유리수와 순환소수

STEP 1 개념 마스터 —

8쪽~9쪽

0001 🕒, 🖹 0002 0.666…, 무한소수

0003 0.375, 유한소수 **0004** -0.6, 유한소수

0005 0.111…, 무한소수 0006 순환마디: 2, 0.72

0007 순환마디: 40, 0.40 0008 순환마디: 523, 0.523

0009 순환마디 : 487. 7.487 **0010** 순환마디 : 362, 2.9362

0012 0.23.23 0011 0.8.8

0013 0.571428, 571428 **0014** 1.481, 481

0015 $\frac{3}{5}$, 소인수 : 5 **0016** $\frac{7}{20}$, 소인수 : 2, 5

0017 $\frac{16}{25}$, 소인수 : 5 0018 $\frac{1}{8}$, 소인수 : 2

0019 5, 15, 1.5 **0020** 5², 5², 425, 0.425

0023 ○ 0024 × 0021 ○ 0022 ×

0025 (0026 〇

10쪽~16쪽 STEP 2 유형 마스터 -

00	127 ⑤	0028 ①	0029 3	0030 2
00	31 5	0032 (1) 15 (2)	0.15 (3)5	0033 5
00	34 3	0035 13	0036 ⑤	0037 20.015
00	38 31	0039 ②, ⑤	0040 ②	0041 2개
00	142 3	0043 ④	0044 112	0045 21
00	146 99	0047 11개	0048 8개	0049 ⑤
00)50 29	0051 9	0052 ③	0053 7개
00	154 23	0055 9	0056 83	0057 4개
00	958 $\frac{42}{60}$, $\frac{45}{60}$	0059 ③	0060 64	
00)61 (1) 9의 바	H수이다. (2)6의	배수이다. (3) 10	8
00	162 ①	0063 $\frac{1}{4}$, $\frac{1}{2}$, $\frac{3}{4}$	-0064 85개	0065 226

0068 7

0067 135

0066 ②

STEP 1 개념 마스터 —

17쪽

0069 12,121212..., 99, 12, 12, 33

0070 28.888..., 10, 90, 26, 90, $\frac{13}{45}$

0071 9 **0072** 37 **0073** 147 **0074** 25

0075 $\frac{49}{99}$ 0076 $\frac{4}{3}$ 0077 $\frac{58}{45}$ 0078 $\frac{214}{495}$

0081 ×

STEP 2 유형 마스터 —

18쪽~23쪽

0082 ④ 0083 ④ 0084 ⑤ 0085 3

0086 x=1.36이라 하면 $x=1.3666\cdots$ ¬

③의 양변에 100을 곱하면 100x=136.666···

⑤의 양변에 10을 곱하면 10x=13.666···

©-©을 하면 90*x*=123

$$\therefore x = \frac{123}{90} = \frac{41}{30}$$

0087 19 **0088** ④ **0089** ② 0090 5

0091 ⑤ **0092** 9.16 **0093** 5 0094 137

0095 3 **0096** 72 **0098** 0.71 **0097** 198

0099 (1) $\frac{4}{15}$ (2) $\frac{7}{12}$ (3) $\frac{7}{15}$ (4) 0.46

0100 0.25 **0101** ⑤ 0102 ③ 0103 ④

0104 25 **0105** ② **0106** ② **0107** 27

0108 0.32 **0109** ④ **0110** 0.03 0111 3.4

0112 4개 0113 ①, ⓒ, ⓒ, ② 0114 ⑤

0115 ② 0116 ⑤, ②, ①

STEP 3 **내신** 마스터 ——

0143 4

0117 (1) 5 (2) a=3, b=2 (3) 0.09

0118 *a*=8, *b*=1 0119 5

0120 ⑤ 0121 ② 0122 ④ **0123** 300 0124 ② 0125 ③ 0126 ② **0127** (1) 9의 배수이다. (2) 7의 배수이다. (3) 63 **0128** ③ **0129** 55 0130 4개 0131 ③ **0132** ② **0133** ④ **0134** 47 **0135** 9 **0136** 0.6i **0137** ⑤ **0138** 33 **0139** ① **0140** 6 **0141** \bigcirc , \bigcirc **0142** (1) 0. $\dot{1}3\dot{5}$ (2) $\frac{5}{37}$

