그래프가 점 (b, 2)를 지나므로 $2 = \log_3 b$ ∴ $b = 3^2 = 9$ ∴ a - b = 1 - 9 = -8
- 10 $y = \log_2(x^2 8x + 20)$ 에서 $f(x) = x^2 8x + 20$ 으로 놓으면 $y = \log_2 f(x)$ 이고, $f(x) = (x 4)^2 + 4$ $2 \le x \le 5$ 에서 f(2) = 8, f(4) = 4, f(5) = 5이므로 $4 \le f(x) \le 8$ 이때 밑 2는 1보다 크므로 함수 $y = \log_2 f(x)$ 는 f(x)가 최대일 때 최댓값을 갖고, f(x)가 최소일 때 최솟값을 갖는다. f(x) = 8일 때 최댓값은 $M = \log_2 8 = \log_2 2^3 = 3$

 $M = \log_2 8 = \log_2 2^3 = 3$ f(x) = 4일 때 최솟값은 $m = \log_2 4 = \log_2 2^2 = 2$

$\therefore Mm=3\cdot 2=6$

Lecture 이차함수의 최대·최소

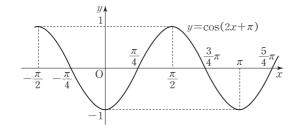
정의역이 $X = \{x \mid \alpha \leq x \leq \beta\}$ 인 이차함수 $f(x) = a(x-p)^2 + q$ 의 최댓값과 최솟값은 다음과 같다. (1) $p \in X$ 일 때, $f(\alpha)$, $f(\beta)$, q 중에서 가장 큰 값이 최댓값이고, 가장 작은 값이 최솟값이다.

- (2) $p \not\in X$ 일 때, $f(\alpha)$, $f(\beta)$ 중에서 가장 큰 값이 최댓 값이고, 가장 작은 값이 최솟값이다.
- **11** 진수의 조건에서 3x+1>0 $\therefore x>-\frac{1}{3}$ \bigcirc $\log_2(3x+1)=\log_2(3x+1)=\log_2(3x+1)=\log_2(3x+1)$

밑이 같으므로 $3x+1=2^4$ $\therefore x=5$ 따라서 ①에 의하여 구하는 해는 x=5

- 12 ① $45^{\circ} = 45 \times \frac{\pi}{180} = \frac{\pi}{4}$ ② $120^{\circ} = 120 \times \frac{\pi}{180} = \frac{2}{3}\pi$ ③ $210^{\circ} = 210 \times \frac{\pi}{180} = \frac{7}{6}\pi$ ④ $\frac{11}{6}\pi = \frac{11}{6}\pi \times \frac{180^{\circ}}{\pi} = 330^{\circ}$ ⑤ $\frac{2}{5}\pi = \frac{2}{5}\pi \times \frac{180^{\circ}}{\pi} = 72^{\circ}$ 따라서 옮지않은 것은 ③이다.
- 13 ① $\sin^2\theta = 1 \cos^2\theta = 1 \left(\frac{1}{2}\right)^2 = \frac{3}{4}$ 이때 $\frac{3}{2}\pi < \theta < 2\pi$, 즉 각 θ 가 제4사분면의 각이 므로 $\sin\theta < 0$ $\therefore \sin\theta = -\sqrt{\frac{3}{4}} = -\frac{\sqrt{3}}{2}$ ② $\tan\theta = \frac{\sin\theta}{\cos\theta} = \frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}} = -\sqrt{3}$ ③ $\frac{1}{\sin\theta} = -\frac{2}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}$ ④ $\frac{1}{\cos\theta} = 2$ ⑤ $\frac{1}{\tan\theta} = -\frac{1}{\sqrt{3}} = -\frac{\sqrt{3}}{3}$ 따라서 옳은 것은 ③이다.
- 14 이차방정식의 근과 계수의 관계에 의하여 $\sin \theta + \cos \theta = \frac{2}{3}$, $\sin \theta \cos \theta = -\frac{k}{3}$ $\sin \theta + \cos \theta = \frac{2}{3}$ 의 양변을 제곱하면 $\sin^2 \theta + 2 \sin \theta \cos \theta + \cos^2 \theta = \frac{4}{9}$ $1 + 2 \sin \theta \cos \theta = \frac{4}{9}$, $2 \sin \theta \cos \theta = -\frac{5}{9}$ $\therefore \sin \theta \cos \theta = -\frac{5}{18}$ 즉 $-\frac{k}{3} = -\frac{5}{18}$ 이므로 $k = \frac{5}{6}$

15 $y = \cos(2x + \pi) = \cos 2\left(x + \frac{\pi}{2}\right)$ 즉 함수 $y = \cos(2x + \pi)$ 의 그래프는 함수 $y = \cos 2x$ 의 그래프를 x축의 방향으로 $-\frac{\pi}{2}$ 만큼 평행이동한 것이므로 다음 그림과 같다.



- ① 그래프는 y축에 대하여 대칭이다.
- ② 주어진 함수의 주기는 $\frac{2\pi}{|2|} = \pi$
- ③ 치역은 $\{y \mid -1 \le y \le 1\}$ 이다.
- ⑤ 그래프는 함수 $y=\cos 2x$ 의 그래프를 x축의 방향으로 $-\frac{\pi}{2}$ 만큼 평행이동한 것이다.

따라서 옳지 않은 것은 ④이다.

16 주어진 그래프에서 함수의 최댓값이 3, 최솟값이 -3 이므로 |a|=3

이때 a>0이므로 a=3

주기는
$$\frac{3}{8}\pi - \left(-\frac{\pi}{8}\right) = \frac{\pi}{2}$$
이므로 $\frac{2\pi}{|b|} = \frac{\pi}{2}$ 에서

|b| = 4

이때 b>0이므로 b=4

또 $0 \le c \le \pi$ 에서 주어진 그래프는 함수

 $y=3\sin 4x$ 의 그래프를 x축의 방향으로 $-\frac{\pi}{8}$ 만큼 평행이동한 것이므로

$$f(x) = 3\sin 4\left\{x - \left(-\frac{\pi}{8}\right)\right\} = 3\sin\left(4x + \frac{\pi}{2}\right)$$

$$\therefore f\left(\frac{\pi}{3}\right) = 3\sin\left(\frac{4}{3}\pi + \frac{\pi}{2}\right) = 3\sin\frac{11}{6}\pi$$

$$= 3\sin\left(2\pi - \frac{\pi}{6}\right) = -3\sin\frac{\pi}{6}$$

$$= -3\cdot\frac{1}{2} = -\frac{3}{2}$$

17
$$\sin \frac{2}{3}\pi + \cos\left(-\frac{\pi}{6}\right) + \tan\frac{5}{4}\pi$$

 $= \sin\left(\pi - \frac{\pi}{3}\right) + \cos\frac{\pi}{6} + \tan\left(\pi + \frac{\pi}{4}\right)$
 $= \sin\frac{\pi}{3} + \cos\frac{\pi}{6} + \tan\frac{\pi}{4}$
 $= \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} + 1 = 1 + \sqrt{3}$

[서술형 1]
$$(a^{\frac{1}{4}}-b^{\frac{1}{4}})(a^{\frac{1}{4}}+b^{\frac{1}{4}})(a^{\frac{1}{2}}+b^{\frac{1}{2}})$$

$$=\{(a^{\frac{1}{4}})^2-(b^{\frac{1}{4}})^2\}(a^{\frac{1}{2}}+b^{\frac{1}{2}})$$

$$=(a^{\frac{1}{2}}-b^{\frac{1}{2}})(a^{\frac{1}{2}}+b^{\frac{1}{2}})$$

$$=(a^{\frac{1}{2}})^2-(b^{\frac{1}{2}})^2$$

$$=a-b$$

위의 식에 a=12, b=4를 대입하면 (주어진 식)=12-4=8

채점 기준	배점
❶ 곱셈 공식을 이용하여 주어진 식을 전개할 수 있다.	4점
② 주어진 식의 값을 구할 수 있다.	2점

Lecture 곱셈 공식을 이용한 식의 전개

a>0, b>0이고 m, n이 실수일 때

$$(1) (a^m + b^n) (a^m - b^n) = (a^m)^2 - (b^n)^2 = a^{2m} - b^{2n}$$

(2)
$$(a^m \pm b^n)^2 = (a^m)^2 \pm 2a^m b^n + (b^n)^2$$

= $a^{2m} \pm 2a^m b^n + b^{2n}$ (복부호동순)

[서술형 2] 점 A는 함수 $y=2^x-1$ 의 그래프 위의 점이므로 점 A의 좌표를 $(k, 2^k-1)$ 이라 하자.

이때 \overline{OB} =6이므로 $\triangle AOB$ 의 넓이는

$$\frac{1}{2} \cdot \overline{OB} \cdot (2^{k} - 1) = \frac{1}{2} \cdot 6 \cdot (2^{k} - 1) = 3(2^{k} - 1)$$

$$= 3(2^k-1)=21$$
이므로 $2^k-1=7$

$$2^k = 8 = 2^3$$
 : $k = 3$

점 A(3,7)은 함수 $y=2^{-x}+\frac{a}{8}$ 의 그래프 위의 점이

므로
$$7=2^{-3}+\frac{a}{8}$$

$$7 = \frac{1}{8} + \frac{a}{8}, \frac{a}{8} = \frac{55}{8} \quad \therefore a = 55$$

채점 기준	배점
● 점 A의 좌표를 구할 수 있다.	4점
2 <i>a</i> 의 값을 구할 수 있다.	3점

[서술형 3] 진수와 밑의 조건에서 $3x+10>0, x>0, x\ne1$ 이므로 $x>0, x\ne1$ ······ \bigcirc

$$\frac{2}{\log_x 3} = 2\log_3 x = \log_3 x^2$$
이므로 부등식 $\log_3 (3x+10) > \frac{2}{\log_x 3}$ 에서 $\log_3 (3x+10) > \log_3 x^2$ 이때 및 3은 1보다 크므로 $3x+10 > x^2, x^2-3x-10 < 0$ $(x+2)(x-5) < 0$ $\therefore -2 < x < 5$ ······ ©

①, \bigcirc 을 동시에 만족시키는 x의 값의 범위는 0 < x < 1 또는 1 < x < 5 따라서 정수 x는 2, 3, 4이므로 그 합은 2+3+4=9

2

8

채점 기준	배점
$lackbox{1}$ 진수와 밑의 조건을 만족시키는 x 의 값의 범위를 구할 수 있다.	2점
② 부등식을 만족시키는 <i>x</i> 의 값의 범위를 구할 수 있다.	3점
③ 부등식을 만족시키는 정수 x 의 값의 합을 구할 수 있다.	2점

● 2일차				본문 80~83쪽
01 4	02 ①	03 ⑤	04 ①	05 ③
06 ③	07 ②	08 ①	09 ⑤	10 ①
11 ④	12 ③	13 ②	14 4	15 ②
16 ⑤	17 ④			
[서술형 1	50			
[서술형 2]	$-\frac{5}{3}$			
[서술형 3]	$-\frac{5\sqrt{2}}{8}$			

- **01** ① 64의 세제곱근을 x라 하면 $x^3 = 64$ $x^3 64 = 0$, $(x 4)(x^2 + 4x + 16) = 0$ $\therefore x = 4$ 또는 $x = -2 \pm 2\sqrt{3}i$ 즉 64의 세제곱근은 $\sqrt[3]{64} = 4$, $-2 \pm 2\sqrt{3}i$ 의 3개이다
 - ② -8의 세제곱근 중 실수인 것은 $\sqrt[3]{-8} = \sqrt[3]{(-2)^2} = -2$
 - ③ 8의 네제곱근 중 실수인 것은 $-\sqrt[4]{8}$, $\sqrt[4]{8}$ 이다.
 - ④ n이 홀수일 때, 3의 n제곱근 중 실수인 것은 $\sqrt[n]{3}$ 의 1개이다.
 - ⑤ n이 짝수일 때, -4의 n제곱근 중 실수인 것은 없다.