24쪼~27쪼

2 단항식의 계산

STEP 1 개념 마스터 —

30쪼~31쪼

	i— i		
0144 2 ⁴	0145 $2^2 \times 5^5$	0146 a^4b^2	0147 2 ⁹
0148 x^8	0149 x^6	0150 $3^6 \times 5^5$	0151 a^4b^3
0152 2 ¹²	0153 a^{10}	0154 <i>a</i> ¹⁴	0155 x^6y^{15}
0156 a^6b^8	0157 x^4	0158 x^8	0159 1
0160 $\frac{1}{a^5}$	0161 $\frac{1}{y^2}$	0162 x^6y^2	0163 81x ⁴ y ⁸
0164 $-8a^6b^9$	0165 $a^{12}b^8c^4$	0166 $-27x^6y$,15

0167 $\frac{x^3}{y^6}$ 0168 $\frac{25y^4}{x^2}$ 0169 $\frac{x^{12}}{16y^8}$ 0170 $\frac{4x^4}{25y^2}$

STEP 1 개념 마스터 ———

0221
$$-24ab^3$$
 0222 $-18a^6b^6$
 0223 $-45x^3y$

 0224 $\frac{4}{9}a^{10}$
 0225 $\frac{2a^3}{b}$
 0226 $\frac{4x}{y}$
 0227 $-\frac{x^7}{2y^3}$

 0228 $-\frac{5}{2x^5}$
 0229 $-a^2$
 0230 $-9xy^2$
 0231 $36x^6y^8$

STEP 2 유형 마스터 ---- $-8a^9b^{11}$ **0233** ③ **0234** $-324a^6b^7$ $A = \frac{x}{3}$, $B = \frac{y^2}{3x^2}$, $C = \frac{x^3}{y^2}$ **0246** 1 20 **0248** 36 **0249** $\frac{45}{2}a^6b^5$ (1) $-\frac{50}{3}a^3b^6$ (2) $\frac{125}{9}a^5b^{10}$ **0251** 54xy $\frac{8}{3}ab$ **0253** ② **0254** $9b^4$ **0255** $7a^4b^3$ 0256 ③ 0257 3개

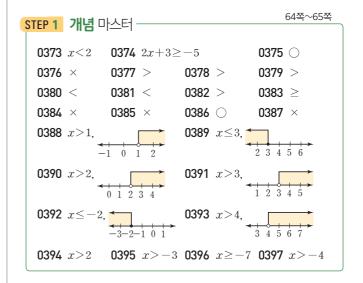
32쪽~38쪽 STFP 2 유형 마시터 ——

SIEP Z	ਜਲ ।	<u> </u>					
0171	7	0172	a^5b^3	0173	8	0174	2
0175	4	0176	x^6y^8	0177	3, 8, 2, 9,	9, 3 ²⁰⁰	2^{300}
0178	2	0179	(5)	0180	3	0181	3
0182	(5)	0183	⋽, ©, @)		0184	36
0185	3,5	0186	4	0187	3	0188	3
0189	6	0190	1	0191	2	0192	11
0193	13	0194	3	0195	18	0196	2
0197	(1) 2 (2) 2	2 (3) 4		0198	5	0199	15
0200	16	0201	15	0202	13	0203	2
0204	4	0205	3 8	0206	A^6	0207	(5)
0208	A^2B	0209	A^2B^2C	0210	19		
0211	(1) $a = 4$,	b = 10	(2) 11	0212	21자리	0213	7자리
0214	$\frac{2}{3}ab$	0215	$9a^3b^2$	0216	3	0217	$\frac{a^4}{9}$
0218	$10^{11}\mathrm{nm}$	0219	2 ⁹ 장	0220	a = 5, n =	=5	

STEP 3 내신 마스터 ———

44쪽~47쪽

0258 (1) (a), (a)
(2) (a)
$$x^2 \times x^4 = x^{2+4} = x^6$$
 (b) $(x^3)^4 = x^{3\times 4} = x^{12}$
(c) $x^{10} \div x^5 = x^{10-5} = x^5$ (d) $(\frac{b^3}{a^4})^2 = \frac{b^{3\times 2}}{a^{4\times 2}} = \frac{b^6}{a^8}$
0259 (1) 0260 10 0261 (4) 0262 (2)
0263 (4) 0264 (4) 0265 (3) 0266 (3)
0267 22 0268 21 0269 (5) 0270 $\frac{16}{3}ab^2$
0271 (5) 0272 500 $\frac{1}{3}$ 0273 (1) 0274 2
0275 $A = -40x^9y^2$, $B = \frac{1}{2xy^2}$ 0276 (2)
0277 (5) 0278 $-3x^6y^{10}$ 0279 $-4xy^6$ 0280 (1)
0281 (3) 0282 (3) 0283 (5)