따라서 옳은 것은 ④이다.

02
$$2^{\frac{2}{3}} \div 8 \times \sqrt[3]{4^2} = 2^{\frac{2}{3}} \div 2^3 \times 4^{\frac{2}{3}} = 2^{\frac{2}{3}} \div 2^3 \times (2^2)^{\frac{2}{3}}$$

$$= 2^{\frac{2}{3}} \div 2^3 \times 2^{\frac{4}{3}} = 2^{\frac{2}{3} - 3 + \frac{4}{3}}$$

$$= 2^{-1} = \frac{1}{2}$$

$$3 \log_{2} 9 \times \log_{3} \sqrt{2} = \log_{2} 3^{2} \times \log_{3} 2^{\frac{1}{2}}$$

$$= 2 \log_{2} 3 \times \frac{1}{2} \log_{3} 2$$

$$= 2 \log_{2} 3 \times \frac{1}{2 \log_{2} 3}$$

$$= 1$$

$$4 \log_2 \frac{2}{3} + 2 \log_2 \sqrt{12}$$

$$= \log_2 2 - \log_2 3 + 2 \log_2 12^{\frac{1}{2}}$$

$$= 1 - \log_2 3 + \log_2 12$$

$$= 1 - \log_2 3 + \log_2 (2^2 \times 3)$$

$$= 1 - \log_2 3 + \log_2 2^2 + \log_2 3$$

$$= 1 + 2 = 3$$

$$\begin{array}{l} \text{(5)} \log_{16} 64 + \log_{0.1} \sqrt[4]{10} = \log_{2^4} 2^6 + \log_{10^{-1}} 10^{\frac{1}{4}} \\ = \frac{6}{4} \log_2 2 - \frac{1}{4} \log_{10} 10 \\ = \frac{6}{4} - \frac{1}{4} = \frac{5}{4} \end{array}$$

따라서 옳지 않은 것은 ⑤이다.

04 이차방정식의 근과 계수의 관계에 의하여
$$\log a + \log b = 2$$
, $\log a \times \log b = -2$
 $\therefore \log_a b + \log_b a$

$$= \frac{\log b}{\log a} + \frac{\log a}{\log b} = \frac{(\log a)^2 + (\log b)^2}{\log a \times \log b}$$

$$= \frac{(\log a + \log b)^2 - 2\log a \times \log b}{\log a \times \log b}$$

$$= \frac{2^2 - 2 \times (-2)}{-2} = -4$$

05 log
$$x$$
=0.8762=2.8762−2
=log 752−log 10^2
=log $\left(\frac{752}{10^2}\right)$
=log 7.52
∴ x =7.52

06
$$y = \left(\frac{1}{2}\right)^{-x+4} - 1 = (2^{-1})^{-x+4} - 1 = 2^{x-4} - 1$$

- ㄱ. 그래프의 점근선의 방정식은 y=-1이다.
- ㄴ. 밑 2는 1보다 크므로 x의 값이 증가하면 y의 값도 증가하다.
- 다. 그래프는 함수 $y=2^x$ 의 그래프를 x축의 방향으로 x 4만큼, y축의 방향으로 x -1만큼 평행이동한 것이다.

따라서 옳은 것은 ㄱ, ㄷ이다.

오답 피하기

함수 $y=\left(\frac{1}{2}\right)^{-x+4}-1$ 의 그래프는 함수 $y=\left(\frac{1}{2}\right)^{x+4}-1$ 의 그래프를 y축에 대하여 대칭이동한 것과 같으므로 증가함 수이다.

07 함수 $y=2^{x-1}+2$ 의 그래프를 x축의 방향으로 a만큼, y축의 방향으로 b만큼 평행이동하면 $y=2^{x-a-1}+2+b$ 이 그래프가 함수 $y=2^x$ 의 그래프와 일치하므로 -a-1=0, 2+b=0 따라서 a=-1, b=-2이므로 a+b=-1+(-2)=-3

08
$$\left(\frac{1}{9}\right)^{-x+2} = \left\{\left(\frac{1}{3}\right)^2\right\}^{-x+2} = \left(\frac{1}{3}\right)^{-2x+4}$$
이므로
$$\left(\frac{1}{3}\right)^{-x+3} \le \left(\frac{1}{3}\right)^{-2x+4}$$
이때 및 $\frac{1}{3}$ 은 1보다 작으므로
$$-x+3 \ge -2x+4$$
 $\therefore x \ge 1$ 따라서 부등식을 만족시키는 정수 x 의 최솟값은 1이다.

- 09 함수 $y = \log_2(x-5) 3$ 의 그래프를 x축의 방향으로 p만큼, y축의 방향으로 q만큼 평행이동하면 $y = \log_2(x-p-5) 3 + q$ ······ \bigcirc 이때 $y = \log_2 8(x-2) 1$ $= \log_2 8 + \log_2(x-2) 1$ $= \log_2 2^3 + \log_2(x-2) 1$ $= \log_2(x-2) + 2$ ····· \bigcirc 이고, \bigcirc 의 그래프가 \bigcirc 의 그래프와 일치하므로 -p-5=-2, -3+q=2 따라서 p=-3, q=5이므로 p+q=-3+5=2
- 10 진수의 조건에서 x>0 $\log x = t$ 라 하면 $t^2 kt 2 = 0$ ······ \bigcirc 주어진 방정식의 두 근을 α , β 라 하면 방정식 \bigcirc 의 두 실근은 $\log \alpha$, $\log \beta$ 이다. 이차방정식 \bigcirc 에서 근과 계수의 관계에 의하여 $\log \alpha + \log \beta = k$ $\therefore \log \alpha \beta = k$ 이때 $\alpha \beta = 10$ 이므로 $k = \log \alpha \beta = \log 10 = 1$
- **11** ① −570°=360°×(−2)+150°이므로 제2사분면의 각이다.
 - ② $485^{\circ} = 360^{\circ} \times 1 + 125^{\circ}$ 이므로 제2사분면의 각이다.
 - ③ $-\frac{5}{4}\pi = 2\pi \times (-1) + \frac{3}{4}\pi$ 이고 $\frac{3}{4}\pi = \frac{3}{4}\pi \times \frac{180^{\circ}}{\pi} = 135^{\circ}$ 이므로 제2사분면의 각이다
 - ④ $\frac{7}{3}\pi = 2\pi \times 1 + \frac{\pi}{3}$ 이고 $\frac{\pi}{3} = \frac{\pi}{3} \times \frac{180^{\circ}}{\pi} = 60^{\circ}$ 이므로 제1사분면의 각이다.
 - ⑤ $2n\pi+\frac{5}{6}\pi$ (n은 정수)에서 $\frac{5}{6}\pi=\frac{5}{6}\pi\times\frac{180^{\circ}}{\pi}=150^{\circ}$ 이므로 제2사분면의 각이다.

따라서 각을 나타내는 동경이 나머지 넷과 다른 사분 면에 속하는 것은 ④이다.

Lecture 동경이 속하는 사분면

 θ = $360^{\circ} \times n + \alpha^{\circ}$ (n은 정수, $0^{\circ} \le \alpha^{\circ} < 360^{\circ}$)일 때, 각 θ 를 나타내는 동경과 각 α° 를 나타내는 동경은 일치하므로 같은 사분면에 속한다.

12 각 θ 를 나타내는 동경과 각 -3θ 를 나타내는 동경이 일직선 위에 있고 방향이 반대이므로 원점에 대하여 대칭이다.

즉
$$\theta-(-3\theta)=(2n+1)\pi$$
 $(n$ 은 정수)이므로 $4\theta=(2n+1)\pi$ \therefore $\theta=\frac{2n+1}{4}\pi$ \cdots \odot $0\leq\theta\leq\frac{\pi}{2}$ 이므로 $0\leq\frac{2n+1}{4}\pi\leq\frac{\pi}{2}$

$$0 \le \theta \le \frac{\pi}{2}$$
이므로 $0 \le \frac{2n+1}{4} \pi \le \frac{\pi}{2}$

$$0 \le 2n+1 \le 2, -1 \le 2n \le 1$$

$$\therefore -\frac{1}{2} \le n \le \frac{1}{2}$$

이때 n은 정수이므로 n=0

$$n=0$$
을 \bigcirc 에 대입하면 $\theta=\frac{\pi}{4}$

$$\therefore \cos \theta = \cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}$$

Lecture 두 동경이 일직선 위에 있을 조건

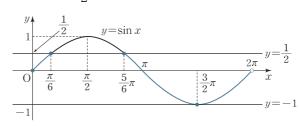
두 각 α . β 를 나타내는 동경이 일직선 위에 있고 방향이 반대이면 원점에 대 하여 대칭이므로

 $\beta - \alpha = (2n+1)\pi$ (n은 정수)

13 $\overline{OP} = \sqrt{(-2)^2 + (-1)^2} = \sqrt{5}$ 이므로 $\sin \theta = \frac{-1}{\sqrt{5}} = -\frac{\sqrt{5}}{5}, \cos \theta = \frac{-2}{\sqrt{5}} = -\frac{2\sqrt{5}}{5}$ $\therefore \sin\theta \cos\theta = -\frac{\sqrt{5}}{5} \cdot \left(-\frac{2\sqrt{5}}{5}\right) = \frac{2}{5}$

14 $\sin^2\theta + \cos^2\theta = 1$ 이므로 $\cos^2 \theta = 1 - \sin^2 \theta = 1 - \left(\frac{3}{7}\right)^2 = \frac{40}{49}$ 이때 각 θ 가 제2사분면의 각이므로 $\cos \theta < 0$ 즉 $\cos \theta = -\sqrt{\frac{40}{49}} = -\frac{2\sqrt{10}}{7}$ 이므로 $\tan\theta = \frac{\sin\theta}{\cos\theta} = \frac{\frac{3}{7}}{\frac{2\sqrt{10}}{20}} = -\frac{3\sqrt{10}}{20}$ $\therefore \sqrt{10} \tan \theta = \sqrt{10} \cdot \left(-\frac{3\sqrt{10}}{20} \right) = -\frac{3}{2}$

- **15** $\sin(-120^{\circ}) + \tan 210^{\circ} \cos \frac{7}{6}\pi$ $=-\sin 120^{\circ} + \tan(180^{\circ} + 30^{\circ}) - \cos(\pi + \frac{\pi}{6})$ $=-\sin(180^{\circ}-60^{\circ})+\tan 30^{\circ}-\left(-\cos\frac{\pi}{6}\right)$ = $-\sin 60^{\circ} + \tan 30^{\circ} + \cos \frac{\pi}{6}$ $=-\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{2}$
- 16 $\sin^2 x = 1 \cos^2 x$ 이므로 $(1-\cos^2 x)-\cos x-1=0$ $\cos^2 x + \cos x = 0$, $\cos x (\cos x + 1) = 0$ 이때 $0 \le x < 2\pi$ 에서 $-1 \le \cos x \le 1$ 이므로 $\cos x = -1 \, \text{EH} \cos x = 0$ $(i)\cos x = -1$ 일 때, $x = \pi$ (ii) $\cos x = 0$ 일 때, $x = \frac{\pi}{2}$ 또는 $x = \frac{3}{2}\pi$ 따라서 모든 해의 합은 $\pi + \frac{\pi}{2} + \frac{3}{2}\pi = 3\pi$
- **17** $2\sin^2 x + \sin x 1 \le 0$ 에서 $(2\sin x-1)(\sin x+1)\leq 0$ $\therefore -1 \le \sin x \le \frac{1}{2}$ $0 \le x < 2\pi$ 에서 함수 $y = \sin x$ 의 그래프와 두 직선 $y = -1, y = \frac{1}{2}$ 은 다음 그림과 같다.