3 다항식의 계산

50쪽~51쪽 STEP 1 개념 마스터 — **0284** 5a-b **0285** -x-y+5 **0286** -4y**0287** 2x-4y+7 **0288** -3x+3y0290 O 0291 × **0289** -10a-3b**0292** × **0293** \bigcirc **0294** $3a^2+3a+1$ **0296** $3x^2+4x-5$ **0295** $-5x^2+7x+1$ **0297** $-6x^2+2xy$ **0298** $-2a^2+a$ **0299** $xy+7y^2-10y$ **0300** $-4x^3+20x^2-16x$ **0301** $-5x^2+12x$ **0302** $6x^2 - 7xy - 2y^2$ 0303 -4b-2**0304** -3a+5b**0305** -2x+3y-1**0306** 4x-1 **0307** -4a+8b-12c

STEP 2 유형 마스터	52쪽~57쪽
0308 $-\frac{13}{6}x + \frac{1}{3}y$	0309 $x+8y$ 0310 $-\frac{9}{2}$
0311 -x+3 0312 9	0313 ④ 0314 -1
0315 6 0316 -8	0317 $3x^2 - 7x + 11$
0318 9 <i>a</i> -3 <i>b</i> -3	0319 $a^2 - a + 2$
0320 x-7y 0321 6x-	-9y+4
0322 (1) $x^2 + 2x + 3$ (2) $3x$	$x^2 + 5x + 2$
0323 $\frac{1}{3}x^2 - \frac{1}{4}x - 3$	0324 -6 0325 ③,④
0326 14 0327 18x	-12y-6 0328 -2
0329 5 0330 -16	6x+6y
0331 $-x^2y + 3xy^2$	0332 ⑤ 0333 6
0334 $3ab-b^2$	0335 $(6x^2+3x)$ m ²
0336 8 0337 10	0338 4 0339 10
0340 $18x + 2y$	0341 <i>a</i> +7 <i>b</i>
0342 $-x-3y+4$	0343 $-3x^2+7x$
0344 (1) $-2x-6$ (2) $2y$	0345 ③ 0346 15y+12
0347 3	

STEP 3	내신 마스터		58쪽~61쪽
0348	7x + 6y + 2	0349 ②	0350 ③, ⑤
0351	$9x^2 - 2x + 2$	0352 ②	0353 ②
0354	$-x^2-5x-2$	0355 ④	
0356	$-x^2+x+2$	0357 ①	0358 10x-5y
0359	3 0360 5	0361 -9	0362 ①
0363	$8a^3b^2 - 10a^2b + 6ab$	0364 ④	0365 ②
0366	② 0367 (1) $4\pi a^2$	$(2)\frac{a}{2} + \frac{b}{\pi}$	0368 $\frac{3}{2}b + \frac{1}{2}$
0369	① 0370 ③	0371 $2y+21$	0372 ②

4 일차부등식

0421 (1) x>3	3 (2)	\rightarrow	0422 ④
0423 x>-2	0424 ③	0425 2개	0426 -3
0427 -5	0428 ⑦, <i>x</i> ≤	<u>22</u> 5	0429 x<-2
0430 ⑤	0431 3	0432 2개	0433 21
0434 $x \ge \frac{1}{a}$	0435 x<1	0436 3개	0437 x<2
0438 15	0439 3	0440 $-\frac{1}{2}$	0441 2
0442 7	0443 -8	0444 4	0445 $\frac{7}{4}$
0446 5 <a ''<="" <="" th=""><th>7</th><th>0447 $\frac{3}{2} < k \le$</th><th>≦3</th>	7	0447 $\frac{3}{2} < k \le$	≦3
0448 3≤ <i>a</i> <-	<u>13</u> 3	0449 x>-8	0450 x>2
0451 $x > \frac{5}{2}$			

84쪽~87쪽 STEP 3 내신 마스터 — 0510 ⑤ **0511** ③ **0512** ③ 0513 ④ **0515** -9 **0516** ⑤ 0514 ③ 0517 ④ **0518** ① **0519** -1 **0520** ④ 0521 ② **0522** ⑤ **0523** (1) $x \le -\frac{4}{3}$ (2) $x \le a + 2$ (3) $-\frac{10}{3}$ 0524 ③ 0525 ② **0526** (1) $500 + 200x \le 4000$ (2) 177 \parallel 0527 18년 0528 ③ 0529 46분 0530 ④ 0531 ③ **0532** $\frac{3}{2}$ km **0533** ③ **0534** 33개 **0535** 4 cm

STEP 1 개념 마스터 -

74쪽

0452 (1) $3x+5 \le 11$ (2) 27

0453 (1) 900x원 (2) 900x+200≤12000 (3) 13권

0454 (1) $\frac{x}{3} + \frac{x}{5} \le 1$ (2) $\frac{15}{8}$ km

0455 (1) 36 g (2) $36 \le \frac{8}{100} \times (400 + x)$ (3) 50 g

STEP 2 유형 마스터 ———

75쪽~83쪽

	•		
0456 3	0457 5	0458 17, 18, 19	9
0459 94점	0460 84점	0461 88점	0462 8개
0463 9송이	0464 5자루	0465 5권	0466 10개
0467 8개	0468 130분	0469 175통	0470 55명
0471 8개월	0472 9개월	0473 12개월	0474 14권
0475 7송이	0476 11개	0477 ③	0478 17장
0479 $\frac{18}{5}$ km	0480 41명	0481 27명	0482 45명
0483 6500원	0484 ①	0485 10000원	0486 12 cm
0487 ①	0488 7	0489 4 cm	0490 12 km
0491 3 km	0492 3 km	0493 1 km	0494 1200 m
0495 $\frac{9}{7}$ km	0496 40분	0497 25분	0498 450 g
0499 100 g	0500 300 g	0501 300 g	0502 75 g
0503 $\frac{80}{9}$ g	0504 ①	0505 15 cm	0506 14개
0507 ②	0508 $\frac{1}{2}$ 시간	0509 600 m	