따라서 주어진 부등식의 해는 $0 \le x \le \frac{\pi}{6}$ $\subseteq \frac{5}{6} \pi \le x < 2\pi$

[서술형 1] $\sqrt[4]{4^n} = \sqrt[4]{2^{2n}} = 2^{\frac{n}{2}}$ 이므로

 $2^{\frac{n}{2}}$ 이 정수가 되려면 n의 값은 2의 배수이어야 한다.

따라서 100 이하의 자연수 중 2의 배수인 것은 2, 4, 6, ···, 98, 100으로 그 개수는 50이다.

채점 기준	배점
① $\sqrt[4]{4^n}$ 을 밑이 2인 거듭제곱으로 나타낼 수 있다.	2점
2n의 조건을 구할 수 있다.	2점
	2점

[서술형 2] 진수의 조건에서 x>0

$$y = (\log_3 x)^2 + 3\log_{27} x^2 + 3$$

= $(\log_3 x)^2 + 3\log_{3^3} x^2 + 3$
= $(\log_3 x)^2 + 2\log_3 x + 3$

 $\log_3 x = t$ 라 하면

 $y=t^2+2t+3=(t+1)^2+2$ 이므로 주어진 함수는 t=-1에서 최솟값 2를 갖는다.

이때
$$t = \log_3 x = -1$$
에서 $x = 3^{-1} = \frac{1}{3}$

따라서 주어진 함수는 $x=\frac{1}{3}$ 에서 최솟값 2를 가지므 로 $a=\frac{1}{3},b=2$

$$\therefore a-b=\frac{1}{3}-2=-\frac{5}{3}$$

채점 기준	배점
$lue{1}$ 주어진 함수의 식을 $\log_3 x$ 에 대한 식으로 정리할 수 있다.	3점
② <i>a</i> , <i>b</i> 의 값을 구할 수 있다.	3점
	1점

[서술형 3] 이차방정식의 근과 계수의 관계에 의하여

$$\sin\theta + \cos\theta = -\frac{\sqrt{2}}{2}$$

$$\sin \theta + \cos \theta = -\frac{\sqrt{2}}{2}$$
의 양변을 제곱하면 $\sin^2 \theta + 2 \sin \theta \cos \theta + \cos^2 \theta = \frac{1}{2}$ $1 + 2 \sin \theta \cos \theta = \frac{1}{2}, 2 \sin \theta \cos \theta = -\frac{1}{2}$ $\therefore \sin \theta \cos \theta = -\frac{1}{4}$

$$\begin{aligned} & \therefore \sin^3 \theta + \cos^3 \theta \\ &= (\sin \theta + \cos \theta)^3 \\ & -3 \sin \theta \cos \theta (\sin \theta + \cos \theta) \\ &= \left(-\frac{\sqrt{2}}{2} \right)^3 - 3 \cdot \left(-\frac{1}{4} \right) \cdot \left(-\frac{\sqrt{2}}{2} \right) \\ &= -\frac{5\sqrt{2}}{8} \end{aligned}$$

채점 기준	배점
① 이차방정식의 근과 계수의 관계를 사용하여 $\sin \theta + \cos \theta$ 의 값을 구할 수 있다.	2점
$2 \sin \theta \cos \theta$ 의 값을 구할 수 있다.	3점
	2점

● 3일차				본문 84~87쪽
01 4	024	03 ①	04 ③	05 ②
06 ⑤	07 ③	08 ①	09 4	10 ③
11 ④	12 ④	13 ②	14 4	15 ⑤
16 ④	17 ②			
[서술형 1] 2			
[서술형 2	2] 6			
[서술형 3	8] 6			

01
$$\sqrt[3]{5} \times \sqrt[3]{25} + \frac{\sqrt[5]{64}}{\sqrt[5]{2}} = \sqrt[3]{5} \times 25 + \sqrt[5]{\frac{64}{2}}$$

$$= \sqrt[3]{125} + \sqrt[5]{32}$$

$$= \sqrt[3]{5^3} + \sqrt[5]{2^5}$$

$$= 5 + 2 = 7$$

02 밑의 조건에서 x+2>0, $x+2\ne 1$ x>-2, $x\ne -1$ ∴ -2< x< -1 또는 x>-1 ······ ① 진수의 조건에서 4-x>0이므로 x<4 ····· ① ①, ①의 공통 범위를 구하면 -2< x< -1 또는 -1< x< 4따라서 정수 x는 0, 1, 2, 3으로 2 개수는 4이다.

04 리히터 규모가 4인 지진의 에너지를 E_1 이라 하면 $\log E_1$ =11.8+1.5×4=17.8 또 리히터 규모가 2인 지진의 에너지를 E_2 라 하면 $\log E_2$ =11.8+1.5×2=14.8 이때 $\log E_1$ - $\log E_2$ =17.8-14.8=3이므로 $\log \frac{E_1}{E_2}$ =3 $\therefore \frac{E_1}{E_2}$ =10 3 따라서 리히터 규모가 4인 지진의 에너지는 리히터

규모가 2인 지진의 에너지의 10^3 배이다.

다른 풀이

리히터 규모가 4인 지진의 에너지를 E_1 이라 하면 $\log E_1$ =11.8+1.5×4=17.8 $\qquad \therefore E_1$ =10^{17.8} 또 리히터 규모가 2인 지진의 에너지를 E_2 라 하면 $\log E_2$ =11.8+1.5×2=14.8 $\qquad \therefore E_2$ =10^{14.8} $\qquad \therefore \frac{E_1}{E_2} = \frac{10^{17.8}}{10^{14.8}} = 10^{17.8-14.8} = 10^3$

따라서 리히터 규모가 4인 지진의 에너지는 리히터 규모가 2인 지진의 에너지의 10^3 배이다.

- **05** 함수 $y=a-2^{x-b}$ 의 그래프에서 점근선의 방정식은 y=a 이때 주어진 그래프에서 점근선의 방정식이 y=2이 므로 a=2 즉 $y=2-2^{x-b}$ 의 그래프가 점 (1,0)을 지나므로 $0=2-2^{1-b}, 2^{1-b}=2$ 1-b=1 $\therefore b=0$ $\therefore a+b=2+0=2$
- 06 $y=4^x-2^{x+3}+a=(2^x)^2-8\cdot 2^x+a$ $2^x=t\ (t>0)$ 라 하면 $y=t^2-8t+a=(t-4)^2+a-16$ 즉 주어진 함수는 $t=2^x=4$ 일 때 최솟값 a-16을 가 지므로 x=2, a-16=1 따라서 a=17, b=2이므로 a+b=17+2=19

07
$$\left(\frac{1}{9}\right)^x + \left(\frac{1}{3}\right)^x \le 12$$
에서 $\left\{\left(\frac{1}{3}\right)^x\right\}^2 + \left(\frac{1}{3}\right)^x - 12 \le 0$ $\left(\frac{1}{3}\right)^x = t \ (t > 0)$ 라 하면 $t^2 + t - 12 \le 0$ $(t + 4)(t - 3) \le 0$ $\therefore -4 \le t \le 3$ 이때 $t > 0$ 이므로 $0 < t \le 3$ 즉 $0 < \left(\frac{1}{3}\right)^x \le 3$ 이므로 $0 < \left(\frac{1}{3}\right)^x \le \left(\frac{1}{3}\right)^{-1}$ 밑 $\frac{1}{3}$ 이 1보다 작으므로 $x \ge -1$ 따라서 실수 x 의 최솟값은 -1 이다.

- 08 $y=2^{x-1}+5$ 에서 $2^{x-1}=y-5$ 위의 식의 양변에 밑이 2인 로그를 취하면 $\log_2 2^{x-1}=\log_2 (y-5)$ $x-1=\log_2 (y-5)$ $\therefore x=\log_2 (y-5)+1$ x와 y를 서로 바꾸면 $y=\log_2 (x-5)+1$ 따라서 $f^{-1}(x)=\log_2 (x-5)+1$ 이므로 a=-5,b=1 $\therefore a+b=-5+1=-4$
- 09 함수 y=log₂(x-2)-3의 그래프는 함수 y=log₂ x의 그래프를 x축의 방향으로 2만큼, y축의 방향으로 -3만큼 평행이동한 것이다.
 □. 치역은 실수 전체의 집합이다.
 □. 진수의 조건에서 x-2>0 ∴ x>2 즉 정의역은 {x|x>2인 실수}이다.
 □. 밑 2는 1보다 크므로 x의 값이 증가하면 y의 값도 증가한다.
 □. 그래프의 점근선의 방정식은 x=2이다. 따라서 옳은 것은 ㄴ, ㄷ이다.
- **10** 진수의 조건에서 x-2>0, 2x-1>0 $\therefore x>2$ $\log_2(x-2) \le \log_4(2x-1)$ 에서 $\log_4(x-2)^2 \le \log_4(2x-1)$ 이때 밑 4는 1보다 크므로 $(x-2)^2 \le 2x-1$ $x^2-4x+4 \le 2x-1$, $x^2-6x+5 \le 0$ $(x-1)(x-5) \le 0$ $\therefore 1 \le x \le 5$ 따라서 정수 x는 3, 4, 5로 그 개수는 3이다.