5 연립방정식의 풀이

(2) x = 3, y = 1

0542 *x*=1, *y*=5

0543 2x, 2x, 0, 2, 0

90쪽~91쪽

0544 x=-2, y=3

0545 x=11, y=5

0546 x=2, y=-5

0547 x=4, y=3

0548 6, 3, 24, 10, 20, 2, 2, -4, 2, -4

0549 x=2, y=-1

0550 x=2, y=0

0551 x=10, y=5

0552 x=2, y=4

STEP 2 유형 마스터 ———

92쪽~99쪽

0553 ③	0554 2개	0555 ②	0556 ③

0557 ④ **0558** (1)
$$500x + 700y = 4600$$
 (2) $\frac{x}{6} + \frac{y}{8} = 4$

0570 ⑤ **0571** ② **0572**
$$(2,3)$$
 0573 -1

0574
$$a = -2, b = -2$$
 0575 -4 **0576** 2

0577
$$-1$$
 0578 (7) $-x+11$ (4) 4 (4) 7

0579 (1)
$$x=1, y=7$$
 (2) $x=-3, y=4$ **0580** -7

0587 (1)
$$x=13, y=10$$
 (2) $x=\frac{11}{4}, y=\frac{9}{8}$ **0588** -6

0597 3 **0598** 10 **0599**
$$a = -1, b = -11$$

0600
$$-1$$
 0601 3 **0602** $x=1, y=1$

0603 ③ **0604** 3

STEP 2 유형 마스터

102쪽~105쪽

0621
$$x = -1, y = 2$$
 0622 -3 **0623** 1

0624 1 **0625**
$$x = -1, y = 1$$
 0626 $\frac{2}{3}$

0627 1 0628
$$x=-1, y=2$$
 0629 8

0630
$$x = -8, y = -\frac{4}{3}$$
 0631 -1 **0632** 3

0633
$$x = -20, y = 12$$

0634 (1)
$$x=6$$
, $y=2$ (2) $x=-1$, $y=1$ (3) $x=5$, $y=4$

0642
$$x = -\frac{1}{4}, y = \frac{1}{6}$$
 0643 0

0644
$$x=2, y=2$$

STEP 1 개념 마스터 100쪽~101쪽

0605
$$2x-4y$$
, $4x-9y$, 12 , $-\frac{11}{2}$ **0606** $x=1$, $y=-2$

0607
$$x = \frac{11}{5}, y = -\frac{1}{5}$$
 0608 $x = 2, y = 1$

0609
$$2x-3y$$
, $3x-5y$, 24 , -13 **0610** $x=6$, $y=1$

0611
$$x = -7, y = 5$$
 0612 $x = \frac{3}{2}, y = -\frac{5}{4}$

0613
$$3x+5y-6$$
, $3x+5y$, 2, 2, $\frac{1}{5}$

0614
$$x=2, y=1$$
 0615 $x=1, y=-1$

616
$$x = -\frac{1}{5}, y = \frac{2}{5}$$
 0617 \bigcirc , \bigcirc

STEP 3 내신 마스터 — 106쪽~109쪽

0645 ② **0646**
$$2x+y=13$$
 0647 ⑤

0654 (1)
$$x=1, y=3$$
 (2) $x=3, y=1$ **0655** ①

0664
$$x=3, y=\frac{3}{5}$$
 0665 ④ **0666** -2

0667
$$\begin{cases} x+y=2 & \dots \\ x+3y=-2x+6 & \dots \\ & \end{cases}$$

 \bigcirc 을 정리하면 x+y=2, 즉 \bigcirc 과 x,y의 계수와 상수항이 각 각 같으므로 이 연립방정식은 해가 무수히 많다. 그런데 영주 는 연립방정식의 해가 항상 하나뿐이라고 잘못 생각하였다.

0668 8

연립방정식의 활용

STEP 1 개념 마스터 -

112쪼

0669 (1) 10, 900, 7400 (2) $\begin{cases} x\!+\!y\!=\!10 \\ 500x\!+\!900y\!=\!7400 \end{cases}$

(3) 연필: 4자루, 볼펜: 6자루

0670 (1) $\frac{y}{4}$, 17, $\frac{y}{4}$ (2) $\begin{cases} x+y=17\\ \frac{x}{3}+\frac{y}{4}=5 \end{cases}$

(3) 걸어간 거리: 9 km. 뛰어간 거리: 8 km

0712 2% **0713** 16개 **0714** 13200원

0715 A 상품 : 750원 B 상품 : 5250원 **0716** 24일

0717 8일 **0718** 10시간

0719 흐르지 않는 물에서의 배의 속력: 시속 15 km,

강물의 속력 : 시속 5 km

0721 $\frac{2000}{7}$ km **0720** 시속 12 km

0722 기차의 길이 : 100 m, 기차의 속력 : 분속 1800 m

0723 40 m **0724** 180 m

0725 (1) 60, 7, $\frac{5}{8}$ (2) $\begin{cases} 100+y=x \\ 60+\frac{7}{11}y=\frac{5}{8}x \end{cases}$ (3) x=320, y=220

(4) 200명

0726 300명

 $\textbf{0727} \hspace{0.1cm} \textbf{(1)} \begin{cases} \frac{30}{100}x + \frac{20}{100}y = 6 \\ \frac{20}{100}x + \frac{30}{100}y = 5 \end{cases} \hspace{0.1cm} \textbf{(2)} \hspace{0.1cm} x = 16, y = 6$

(3) 합금 A : 16 kg, 합금 B : 6 kg

0728 70 g **0729** 2병

STEP 2 유형 마스터 ———

113쪽~122쪽

0671 18 **0672** -18 **0673** 5 **0674** 59

0675 9 **0676** 23 **0677** 1500원

0678 7000원 **0679** 13200원 **0680** 5명

0681 초콜릿 머핀을 4개 더 샀다. 0682 6곡

0683 아버지: 34살, 아들: 6살 0684 어머니: 58살, 딸: 29살 **0685** 삼촌 : 52살, 동준 : 24살

0686 가로의 길이 : 23 cm, 세로의 길이 : 32 cm

0687 72 cm² **0688** 16 cm **0689** 15회 **0690** 7문제

0691 5자루 **0692** 남학생 : 392명, 여학생 : 630명

0693 234상자 0694 6000원

0695 갈 때의 거리: 9 km, 올 때의 거리: 12 km

0696 5 km

0697 갈 때의 거리 : 2,5 km, 올 때의 거리 : 2 km

0698 달려간 거리 : 6 km, 걸어간 거리 : 4 km 0699 1 km

0700 $\frac{10}{19}$ km **0701** 30분 **0702** 10분 **0703** 16분

0704 A : 시속 $\frac{5}{2}$ km, B : 시속 $\frac{3}{2}$ km

0705 분속 195 m

0707 6 %의 소금물 : 225 g, 2 %의 소금물 : 75 g

0708 100 g

0709 6 %의 설탕물 : 400 g, 10 %의 설탕물 : 600 g

0710 소금물 A: 10%, 소금물 B: 4%**0710** 소금물 A:6%, 소금물 B:11%

STEP 3 내신 마스터 123쪽~125쪽

0730 25 **0731** ② **0732** ③ **0733** 32점

0734 어머니: 45살. 딸: 15살 0735 10 cm 0736 ④

0737 180 cm² **0738** ③

0739 사과 : 190상자, 배 : 330상자 **0740** 3 km

0741 ① 0742 ③ 0743 ③ 0744 30일 **0745** 시속 25 km **0746** 어른 : 25명, 아이 : 75명

0747 3

일차함수와 그래프(1)

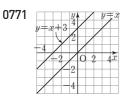
STEP 1 개념 마스터 -

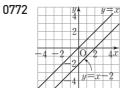
128쪽~131쪽

0748 22, 21, 20, 19 0749 함수이다.

0750 y=24-x

 0751 \bigcirc 0752 \times 0753 \bigcirc 0754 -2


 0755 8 0756 6 0757 25 0758 5


0763 $\frac{11}{2}$ 0764 imes 0765 \bigcirc 0766 imes

0768 y=x+8, 일차함수이다. 0767 ×

0769 y=2x, 일차함수이다.

0770 $y = \frac{150}{x}$, 일차함수가 아니다.

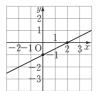
0773 $y = -\frac{3}{4}x - 5$

0774
$$y=2x+4$$

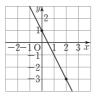
0775 y = -x + 3

0776
$$y = -3x - 2$$

0777 x절편 : 4, y절편 : 3 **0778** x절편 : $\frac{4}{3}, y$ 절편 : -2

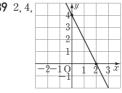

0779 x절편 : 1, y절편 : 4 **0780** x절편 : 3, y절편 : -1

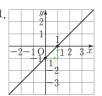
0781 +3, +3,
$$\frac{3}{2}$$
 0782 -4, -4, -2

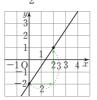

0783 1 **0784**
$$-2$$
 0785 $\frac{1}{3}$

0785
$$\frac{1}{3}$$

0786 -1, 0,


0787 1. -3.


0788 -2,


0789 2, 4, [

0790 −1. [

0791 $-2, \frac{3}{2}$

STEP 2 유형 마스터 —

132쪽~141쪽

T				
	0792 ③	0793 ④	0794 ①	0795 -11
	0796 ③	0797 -2	0798 ①	0799 -4
	0800 -12	0801 ②	0802 $\frac{1}{4}$	0803 ⑤
	0804 ②, ③	0805 ①, ④	0806 ④	0807 ①, ⑤, ②
	0808 $m \neq 2$	0809 $m=0$, $m=0$	$e \neq -6$	0810 -2
	0811 -5	0812 -6	0813 10	0814 11
	0815 1	0816 25	0817 ④	0818 6
	0819 ③	0820 2	0821 16	0822 2
	0823 ③	0824 -3	0825 3	0826 1
	0827 -1	0828 4	0829 ⑤	
	0830 A(-6,	0),B(0,4)	0831 <i>x</i> 절편: 1	12, <i>y</i> 절편: 3
	0832 ①	0833 A(-4,	0)	0834 -3
	0835 5	0836 -1	0837 -3	0838 -2
		0840 $\frac{3}{2}$		
	0843 $-\frac{5}{3}$	0844 -2	0845 4	0846 ④
	0847 ③	0848 ⑤	0849 제4사분	면
	0850 ④	0851 24	0852 6	0853 8
	0854 $-\frac{4}{5}$	0855 $\frac{15}{2}$	0856 27	0857 $-\frac{8}{3}$

STEP 3 **내신** 마스터 —

142쪽~145쪽

0858 ⑤	0859	1	0860	4	0861	3
0862 -2	0863	⋽, ©, €	0864	a=0, $b=$	=-2	
0865 0	0866	4	0867	4	0868	2
0869 4	0870	4	0871	4	0872	4
0873 ③	0874	4	0875	1),3	0876	1
0877 25 m	0878	9 m	0879	$-\frac{1}{2}$	0880	(5)
0881 ③	0882	24	0883	$\frac{9}{2}$	0884	$-\frac{8}{3}$