11 각 5θ 를 나타내는 동경과 각 -2θ 를 나타내는 동경이 y축에 대하여 대칭이므로

$$5\theta + (-2\theta) = (2n+1)\pi$$
 (n은 정수)

$$3\theta = (2n+1)\pi$$
 $\therefore \theta = \frac{2n+1}{3}\pi$ \cdots

$$\pi$$
< θ < 2π 이므로 π < $\frac{2n+1}{3}\pi$ < 2π

$$3 < 2n + 1 < 6$$
 $\therefore 1 < n < \frac{5}{2}$

이때
$$n$$
은 정수이므로 $n=2$

$$n=2$$
를 \bigcirc 에 대입하면 $\theta=\frac{5}{3}\pi$

12 호의 길이가 2π , 반지름의 길이가 r인 부채꼴의 넓이 가 $\frac{5}{2}\pi$ 이므로

$$\frac{1}{2}r \cdot 2\pi = \frac{5}{2}\pi \qquad \therefore r = \frac{5}{2}$$

또 반지름의 길이가 $r=\frac{5}{2}$, 중심각의 크기가 $\frac{\pi}{a}$ 인 부 채꼴의 호의 길이가 2π 이므로

$$\frac{5}{2} \cdot \frac{\pi}{a} = 2\pi$$
 $\therefore a = \frac{5}{4}$

$$\therefore a + r = \frac{5}{4} + \frac{5}{2} = \frac{15}{4}$$

13 각 θ 가 제3사분면의 각이므로

 $\sin \theta < 0$, $\cos \theta < 0$, $\tan \theta > 0$, $\sin \theta + \cos \theta < 0$

$$\therefore |\sin \theta| + |\cos \theta| + |\tan \theta| - \sqrt{(\sin \theta + \cos \theta)^2}$$
$$= |\sin \theta| + |\cos \theta| + |\tan \theta| - |\sin \theta + \cos \theta|$$

$$= -\sin\theta - \cos\theta + \tan\theta - \{-(\sin\theta + \cos\theta)\}\$$

$$=$$
 $-\sin\theta$ $-\cos\theta$ $+\tan\theta$ $+\sin\theta$ $+\cos\theta$

=tan θ

Lecture $\sqrt{a^2}$ 의 계산

$$\sqrt{a^2} = |a| = \begin{cases} a & (a \ge 0) \\ -a & (a < 0) \end{cases}$$

14 함수 $y=-\sin(2x-1)+2$ 에 대하여 최댓값은 M=|-1|+2=3 최솟값은 m=-|-1|+2=1 주기는 $\frac{2\pi}{|2|}=\pi$ 이므로 p=1

$$M + m + p = 3 + 1 + 1 = 5$$

$$\frac{\sin \theta \cos \theta}{1 - \cos \theta} + \frac{\sin \theta \cos \theta}{1 + \cos \theta} \\
= \sin \theta \cos \theta \left(\frac{1}{1 - \cos \theta} + \frac{1}{1 + \cos \theta} \right) \\
= \sin \theta \cos \theta \times \frac{1 + \cos \theta + 1 - \cos \theta}{(1 - \cos \theta)(1 + \cos \theta)} \\
= \sin \theta \cos \theta \times \frac{2}{1 - \cos^2 \theta} \\
= \sin \theta \cos \theta \times \frac{2}{\sin^2 \theta} \\
= \frac{2 \cos \theta}{\sin \theta} = \frac{2}{\tan \theta}$$

16 $\cos^2 5^\circ + \cos^2 10^\circ + \cdots + \cos^2 85^\circ + \cos^2 90^\circ$ $= \cos^2(90^\circ - 85^\circ) + \cos^2(90^\circ - 80^\circ)$ $+ \cdots + \cos^2(90^\circ - 50^\circ) + \cos^2 45^\circ + \cos^2 50^\circ$ $+ \cdots + \cos^2 85^\circ + \cos^2 90^\circ$ $= \sin^2 85^\circ + \sin^2 80^\circ + \cdots + \sin^2 50^\circ + \cos^2 45^\circ$ $+ \cos^2 50^\circ + \cdots + \cos^2 85^\circ + \cos^2 90^\circ$ $= (\sin^2 85^\circ + \cos^2 85^\circ) + (\sin^2 80^\circ + \cos^2 80^\circ) + \cdots$ $+ (\sin^2 50^\circ + \cos^2 50^\circ) + \cos^2 45^\circ + \cos^2 90^\circ$ $= 1 \cdot 8 + \left(\frac{\sqrt{2}}{2}\right)^2 + 0^2$ $= 8 + \frac{1}{2} = \frac{17}{2}$

Lecture 삼각함수의 성질

각의 크기의 합이 $\frac{\pi}{2}$ 인 경우, 즉 $A+B=\frac{\pi}{2}$ 일 때

$$B = \frac{\pi}{2} - A$$
이므로

$$\sin^2 A + \sin^2 B = \sin^2 A + \sin^2 \left(\frac{\pi}{2} - A\right)$$

$$=\sin^2 A + \cos^2 A = 1$$

$$\cos^{2} A + \cos^{2} B = \cos^{2} A + \cos^{2} \left(\frac{\pi}{2} - A\right)$$
$$= \cos^{2} A + \sin^{2} A = 1$$

17 주어진 이차방정식의 판별식을 D라 하면

$$\frac{D}{4} = (-\sqrt{2}\cos\theta)^2 - 1\cdot(\sin\theta + 1) = 0$$

$$2\cos^2\theta - \sin\theta - 1 = 0$$

$$2(1-\sin^2\theta)-\sin\theta-1=0$$

$$2\sin^2\theta+\sin\theta-1=0$$

$$(2\sin\theta-1)(\sin\theta+1)=0$$

$$\therefore \sin \theta = \frac{1}{2}$$
 또는 $\sin \theta = -1$

이때 $0 \le \theta < \pi$ 이므로 $0 \le \sin \theta \le 1$

$$\therefore \sin \theta = \frac{1}{2}$$

따라서 $0 \le \theta < \pi$ 에서 $\sin \theta = \frac{1}{2}$ 을 만족시키는 θ 의 값은 $\frac{\pi}{6}$, $\frac{5}{6}$ π 이므로

$$\theta_1 = \frac{\pi}{6}, \theta_2 = \frac{5}{6}\pi \left(:: \theta_1 < \theta_2 \right)$$

$$\therefore \theta_2 - \theta_1 = \frac{5}{6}\pi - \frac{\pi}{6} = \frac{2}{3}\pi$$

[서술형 1] 피자 8조각을 굽는 데 걸리는 시간은 $t_1 = 1.2 \times 8^{0.5}$ (분)

피자 2조각을 굽는 데 걸리는 시간은 $t_2=1.2\times2^{0.5}$ (분)

채점 기준	배점
$lacksquare$ t_1 의 값을 구할 수 있다.	1점
② <i>t</i> ₂의 값을 구할 수 있다.	1점
$oldsymbol{\mathfrak{S}} rac{t_1}{t_2}$ 의 값을 구할 수 있다.	4점

[서술형 2] $\log A = n + \alpha$ (n은 정수, $0 \le \alpha < 1$)라 하면 이차방정식 $5x^2 - 17x + k = 0$ 의 두 근은 n, α 이다. 이차방정식의 근과 계수의 관계에 의하여

$$n + \alpha = \frac{17}{5} = 3.4, n\alpha = \frac{k}{5}$$

$$n+\alpha=3.4=3+0.4$$
이므로

$$n=3, \alpha=0.4=\frac{2}{5}$$

즉
$$n\alpha=3\cdot\frac{2}{5}=\frac{k}{5}$$
이므로 $\frac{6}{5}=\frac{k}{5}$

$$\therefore k=6$$

채점 기준	배점
$lue{1}$ $\log A = n + a$ (n 은 정수, $0 \le a < 1$)라 하고 이차방	
정식의 근과 계수의 관계를 이용하여 $n+lpha$, $nlpha$ 를 구	3점
할 수 있다.	
2 n, α의 값을 구할 수 있다.	3점
③ <i>k</i> 의 값을 구할 수 있다.	1점

[서술형 3] b>0이고 주기가 6π 이므로

$$\frac{2\pi}{\left|\frac{1}{b}\right|} = 6\pi, 2b\pi = 6\pi \qquad \therefore b = 3$$

a>0이고

3

2

8

최댓값이 3이므로 a+c=3

최솟값이 -1이므로 -a+c=-1

위의 두 식을 연립하여 풀면 a=2, c=1

$$\therefore abc = 2 \cdot 3 \cdot 1 = 6$$

채점 기준	배점
① 주기를 이용하여 b 의 값을 구할 수 있다.	2점
② 최댓값, 최솟값을 이용하여 a, c 의 값을 구할 수 있다.	4점
	1점

2

● 4일차				본문 88~91쪽
01 ①	02 ①	03 ①	042	05 ⑤
06 4	07 ③	082	09 4	10 ⑤
11 ①	12 ②	13 ①	14 4	15 ③
16 ⑤	17 ②			
[서술형 1	$]-\frac{3}{2}$			
[서술형 2	-			
[서술형 3	$[1] (1) \frac{4\sqrt{3}}{7} (1)$	2) $6\sqrt{3}$		

01
$$a=\sqrt{2}$$
이므로 $a^2=2$
 $b^3=\sqrt{3}=3^{\frac{1}{2}}$ 이므로 $b^2=(3^{\frac{1}{2}})^{\frac{2}{3}}=3^{\frac{1}{2}\cdot\frac{2}{3}}=3^{\frac{1}{3}}$
 $\therefore (ab)^2=a^2b^2=2\cdot 3^{\frac{1}{3}}$

02
$$\log_{81} 27 = \log_{3^4} 3^3 = \frac{3}{4} \log_3 3 = \frac{3}{4}$$

03
$$b=2\sqrt{2}=2\cdot 2^{\frac{1}{2}}=2^{1+\frac{1}{2}}=2^{\frac{3}{2}}$$
이므로 $a\log b=\log_2 10\cdot \log 2^{\frac{3}{2}}$ $=\frac{\log 10}{\log 2}\cdot \frac{3}{2}\log 2=\frac{3}{2}$

04 함수
$$y=2^{x-a}+b$$
의 그래프의 점근선의 방정식은 $y=b$ 이때 주어진 그래프에서 점근선의 방정식이 $y=-1$ 이므로 $b=-1$ 즉 $y=2^{x-a}-1$ 의 그래프가 점 $(-1,0)$ 을 지나므로 $0=2^{-1-a}-1, 2^{-1-a}=1$ $-1-a=0$ $\therefore a=-1$ $\therefore a+b=-1+(-1)=-2$

05
$$y=3^{-x+2}+1=3^{-(x-2)}+1=\left(\frac{1}{3}\right)^{x-2}+1$$
 $0<\frac{1}{3}<1$ 이므로 함수 $y=3^{-x+2}+1$ 은 감소함수이다. 따라서 $x=-2$ 일 때 최댓값은 $M=3^4+1=82$ $x=3$ 일 때 최솟값은 $m=3^{-1}+1=\frac{1}{3}+1=\frac{4}{3}$ $\therefore M+3m=82+3\cdot\frac{4}{3}=86$

06
$$y = \log_9(x-3) + 2$$
에서 $\log_9(x-3) = y - 2$
 $x - 3 = 9^{y-2}$ ∴ $x = 9^{y-2} + 3$
 x 와 y 를 서로 바꾸면
 $y = 9^{x-2} + 3 = (3^2)^{x-2} + 3$
 $= 3^{2x-4} + 3$
위의 식이 $y = a^{2x+b} + c$ 와 같으므로
 $a = 3, b = -4, c = 3$
∴ $a + b + c = 3 + (-4) + 3 = 2$

07 함수
$$y = \log_3(x - a) + b$$
의 그래프의 점근선의 방정
식은 $x = a$
이때 주어진 그래프에서 점근선의 방정식이 $x = -3$
이므로 $a = -3$
즉 $y = \log_3(x + 3) + b$ 의 그래프가 점 $(0, 3)$ 을 지나
므로 $3 = \log_3 3 + b$
 $3 = 1 + b$ ∴ $b = 2$
∴ $a + b = -3 + 2 = -1$