일차함수와 그래프(2)

STEP 1 개념 마스터 —

148쪽~150쪽

0885 \bigcirc 0886 \bigcirc 0887 imes 0888 imes

0889 × **0890** × **0891** a < 0, b < 0

0892 a > 0, b < 0**0893** a < 0, b > 0

0895 ①과 ②, ②과 😉 **0894** a > 0, b > 0

0896 3 **0897** a=-2, b=1

0898 y = -2x + 5**0899** $y = \frac{5}{2}x - 2$

0900 y = -x + 5 **0901** y = 2x + 1

0902 y = -x + 4 **0903** $y = \frac{1}{2}x - 3$

0904 y = -3x + 3 **0905** $y = \frac{3}{2}x - 3$

0906 6, 6x, 20+6x, 8

0907 (1) y=10000-10x (2) 6500원

0945 ① **0946** 2 **0947** 20 °C **0948** −5 °C

0949 (1) y = 30 + 0.5x (2) 36 g (3) 24 °C **0950** 24 $\bar{\Delta}$ **0951** $y=20+\frac{1}{5}x$ **0952** ②

0953 25분 **0954** 4분 **0955** (1) $y=35-\frac{1}{20}x$ (2) 17 L

0956 45 m **0957** y=200-x **0958** 20분

0959 5초 **0960** 10초 **0961** 18초 **0962** 15 cm

0963 125 L **0964** ③ **0965** $\frac{1}{2} \le a \le 6$

0966 $\frac{2}{3} \le a \le 3$ **0967** -4

0968 $\frac{1}{4} \le a \le 6$ **0969** $\frac{1}{3} \le a \le \frac{5}{2}$

0970 (1) -2, 2, -11 (2) $-11 \le k \le 2$

0971 (1) $-\frac{1}{3}$ (2) $\frac{2}{3}$, $-\frac{14}{3}$ **0972** -3 **0973** -3