08 진수의 조건에서
$$x+2>0$$
, $6-x>0$
즉 $x>-2$, $x<6$ 이므로 $-2< x<6$
 $y=\log_4(x+2)+\log_4(6-x)$
 $=\log_4(x+2)(6-x)$
 $=\log_4(-x^2+4x+12)$
 $f(x)=-x^2+4x+12$ 라 하면
 $f(x)=-(x-2)^2+16$ (단, $-2< x<6$)
이므로 함수 $f(x)$ 는 $x=2$ 일 때 최댓값이 16이다.
이때 밑 4는 1보다 크므로 함수 $y=\log_4 f(x)$ 는
 $f(x)$ 가 최대일 때 최댓값을 갖는다.
따라서 $f(x)=16$ 일 때 최댓값은
 $y=\log_4 16=\log_4 4^2=2$

10
$$\overline{OP} = \sqrt{(-\sqrt{3})^2 + 1^2} = \sqrt{4} = 2$$
이므로 $\sin \alpha = \frac{1}{2}$ $\overline{OQ} = \sqrt{1^2 + (-\sqrt{3})^2} = \sqrt{4} = 2$ 이므로 $\cos \beta = \frac{1}{2}$ $\therefore \sin \alpha + \cos \beta = \frac{1}{2} + \frac{1}{2} = 1$

11
$$\sin \theta + \cos \theta = \frac{1}{\sqrt{3}}$$
의 양변을 제곱하면 $\sin^2 \theta + 2 \sin \theta \cos \theta + \cos^2 \theta = \frac{1}{3}$ $1 + 2 \sin \theta \cos \theta = \frac{1}{3}, 2 \sin \theta \cos \theta = -\frac{2}{3}$ $\therefore \sin \theta \cos \theta = -\frac{1}{3}$ $\therefore \tan \theta + \frac{1}{\tan \theta} = \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta}$ $= \frac{\sin^2 \theta + \cos^2 \theta}{\sin \theta \cos \theta}$ $= \frac{1}{-\frac{1}{2}} = -3$

12 주어진 그래프에서 함수의 최댓값이
$$2$$
, 최솟값이 -2 이므로 $|a|=2$

이때
$$a > 0$$
이므로 $a = 2$

주기는
$$\frac{5}{6}\pi - \left(-\frac{\pi}{6}\right) = \pi$$
이므로 $\frac{2\pi}{|b|} = \pi$ 에서

$$|b| = 2$$

이때
$$b>0$$
이므로 $b=2$

또
$$0 < c < \frac{\pi}{2}$$
에서 주어진 그래프는 함수

 $y=2\cos 2x$ 의 그래프를 x축의 방향으로 $-\frac{\pi}{6}$ 만큼 평행이동한 것이다.

즉
$$y=2\cos 2\left\{x-\left(-\frac{\pi}{6}\right)\right\}=2\cos\left(2x+\frac{\pi}{3}\right)$$
이므로 $c=\frac{\pi}{3}$

$$\therefore abc = 2 \cdot 2 \cdot \frac{\pi}{3} = \frac{4}{3}\pi$$

13 (주어진 식)=
$$\cos \theta - \sin \theta - \cos \theta + \sin \theta = 0$$

14 함수
$$y = -2\sin\frac{\pi}{3}x - 1$$
에 대하여 최댓값은 $a = |-2| - 1 = 1$ 최솟값은 $b = -|-2| - 1 = -3$ 주기는 $c = \frac{2\pi}{\frac{\pi}{3}} = 6$ $\therefore a + b + c = 1 + (-3) + 6 = 4$

$$\angle AOB = 360^{\circ} \times \frac{3}{3+4+5}$$
$$= 90^{\circ}$$
$$\angle BOC = 360^{\circ} \times \frac{4}{3+4+5} = 360^{\circ} \times \frac{4}{3+5} = 3$$

$$\angle BOC = 360^{\circ} \times \frac{4}{3+4+5} = 120^{\circ}$$

$$\angle COA = 360^{\circ} \times \frac{5}{3+4+5} = 150^{\circ}$$

$$\triangle ABC = \triangle OAB + \triangle OBC + \triangle OCA = \frac{1}{2} \cdot 10 \cdot 10 \cdot \sin 90^{\circ} + \frac{1}{2} \cdot 10 \cdot 10 \cdot \sin 120^{\circ}$$

$$+\frac{1}{2}\cdot 10\cdot 10\cdot \sin 150^{\circ}$$

$$= \frac{1}{2} \cdot 10 \cdot 10 \cdot 1 + \frac{1}{2} \cdot 10 \cdot 10 \cdot \frac{\sqrt{3}}{2} + \frac{1}{2} \cdot 10 \cdot 10 \cdot \frac{1}{2}$$

$$= 50 + 25\sqrt{3} + 25$$

$$= 75 + 25\sqrt{3}$$

$$= 25(3 + \sqrt{3})$$

16
$$2 \sin A = 4 \sin B = 3 \sin C = k (k \neq 0)$$
로 놓으면 $\sin A = \frac{k}{2}, \sin B = \frac{k}{4}, \sin C = \frac{k}{3}$

$$\therefore a : b : c = \sin A : \sin B : \sin C$$

$$= \frac{k}{2} : \frac{k}{4} : \frac{k}{3}$$

$$= 6 : 3 : 4$$

따라서
$$a=6l$$
, $b=3l$, $c=4l$ $(l>0)$ 이라 하면
$$\cos B = \frac{c^2 + a^2 - b^2}{2ca} = \frac{(4l)^2 + (6l)^2 - (3l)^2}{2 \cdot 4l \cdot 6l}$$
$$= \frac{43l^2}{48l^2} = \frac{43}{48}$$

17
$$(a+b)$$
 : $(b+c)$: $(c+a)=7$: 9 : 8이므로 $a+b=7k, b+c=9k, c+a=8k (k>0)$ 라 하자. 위의 식을 변끼리 더하면

$$2a+2b+2c=24k$$
 : $a+b+c=12k$

$$\therefore a=3k, b=4k, c=5k$$

ㄱ.
$$c^2 = a^2 + b^2$$
이므로 \triangle ABC는 빗변의 길이가 c 인 직각삼각형이다.

ㄴ.
$$\sin A : \sin B : \sin C = a : b : c = 3 : 4 : 5$$
 ㄷ. 외접원의 반지름의 길이는 알 수 없다. 따라서 옳은 것은 ㄱ. ㄴ이다

[서술형 1]
$$4^{2x} + a \cdot 4^{x+1} + 8 = 0$$
에서

$$(4^x)^2 + 4a \cdot 4^x + 8 = 0$$

$$4^x = t \ (t>0)$$
라 하면 $t^2 + 4at + 8 = 0$ ····· ① 이때 주어진 방정식의 두 근의 비가 $1:2$ 이므로 방정식 $4^{2x} + a \cdot 4^{x+1} + 8 = 0$ 의 두 근을 $k, 2k \ (k \neq 0)$ 라 하면 방정식 ①의 두 근은 $4^k, 4^{2k}$ 이다.

0

이차방정식 \bigcirc 에서 근과 계수의 관계에 의하여 $4^k+4^{2k}\!=\!-4a,4^k\cdot4^{2k}\!=\!8$

$$4^{k} \cdot 4^{2k} = 8$$
 $4^{k+2k} = 4^{3k} = (2^{2})^{3k} = 2^{6k} = 2^{3}$ $6k = 3$ $\therefore k = \frac{1}{2}$

$$k=\frac{1}{2}$$
을 $4^k+4^{2k}=-4a$ 에 대입하면 $4^{\frac{1}{2}}+4^1=-4a, 2+4=-4a$ $\therefore a=-\frac{3}{2}$

채점 기준	배점
$lue{1}$ 방정식의 두 근을 k , $2k(k\! \neq\! 0)$ 로 놓고 이차방정식 의 근과 계수의 관계를 사용할 수 있다.	3점
② <i>k</i> 의 값을 구할 수 있다.	2점
③ <i>a</i> 의 값을 구할 수 있다.	2점

[서술형 2]
$$\pi < \theta < \frac{3}{2}\pi$$
이므로 $\cos \theta < 0$, $\tan \theta > 0$

$$\begin{split} \sin\theta &= -\frac{1}{\sqrt{5}} \circ | 므로 \\ &\cos^2\theta = 1 - \sin^2\theta = 1 - \left(-\frac{1}{\sqrt{5}}\right)^2 = \frac{4}{5} \\ & \therefore \cos\theta = -\sqrt{\frac{4}{5}} = -\frac{2}{\sqrt{5}} \left(\because \cos\theta < 0\right) \\ & \circ | \text{대} \tan\theta = \frac{\sin\theta}{\cos\theta} = \frac{-\frac{1}{\sqrt{5}}}{-\frac{2}{\sqrt{5}}} = \frac{1}{2} \end{split}$$

$$\therefore \sqrt{5}\cos\theta + 2\tan\theta = \sqrt{5}\cdot\left(-\frac{2}{\sqrt{5}}\right) + 2\cdot\frac{1}{2}$$
$$= -2 + 1 = -1$$

채점 기준	배점
$0\cos\theta$, $\tan\theta$ 의 부호를 알 수 있다.	2점
$2\cos\theta$, $\tan\theta$ 의 값을 구할 수 있다.	3점
③ $\sqrt{5}\cos\theta+2\tan\theta$ 의 값을 구할 수 있다.	2점

[서술형 3]
$$(1)\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{7^2 + 3^2 - 8^2}{2 \cdot 7 \cdot 3}$$

$$= \frac{-6}{42} = -\frac{1}{7}$$
이때 $0^\circ < A < 180^\circ$ 이므로 $\sin A > 0$

$$\therefore \sin A = \sqrt{1 - \cos^2 A} = \sqrt{1 - \left(-\frac{1}{7}\right)^2}$$

$$= \frac{4\sqrt{3}}{7}$$

(2)
$$\triangle ABC = \frac{1}{2}bc \sin A = \frac{1}{2} \cdot 7 \cdot 3 \cdot \frac{4\sqrt{3}}{7}$$

= $6\sqrt{3}$

채점 기준	배점
$\bullet \sin A$ 의 값을 구할 수 있다.	3점
② △ABC의 넓이를 구할 수 있다.	3점

● 5일차				본문 92~95쪽
013	02 4	03 ①	042	05 ⑤
06 ⑤	07 ①	083	09 ③	10 ②
11 ⑤	12 ④	13 ③	143	15 ②
16 ⑤	17 ③			
[서술형 1] 4			
[서술형 2	2] 6			
[서술형 3	8] (1) $2\sqrt{21}$ m	$(2) 2\sqrt{7} \text{m}$	(3) $28\pi \mathrm{m}^2$	2

01
$$\sqrt[3]{54} + \sqrt[3]{250} - \sqrt[3]{16}$$

= $\sqrt[3]{3^3 \times 2} + \sqrt[3]{5^3 \times 2} - \sqrt[3]{2^3 \times 2}$
= $3\sqrt[3]{2} + 5\sqrt[3]{2} - 2\sqrt[3]{2}$
= $6\sqrt[3]{2}$

02
$$\left(\frac{1}{256}\right)^{-\frac{1}{n}} = (2^{-8})^{-\frac{1}{n}} = 2^{\frac{8}{n}}$$
이 자연수가 되려면 정수 n 의 값은 8의 약수이어야 한다. 따라서 정수 n 은 1, 2, 4, 8이므로 그 합은 $1+2+4+8=15$

03
$$\frac{1}{x} + \frac{1}{y} = \frac{1}{\log_2 6} + \frac{1}{\log_{18} 6} = \log_6 2 + \log_6 18$$

= $\log_6 (2 \times 18) = \log_6 36$
= $\log_6 6^2 = 2$

04 ①
$$\log_{10} \frac{1}{\sqrt{0.0001}} = \log_{10} \frac{1}{\sqrt{10^{-4}}} = \log_{10} \frac{1}{10^{-2}}$$

= $\log_{10} 10^2 = 2$

$$3 \log_3 9\sqrt{3} = \log_3(3^2 \times 3^{\frac{1}{2}}) = \log_3 3^{\frac{5}{2}} = \frac{5}{2}$$

따라서 옳지 않은 것은 ②이다.

- **05** ① $y=2^{-x}+1$ 에 x=0을 대입하면 $y=2^{0}+1=2$ 즉 그래프는 점 (0,2)를 지난다.
 - ② 그래프의 점근선의 방정식은 y=1이다.
 - ③ 정의역은 실수 전체의 집합이다.

④
$$y = 2^{-x} + 1$$
에서 $y = \left(\frac{1}{2}\right)^x + 1$

즉 밑 $\frac{1}{2}$ 은 1보다 작으므로 x의 값이 증가하면 y의 값은 감소한다.

- ⑤ 그래프는 함수 $y=2^{-x}$, 즉 $y=\left(\frac{1}{2}\right)^x$ 의 그래프를 y축의 방향으로 1만큼 평행이동하여 얻을 수 있다. 따라서 옳지 않은 것은 ⑤이다.
- 06 8 x -13·2 x +12=0에서 $(2^x)^3$ -13·2 x +12=0 2^x =t(t>0)라 하면 t^3 -13t+12=0 $(t-1)(t^2+t-12)$ =0, (t-1)(t+4)(t-3)=0 t=-4 또는 t=1 또는 t=3 이때 t>0이므로 t=1 또는 t=3 즉 2^x =1 또는 2^x =3이므로 $4^{a+\beta}$ = 4^a · 4^β = $(2^a)^2$ · $(2^\beta)^2$ = 1^2 · 3^2 =9
- **07** 0<1/>
 1이므로 함수 $y = \log_{\frac{1}{2}}(x-2) + 4$ 는 감소함수이다. 따라서 x = 3일 때 최댓값은 $M = \log_{\frac{1}{2}}1 + 4 = 4$ x = 6일 때 최솟값은 $m = \log_{\frac{1}{2}}4 + 4 = \log_{2^{-1}}2^2 + 4 = -2 + 4 = 2$ ∴ M m = 4 2 = 2

08 진수의 조건에서
$$x-1>0$$
, $x+1>0$, $x+5>0$
∴ $x>1$ ······ ①
$$\log_3(x-1) + \log_3(x+1) = \log_3(x+5)$$
 에서
$$\log_3(x-1)(x+1) = \log_3(x+5)$$
즉 $(x-1)(x+1) = x+5$ 이므로
$$x^2-1=x+5, x^2-x-6=0$$

$$(x+2)(x-3)=0$$
∴ $x=-2$ 또는 $x=3$
이때 ①에 의하여 $x=3$
따라서 $\alpha=3$ 이므로
$$\log_9 \alpha = \log_9 3 = \log_{3^2} 3 = \frac{1}{2}$$

- **09** 진수의 조건에서 5-x>0, 5+x>0 ∴ -5<x<5 ······ ① log₂(5-x)+log₂(5+x)>4에서 log₂(5-x)(5+x)>log₂ 2⁴ 이때 밑 2는 1보다 크므로 (5-x)(5+x)>2⁴ 25-x²>16, x²-9<0 (x+3)(x-3)<0 ∴ -3<x<3 ····· ① ①, ②의 공통 범위를 구하면 -3<x<3 따라서 정수 x는 -2, -1, 0, 1, 2로 그 개수는 5이다.
- 10 $0 < \theta < \frac{\pi}{4}$ 이므로 $\sin \theta > 0$, $\cos \theta > 0$, $\cos \theta > \sin \theta$ $\stackrel{=}{\Rightarrow} \sin \theta + \cos \theta > 0$, $\sin \theta \cos \theta < 0$ 이때 $\sin^2 \theta + \cos^2 \theta = 1$ 이므로 $\sqrt{1 + 2\sin \theta \cos \theta} + \sqrt{1 2\sin \theta \cos \theta}$ $= \sqrt{\sin^2 \theta + \cos^2 \theta + 2\sin \theta \cos \theta}$ $+ \sqrt{\sin^2 \theta + \cos^2 \theta 2\sin \theta \cos \theta}$ $= \sqrt{(\sin \theta + \cos \theta)^2} + \sqrt{(\sin \theta \cos \theta)^2}$ $= |\sin \theta + \cos \theta| + |\sin \theta \cos \theta|$ $= (\sin \theta + \cos \theta) (\sin \theta \cos \theta)$ $= 2\cos \theta$
- 11 $\sin \theta + \cos \theta = \frac{1}{3}$ 의 양변을 제곱하면 $\sin^2 \theta + 2 \sin \theta \cos \theta + \cos^2 \theta = \frac{1}{9}$ $1 + 2 \sin \theta \cos \theta = \frac{1}{9}, 2 \sin \theta \cos \theta = -\frac{8}{9}$ $\therefore \sin \theta \cos \theta = -\frac{4}{9}$

$$\begin{aligned} & \therefore \sin^3 \theta + \cos^3 \theta \\ &= (\sin \theta + \cos \theta)^3 \\ & \qquad -3 \sin \theta \cos \theta (\sin \theta + \cos \theta) \\ &= \left(\frac{1}{3}\right)^3 - 3 \cdot \left(-\frac{4}{9}\right) \cdot \frac{1}{3} \\ &= \frac{13}{27} \end{aligned}$$

- **12** ① 함수 f(x)의 최댓값은 |-2|+4=6, 최솟값은 -|-2|+4=2이므로 $2 \le f(x) \le 6$
 - ② 정의역은 실수 전체의 집합이다.

③ 주기는
$$\frac{2\pi}{|3|} = \frac{2}{3}\pi$$
이므로
$$f\left(x + \frac{4}{3}\pi\right) = f\left(x + \frac{2}{3}\pi\right) = f(x)$$

즉 그래프는 직선 $x = \frac{\pi}{6} + \frac{\pi}{9} = \frac{5}{18} \pi$ 에 대하여 대칭이다.

⑤ 함수 $y=2\sin 3x$ 의 그래프를 x축에 대하여 대칭 이동하면 $-y=2\sin 3x$

$$\therefore y = -2\sin 3x$$

위의 그래프를 x축의 방향으로 $\frac{\pi}{9}$ 만큼, y축의 방향으로 4만큼 평행이동하면

$$y = -2\sin 3\left(x - \frac{\pi}{9}\right) + 4$$
$$= -2\sin\left(3x - \frac{\pi}{3}\right) + 4$$

따라서 옳지 않은 것은 ④이다.

13 직선
$$2x-4y+3=0$$
의 기울기는 $\frac{2}{4}=\frac{1}{2}$ 이므로 $\tan\theta=\frac{1}{2}$

14
$$y = -4 \sin^2 \theta + 4 \cos \theta + 1$$

 $= -4(1 - \cos^2 \theta) + 4 \cos \theta + 1$
 $= 4 \cos^2 \theta + 4 \cos \theta - 3$
 $\cos \theta = t$ 라 하면 $-1 \le t \le 1$ 이고
 $y = 4t^2 + 4t - 3 = 4\left(t + \frac{1}{2}\right)^2 - 4$
 $t = -1$ 일 때, $y = -3$
 $t = 1$ 일 때, $y = 5$
 $t = -\frac{1}{2}$ 일 때, $y = -4$
 즉 최댓값은 5, 최솟값은 -4 이므로
 $M = 5$, $m = -4$
 $\therefore M + m = 5 + (-4) = 1$

15 $\sin \alpha$: $\sin \beta = 1$: 3에서 $\sin \beta = 3 \sin \alpha$ $\overline{AD} = x$ 라 하면 $\triangle ABD = \frac{1}{2} \cdot 3 \cdot x \cdot \sin \alpha = \frac{3}{2} x \sin \alpha$ $\triangle ADC = \frac{1}{2} \cdot x \cdot 2 \cdot \sin \beta = x \sin \beta = 3x \sin \alpha$ $\triangle ABD$: $\triangle ADC = \frac{3}{2} x \sin \alpha$: $3x \sin \alpha$ = 1 : 2 이때 $\triangle ABD$ 와 $\triangle ADC$ 는 높이가 같으므로 $\triangle ABD$: $\triangle ADC = \overline{BD}$: $\overline{CD} = 1 : 2$ $\therefore \frac{\overline{CD}}{\overline{BD}} = 2$

Lecture 높이가 같은 삼각형의 넓이 높이가 같은 삼각형의 넓이의 A 비는 밑변의 길이의 비와 같다. 즉 오른쪽 그림에서 △ABD : △ADC=BD : CD B

16 코사인법칙에 의하여 $\cos C = \frac{a^2 + b^2 - c^2}{2ab}, \cos A = \frac{b^2 + c^2 - a^2}{2bc}$ 위의 식을 주어진 등식에 대입하면 $a \cdot \frac{a^2 + b^2 - c^2}{2ab} - c \cdot \frac{b^2 + c^2 - a^2}{2bc} = -b$ $\frac{a^2 + b^2 - c^2}{2b} - \frac{b^2 + c^2 - a^2}{2b} = -b$

양변에 2b를 곱하면 $a^2+b^2-c^2-(b^2+c^2-a^2)=-2b^2$ $2a^2-2c^2=-2b^2, 2a^2+2b^2=2c^2$ $\therefore a^2+b^2=c^2$ 따라서 $\triangle ABC$ 는 빗변의 길이가 c, 즉 $C=90^\circ$ 인 직 각삼각형이다

17
$$\frac{\sin A}{2} = \frac{\sin B}{3} = \frac{\sin C}{3} = k (k \neq 0)$$
로 놓으면 $\sin A = 2k$, $\sin B = 3k$, $\sin C = 3k$ $\therefore a : b : c = \sin A : \sin B : \sin C$ $= 2k : 3k : 3k$ $= 2 : 3 : 3$ 따라서 $a = 2l$, $b = 3l$, $c = 3l (l > 0)$ 이라 하면 $\cos C = \frac{a^2 + b^2 - c^2}{2ab} = \frac{(2l)^2 + (3l)^2 - (3l)^2}{2 \cdot 2l \cdot 3l}$ $= \frac{4l^2}{12l^2} = \frac{1}{3}$

[서술형 1] 함수 $y = \log_a x + m$ 의 그래프와 그 역함수의 그래프는 직선 y = x에 대하여 대칭이므로 그 교점은 직선 y = x 위의 점이다.

즉 함수 $y = \log_a x + m$ 의 그래프와 그 역함수의 그 래프의 교점의 좌표는 (1,1),(3,3)이다.

이때 두 점 (1, 1), (3, 3)은 함수 $y = \log_a x + m$ 의 그래프 위의 점이므로

 $1 = \log_a 1 + m, 3 = \log_a 3 + m$

 $1 = \log_a 1 + m$ 에서 m = 1

m=1을 $3=\log_a 3+m$ 에 대입하면

 $3 = \log_a 3 + 1, \log_a 3 = 2$

 $\therefore a^2 = 3$

$$m^2 + a^2 = 1^2 + 3 = 4$$

채점 기준	배점
① 함수 $y = \log_a x + m$ 의 그래프와 그 역함수의 그래프의 교점의 좌표를 구할 수 있다.	2점
② m, a^2 의 값을 구할 수 있다.	4점
③ $m^2 + a^2$ 의 값을 구할 수 있다.	1점

[서술형 2] 부채꼴 AOB의 반지름의 길이를 r(r>0)라 하면 $\overline{\mathrm{OP}} = \frac{1}{3}\overline{\mathrm{OA}} = \frac{1}{3}r$, $\overline{\mathrm{OQ}} = \frac{2}{3}\overline{\mathrm{OB}} = \frac{2}{3}r$

이때 $\angle AOB = 30^\circ = \frac{\pi}{6}$ 이므로 색칠한 부분의 넓이는 (부채꼴 AOB의 넓이) $- \triangle POQ$ $= \frac{1}{2} \cdot r^2 \cdot \frac{\pi}{6} - \frac{1}{2} \cdot \frac{1}{3} r \cdot \frac{2}{3} r \cdot \sin \frac{\pi}{6}$ $= \frac{r^2}{12} \pi - \frac{r^2}{9} \cdot \frac{1}{2}$ $= \frac{r^2}{12} \pi - \frac{r^2}{18}$ $= \frac{r^2}{36} (3\pi - 2)$

즉
$$\frac{r^2}{36}(3\pi-2)=3\pi-2$$
이므로 $r^2=36$

 $\therefore r=6 \ (\because r>0)$

따라서 부채꼴 AOB의 반지름의 길이는 6이다.

[서술형 3] (1) \triangle ABC에서 코사인법칙에 의하여 $\overline{AC}^2 = 8^2 + 10^2 - 2 \cdot 8 \cdot 10 \cdot \cos 60^\circ = 84$ $\therefore \overline{AC} = \sqrt{84} = 2\sqrt{21} \text{ (m) } (\because \overline{AC} > 0)$

(2) 호수의 반지름의 길이를 R라 하면 사인법칙에 의하여

$$2R = \frac{\overline{AC}}{\sin B} = \frac{2\sqrt{21}}{\sin 60^{\circ}} = \frac{2\sqrt{21}}{\frac{\sqrt{3}}{2}} = 4\sqrt{7}$$

 $\therefore R=2\sqrt{7} \text{ (m)}$ 따라서 호수의 반지름의 길이는 $2\sqrt{7}$ m이다

(3) 호수의 넓이는 $\pi R^2 = \pi \cdot (2\sqrt{7})^2 = 28\pi \ (\mathrm{m}^2)$

2

채점 기준	배점
◆ AC의 길이를 구할 수 있다.	2점
❷ 호수의 반지름의 길이를 구할 수 있다.	2점
③ 호수의 넓이를 구할 수 있다.	2점

● 6일차 , 본문 96~99쪽

01 ⑤	02 ②	03 ①	04 4	05 ②
062	07 ⑤	08 (5)	09 4	10③
11 ②	12 ④	13 ③	143	15 ④
16③	17 ⑤			
[서술형 1] 2				
[서술형 2] $\frac{4}{7}$				

01
$$\sqrt[4]{3\sqrt[3]{81}} \times \sqrt[6]{27} = \sqrt[4]{3} \times \sqrt[12]{3^4} \times \sqrt[12]{3^3}$$

 $= \sqrt[12]{3^3} \times \sqrt[12]{3^4} \times \sqrt[12]{3^3}$
 $= \sqrt[12]{3^3} \times \sqrt[3]{3^4} \times \sqrt[3]{3^3}$
 $= \sqrt[12]{3^{10}}$

$$\therefore k=10$$

[서술형 3] $3\sqrt{2}$

다른 풀이

$$\sqrt[4]{3\sqrt[3]{81}} \times \sqrt[6]{27} = \sqrt[4]{3\sqrt[3]{3^4}} \times \sqrt[6]{3^3} = \sqrt[4]{3 \cdot 3^{\frac{4}{3}}} \times \sqrt[3]{\frac{3}{6}}
= \sqrt[4]{3^{\frac{7}{3}}} \times \sqrt[3]{3^{\frac{3}{6}}} = 3^{\frac{7}{12}} \times 3^{\frac{3}{12}} = 3^{\frac{7}{12} + \frac{3}{12}}
= 3^{\frac{10}{12}}$$

이때
$$^{12}\sqrt{3^k}$$
= $3^{\frac{k}{12}}$ 이므로 $3^{\frac{k}{12}}$ = $3^{\frac{10}{12}}$ $\therefore k$ = 10

02 구하는 식의 분모와 분자에 각각
$$a^x$$
을 곱하면
$$\frac{(a^{3x}-a^{-3x})\cdot a^x}{(a^x-a^{-x})\cdot a^x} = \frac{a^{4x}-a^{-2x}}{a^{2x}-1} = \frac{(a^{2x})^2-(a^{2x})^{-1}}{a^{2x}-1}$$
$$= \frac{5^2 - \frac{1}{5}}{5-1} = \frac{31}{5}$$

03
$$\frac{1}{\log_2 5} + \frac{1}{\log_4 5} + \frac{1}{\log_6 5}$$

= $\log_5 2 + \log_5 4 + \log_5 6$
= $\log_5 (2 \cdot 4 \cdot 6)$
= $\log_5 48$
 $= k = \log_5 48$ 이므로 $5^k = 48$

Lecture 로그의 밑의 변화

$$a>0, a\ne1, b>0, b\ne1, c>0, c\ne1$$
일 때 (1) $\log_a b = \frac{\log_c b}{\log_c a}$ (2) $\log_a b = \frac{1}{\log_b a}$

04
$$2^a = 3$$
에서 $a = \log_2 3$
 $2^b = 5$ 에서 $b = \log_2 5$
 $\therefore \log_{10} 15 = \frac{\log_2 15}{\log_2 10} = \frac{\log_2 (3 \cdot 5)}{\log_2 (2 \cdot 5)}$
 $= \frac{\log_2 3 + \log_2 5}{1 + \log_2 5}$
 $= \frac{a + b}{1 + b}$

05 함수
$$y=2^x$$
의 그래프를 x 축의 방향으로 5만큼, y 축의 방향으로 -1 만큼 평행이동하면 $y=2^{x-5}-1$ 이 그래프를 y 축에 대하여 대칭이동하면 $y=2^{-x-5}-1=\frac{1}{32}\cdot 2^{-x}-1=\frac{1}{32}\cdot \left(\frac{1}{2}\right)^x-1$ 따라서 $a=\frac{1}{32}$, $b=-1$ 이므로 $ab=\frac{1}{32}\cdot (-1)=-\frac{1}{32}$

- **06** 세 함수 $y=a^x, y=b^x, y=c^x$ 에서 x=1일 때 y의 값을 차례대로 구하면 $y=a^1=a, y=b^1=b, y=c^1=c$ 따라서 오른쪽 그림에서 $y=a^x$ y0 $y=b^x$ 0 a< c< b0 $y=c^x$ 0 $y=c^x$ 0 y
- 07 $a^{2x}-14a^x+48=0$ 에서 $(a^x)^2-14a^x+48=0$ ······ ① $a^x=t\ (t>0)$ 라 하면 $t^2-14t+48=0$ ····· ① 방정식 ①의 서로 다른 두 실근이 a, β 이므로 방정식 ①의 서로 다른 두 실근은 a^a , a^β 이다. 이차방정식 ①에서 근과 계수의 관계에 의하여 $a^a\cdot a^\beta=48$ $\therefore a^{a+\beta}=48$ 이때 $a+\beta=2$ 이므로 $a^2=48$ $\therefore a=4\sqrt{3}\ (\because a>0)$

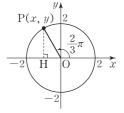
- **08** 점근선의 방정식이 x=-5이므로 a=5 즉 함수 $y=\log_{\frac{1}{5}}(x+5)+b$ 의 그래프가 점 (0,-4) 를 지나므로 $-4=\log_{\frac{1}{5}}5+b$ 에서 -4=-1+b $\therefore b=-3$ $\therefore a+b=5+(-3)=2$
- 09 진수의 조건에서 x>0 $\log_3 x=t$ 라 하면 $t^2+kt-8=0$ ······ ① 주어진 방정식의 서로 다른 두 실근이 α , β 이므로 방정식 ①의 서로 다른 두 실근은 $\log_3 \alpha$, $\log_3 \beta$ 이다. 이차방정식 ①에서 근과 계수의 관계에 의하여 $\log_3 \alpha + \log_3 \beta = -k$ $\therefore \log_3 \alpha \beta = -k$ 이때 $\alpha\beta = 9$ 이므로 $\log_3 9 = \log_3 3^2 = 2 = -k$ $\therefore k = -2$ 즉 $t^2-2t-8=0$ 이므로 (t+2)(t-4)=0 $\therefore t=-2$ 또는 t=4 따라서 $\log_3 x=-2$ 또는 $\log_3 x=4$ 이므로 $x=3^{-2}=\frac{1}{9}$ 또는 $x=3^4=81$ 이때 $\alpha>\beta$ 이므로 $\alpha=81$, $\beta=\frac{1}{9}$ $\therefore \log_3 \frac{\alpha}{\beta} = \log_3(81\times 9) = \log_3 3^6=6$

다른 풀이

k = -20|므로 ①에서 $t^2 - 2t - 8 = 0$ 이 차방정식의 근과 계수의 관계에 의하여 $\log_3 \alpha + \log_3 \beta = 2$, $\log_3 \alpha \cdot \log_3 \beta = -8$ $(\log_3 \alpha - \log_3 \beta)^2 = (\log_3 \alpha + \log_3 \beta)^2 - 4\log_3 \alpha \cdot \log_3 \beta = 2^2 - 4 \cdot (-8) = 36$ 이때 $\alpha > \beta$ 이므로 $\log_3 \alpha - \log_3 \beta > 0$ $\therefore \log_3 \frac{\alpha}{\beta} = \log_3 \alpha - \log_3 \beta = 6$

10 $y=4+\log_2(x^2-6x+13)$ 에서 $f(x)=x^2-6x+13$ 이라 하면 $f(x)=(x-3)^2+4$ 이므로 함수 f(x)는 x=3일 때, 최솟값이 4이다. 이때 밑 2는 1보다 크므로 함수 $y=4+\log_2 f(x)$ 는 f(x)가 최소일 때 최솟값을 갖는다. 즉 f(x)=4일 때, 최솟값은 $y=4+\log_2 4=4+\log_2 2^2=4+2=6$ 따라서 a=3,b=6이므로 a+b=3+6=9

11 오른쪽 그림과 같이 점 P에서 x 축에 내린 수선의 발을 H라 하 면 \triangle OPH에서



$$\angle POH = \frac{\pi}{3}$$
이므로

$$\overline{OH} = 1, \overline{PH} = \sqrt{3}$$

이때 $\frac{2}{3}\pi$ 가 제2사분면의 각이므로

$$x = -1, y = \sqrt{3}$$

$$\therefore x - \sqrt{3}y = -1 - \sqrt{3} \cdot \sqrt{3} = -4$$

12 $\tan \theta = 2$ 이므로 $\frac{-2}{a} = 2$ $\therefore a = -1$

즉 점 P의 좌표는
$$(-1, -2)$$
이고 $\overline{OP} = \sqrt{(-1)^2 + (-2)^2} = \sqrt{5}$ 이므로

$$\sin\theta = -\frac{2\sqrt{5}}{5}, \cos\theta = -\frac{\sqrt{5}}{5}$$

13 a > 0이고 최댓값이 3, 최솟값이 -3이므로 a = 3 b > 0이고 주기가 4π 이므로

$$\frac{2\pi}{|b|} = 4\pi \qquad \therefore b = \frac{1}{2}$$

$$\therefore y = 3\cos\left(\frac{x}{2} - c\right)$$

이때 주어진 함수의 그래프는 점 (0,0)을 지나므로 $0=3\cos(-c),\cos c=0$

$$\therefore c = \frac{\pi}{2} (:: 0 < c < \pi)$$

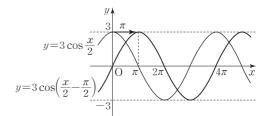
$$\therefore abc = 3 \cdot \frac{1}{2} \cdot \frac{\pi}{2} = \frac{3}{4}\pi$$

다른 풀이

주어진 함수의 그래프는 다음 그림과 같이 함수 $y{=}3\cos\frac{x}{2}$ 의 그래프를 x축의 방향으로 π 만큼 평행이동

한 것이므로
$$y=3\cos\frac{1}{2}(x-\pi)=3\cos\left(\frac{x}{2}-\frac{\pi}{2}\right)$$

$$\therefore c = \frac{\pi}{2} \, (\because 0 < c < \pi)$$



14 (주어진 식)

$$= \frac{\cos\frac{\pi}{6}}{\sin\frac{\pi}{3} - \sin\frac{\pi}{4}} + \frac{-\sin\frac{\pi}{3}}{-\cos\frac{\pi}{6} - \cos\frac{\pi}{4}}$$

$$= \frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2}} + \frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2}}$$

$$= \frac{\sqrt{3}}{\sqrt{3} - \sqrt{2}} + \frac{\sqrt{3}}{\sqrt{3} + \sqrt{2}}$$

$$= \sqrt{3}(\sqrt{3} + \sqrt{2}) + \sqrt{3}(\sqrt{3} - \sqrt{2})$$

$$= 3 + \sqrt{6} + 3 - \sqrt{6}$$

$$= 6$$

15 이차방정식 $t^2 - (4\cos\theta)t - 4\cos\theta + 3 = 0$ 의 판별 식을 D라 하면 이 이차방정식이 중근을 가지므로

$$\frac{D}{4} = (-2\cos\theta)^2 - (-4\cos\theta + 3) = 0$$

$$4\cos^2\theta + 4\cos\theta - 3 = 0$$

$$(2\cos\theta-1)(2\cos\theta+3)=0$$

$$\therefore \cos \theta = \frac{1}{2} \, \mathbb{E} \frac{1}{2} \cos \theta = -\frac{3}{2}$$

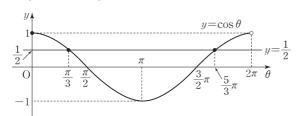
이때
$$0 \le \theta < 2\pi$$
이므로 $-1 \le \cos \theta \le 1$

$$\therefore \cos \theta = \frac{1}{2}$$

 $0 \le \theta < 2\pi$ 에서 함수 $y = \cos \theta$ 의 그래프와 직선

$$y=\frac{1}{2}$$
의 교점은 다음 그림과 같으므로

$$\theta = \frac{\pi}{3}$$
 또는 $\theta = \frac{5}{3}\pi$



따라서 모든 실수 θ 의 값의 합은

$$\frac{\pi}{3} + \frac{5}{3}\pi = 2\pi$$

Lecture 이차방정식의 판별식

이차방정식 $ax^2+bx+c=0$ $(a\neq 0)$ 의 판별식을 D라 하면 $D=b^2-4ac$

- (1) D > 0이면 서로 다른 두 실근을 갖는다.
- (2) D = 0이면 중근을 갖는다.
- (3) D < 0이면 서로 다른 두 허근을 갖는다.

16 2 sin $A = 2\sqrt{3}$ sin $B = \sqrt{3}$ sin C = k $(k \neq 0)$ 로 놓으면

$$\sin A = \frac{k}{2}, \sin B = \frac{k}{2\sqrt{3}}, \sin C = \frac{k}{\sqrt{3}}$$

$$\therefore a:b:c=\sin A:\sin B:\sin C$$

$$=\frac{k}{2}:\frac{k}{2\sqrt{3}}:\frac{k}{\sqrt{3}}$$

따라서 $a=\sqrt{3}l, b=l, c=2l (l>0)$ 이라 하면

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc} = \frac{l^2 + (2l)^2 - (\sqrt{3}l)^2}{2 \cdot l \cdot 2l}$$
$$= \frac{2l^2}{4l^2} = \frac{1}{2}$$

이때
$$0^{\circ} < A < 180^{\circ}$$
이므로 $A = 60^{\circ}$

17
$$C = 180^{\circ} - (A+B)$$

= $180^{\circ} - (45^{\circ} + 60^{\circ}) = 75^{\circ}$

 $\triangle ABC$ 의 외접원의 반지름의 길이를 R라 하면 사인 법칙에 의하여

$$\frac{\overline{BC}}{\sin 45^{\circ}} = \frac{4}{\sin 60^{\circ}} = \frac{\overline{AB}}{\sin 75^{\circ}} = 2R$$

$$\neg . \frac{\overline{BC}}{\sin 45^{\circ}} = \frac{4}{\sin 60^{\circ}}$$
에서

$$\overline{BC} = \frac{4}{\sin 60^{\circ}} \cdot \sin 45^{\circ}$$

$$=4 \cdot \frac{2}{\sqrt{3}} \cdot \frac{1}{\sqrt{2}} = \frac{4\sqrt{6}}{3}$$

$$L. \frac{\overline{AB}}{\sin 75^{\circ}} = \frac{4}{\sin 60^{\circ}}$$
에서

$$\overline{AB} = \frac{4}{\sin 60^{\circ}} \cdot \sin 75^{\circ} = 4 \cdot \frac{2}{\sqrt{3}} \cdot \sin 75^{\circ}$$
$$= \frac{8\sqrt{3}}{3} \sin 75^{\circ}$$

이때 0< sin 75°<1이므로

$$0 < \frac{8\sqrt{3}}{3} \sin 75^{\circ} < \frac{8\sqrt{3}}{3}$$

$$\therefore \overline{AB} < \frac{8\sqrt{3}}{3}$$

$$\Box \cdot \frac{4}{\sin 60^{\circ}} = 2R$$
에서

$$R = \frac{2}{\sin 60^{\circ}} = 2 \cdot \frac{2}{\sqrt{3}} = \frac{4\sqrt{3}}{3}$$

즉 △ABC의 외접원의 넓이는

$$\pi \cdot \left(\frac{4\sqrt{3}}{3}\right)^2 = \frac{16}{3}\pi$$

따라서 옳은 것은 기. ㄴ. ㄷ이다.

[서술형 1] 주어진 그래프에서 $A(a, 4^a)$, $B(a, 2^a)$ 이므 로 $\overline{AB} = 4^a - 2^a = 12$

$$(2^a)^2 - 2^a - 12 = 0$$

 $2^a = t (t > 0)$ 라 하면 $t^2 - t - 12 = 0$

$$(t+3)(t-4)=0$$
 : $t=4$ (:: $t>0$)

즉
$$2^a = 4$$
이므로 $2^a = 4 = 2^2$

$$\therefore a=2$$

채점 기준	배점
$\overline{f AB} = 12$ 를 이용하여 지수방정식을 세울 수 있다.	2점
② <i>a</i> 의 값을 구할 수 있다.	4점

[서술형 2] △ABD에서 코사인법칙에 의하여

$$\overline{BD}^2 = 4^2 + 2^2 - 2 \cdot 4 \cdot 2 \cdot \cos 120^\circ = 28$$

$$\therefore \overline{BD} = \sqrt{28} = 2\sqrt{7} \ (\because \overline{BD} > 0)$$

△ABC에서 ∠ABC=60°이므로 코사인법칙에 의 하여

$$\overline{AC}^2 = 4^2 + 2^2 - 2 \cdot 4 \cdot 2 \cdot \cos 60^\circ = 12$$

$$\therefore \overline{AC} = \sqrt{12} = 2\sqrt{3} \ (\because \overline{AC} > 0)$$

이때 평행사변형 ABCD의 넓이는

$$\left(\frac{1}{2} \cdot \overline{AB} \cdot \overline{AD} \cdot \sin 120^{\circ}\right) \cdot 2 = \frac{1}{2} \cdot \overline{AC} \cdot \overline{BD} \cdot \sin \theta$$

$$\frac{1}{2} \cdot 2 \cdot 4 \cdot \frac{\sqrt{3}}{2} \cdot 2 = \frac{1}{2} \cdot 2\sqrt{3} \cdot 2\sqrt{7} \cdot \sin \theta$$

$$4\sqrt{3} = 2\sqrt{21}\sin\theta$$
 $\therefore \sin\theta = \frac{2\sqrt{7}}{7}$

$$\therefore \sin^2 \theta = \left(\frac{2\sqrt{7}}{7}\right)^2 = \frac{4}{7}$$

채점 기준	배점
1 BD의 길이를 구할 수 있다.	2점
▲ AC의 길이를 구할 수 있다.	2점
$3 \sin^2 \theta$ 의 값을 구할 수 있다.	3점

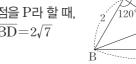
Lecture 사각형의 넓이 사각형 평행사변형 D $S = \frac{1}{2}pq\sin\theta$ $S = ab \sin \theta$

다른 풀이

이므로

0

평행사변형 ABCD의 두 대각선의 교점을 P라 할 때. $\overline{AC} = 2\sqrt{3}$. $\overline{BD} = 2\sqrt{7}$



$$\overline{PD} = \frac{1}{2}\overline{BD} = \sqrt{7}$$

△PCD에서 코사인법칙에 의하여

$$\cos\theta = \frac{(\sqrt{7})^2 + (\sqrt{3})^2 - 2^2}{2 \cdot \sqrt{7} \cdot \sqrt{3}} = \frac{\sqrt{21}}{7}$$

$$\sin^2 \theta = 1 - \cos^2 \theta = 1 - \left(\frac{\sqrt{21}}{7}\right)^2 = \frac{4}{7}$$

[서술형 3] 각의 이등분선의 성질에 의하여

$$\overline{BD}:\overline{DC}=\overline{AB}:\overline{AC}=6:4=3:2$$

$$\therefore \overline{BD} = \frac{3}{3+2} \overline{BC} = \frac{3}{5} \times 5 = 3$$

△ABC에서 코사인법칙에 의하여

$$\cos B = \frac{6^2 + 5^2 - 4^2}{2 \cdot 6 \cdot 5} = \frac{3}{4}$$

△ABD에서 코사인법칙에 의하여

$$\overline{AD}^2 = 6^2 + 3^2 - 2 \cdot 6 \cdot 3 \cdot \cos B$$

$$=36+9-36\cdot\frac{3}{4}=18$$

$$\therefore \overline{AD} = \sqrt{18} = 3\sqrt{2} \ (\because \overline{AD} > 0)$$

채점 기준	배점
● BD의 길이를 구할 수 있다.	2점
$2\cos B$ 의 값을 구할 수 있다.	2점
③ AD의 길이를 구할 수 있다.	3점

2