STEP 2 유형 마스터 ----

0908 ④ 0909 © 0910 ④ 0911 제2사분면

0912 제3사분면 **0913** 제1,2,3사분면

0914 ① 0915 ③ 0916 제2,3,4사분면
0917 ⑤ 0918 5 0919 3 0920 $-\frac{1}{2}$

0921 0 **0922** $a = \frac{3}{5}, b = -7$ **0923 4**

0924 @. @ 0925 @ 0926 ⑤ 0927 ②

0928 -9 **0929** y = -4x - 5

0930 $y = -\frac{4}{3}x + 2$ **0931** $\frac{4}{3}$ **0932** 6

0933 $y = \frac{3}{2}x - 3$ **0934** y = 2x + 4

0936 $y = -\frac{1}{3}x + 2$ **0935** -11

0937 y = -2x + 3

0938 (1) -3 (2) 1 (3) y = -3x + 1

0939 $-\frac{11}{3}$ **0940** ③ **0941** y = -4x - 3

0942 12 **0943** 9 **0944** $y = \frac{3}{4}x + 3$

STEP 3 내신 마스터 ———

162쪽~165쪽

0974 ③ 0975 제4사분면 0976 3

0977 ⑤ **0978** −5 **0979** ② 0980 3

0981 -1 **0982** $\frac{3}{4}$ **0983** 3

0984 y = -4x + 20 **0985** $-\frac{81}{10}$ **0986** ④

0987 ⑤ **0988** ③ **0989** ①

0990 $y = -\frac{7}{3}x - 5$ **0991** $\frac{1}{3} \le a \le 4$

0992 ② **0993** (1) $y = 60 - \frac{1}{15}x$ (2) 750 km

0994 2초 **0995** (1) ①=13, ©=21 (2) *a*=4, *b*=1

0996 (1) $y = \frac{1}{20}x + 100$ (2) 8000원

9 일차함수와 일차방정식

STEP 1 개념 마스터 —

168쪽~170쪽

0997
$$y = -x + 3$$
 0998 $y = 2x + 4$

0997
$$y = -x + 3$$

0999
$$y = \frac{3}{4}x$$
 1000 $y = 2x - 3$ **1001** 3

1002 1,
$$\frac{1}{2}$$

1003 기울기 : $\frac{1}{3}$, x절편 : $\frac{1}{3}$, y절편 : $-\frac{1}{9}$

1004 기울기 : $\frac{1}{5}$, x절편 : 4, y절편 : $-\frac{4}{5}$

1005 기울기 : $\frac{3}{2}$, x절편 : 2, y절편 : -3

1006

1008 ©, @ 1009 ⑦, © 1010 ©과@ 1011 y=3

1012 x = -2 **1013** x = -4 **1014** y = -1 **1015** y = -3

1016 x=5 **1017** x=4, y=2

1018 x = -2, y = 3 **1019** x = -2, y = 1

1028 🗇

STEP 2 유형 마스터 —

171쪽~180쪽

1029 2 **1030** ② **1031** ①

1032 ④

1033 -3 **1034** ④ **1035** -1 **1036** ⑤

1037 3 **1038** -2 **1039** 7 **1040** y = -1

1041 ©, © **1042** 1 **1043** 25 **1044** 30

1045 7 **1046** ①, ④ **1047** a < 0, c < 0

1048 a > 0, b = 0

1049 ③ 1050 제4사분면

1051 ② **1052** $-\frac{1}{2}$ **1053** x=3, y=2

1054 (1, 4) **1055** (8, 5) **1056** 0 **1057** 4

1058 -3 **1059** 6 **1060** y=2x+1

1061 $x = \frac{7}{5}$ **1062** y = -3x + 1 **1063** 2

1064 1

1065 ⑤ **1066** a = -6 **1067** ③

1068 3 **1069** ① **1070** 9 **1071** 6

1072
$$-\frac{3}{5}$$
 1073 4

1074 (1)
$$A\left(-\frac{2}{3}, \frac{16}{3}\right)$$
 (2) $B(-6, 0)$, $C(2, 0)$ (3) $\frac{64}{3}$

STEP 3 내신 마스터

1104 y = x + 4

1107 y = -2x - 4

1092 $\frac{7}{2}$ 1093 @ 1094 ⑤

1095 (1) $y = \frac{4}{3}x + 1$ (2) y = 2 (3) x = -51096 ② 1097 ③ 1098 ②

1100 8 1101 4 1102 4 1103 3

1075 4 **1076**
$$\frac{4}{3}$$
 1077 $y = -\frac{6}{5}x + 6$

1078
$$\frac{2}{3}$$
 1079 -3 1080 9 1081 -6

1082
$$-\frac{14}{3}$$
 1083 -12 **1084** ④

181쪽~183쪽

1099 ⑤

1105 $\frac{1}{4}$ 1106 @

1108 360

1090
$$y = -x + 6$$

유형 해결의 법칙 중학 수학 2-1

정답과 해설

1	유리수와 순환소수	12
2	단항식의 계산	22
3	다항식의 계산	32
4	일차 부등 식	40
5	연립방정식의 풀이	52
6	연립방정식의 활용	65
7	일차함수와 그래프(1)	73
8	일차함수와 그래프(2)	83
9	일차함수와 일차방정식	94

유리수와 순환소수

STEP 1 개념 마스터

p.8 ~ p.9

0001

답 ①, ②

0002
$$\frac{2}{3} = 2 \div 3 = 0.666 \cdots$$

답 0.666···, 무한소수

0003
$$\frac{3}{8} = 3 \div 8 = 0.375$$

답 0.375, 유한소수

0004
$$-\frac{3}{5} = -(3 \div 5) = -0.6$$

0005
$$\frac{1}{9} = 1 \div 9 = 0.111 \cdots$$

답 0.111····, 무한소수

답 순환마디 : 2, 0.72

답 순환마디: 40.0.40

0008

답 순환마디: 523, 0.523

0009

답 순환마디: 487. 7.487

0010

답 순환마디: 362, 2.9362

0012
$$\frac{23}{99}$$
=23÷99=0.232323···=0.233, 순환마디 : 23

답 0.23, 23

0013
$$\frac{4}{7} = 4 \div 7 = 0.571428571428 \dots = 0.571428$$

순환마디: 571428

답 0.571428, 571428

0014
$$\frac{40}{27}$$
=40÷27=1.481481···=1.481, 순환마디:481

답 1.481 481

0015
$$0.6 = \frac{6}{10} = \frac{3}{5}$$

답 $\frac{3}{5}$, 소인수 : 5

0016
$$0.35 = \frac{35}{100} = \frac{7}{20} = \frac{7}{2^2 \times 5}$$
 답 $\frac{7}{20}$, 소인수 : 2, 5

0017
$$0.64 = \frac{64}{100} = \frac{16}{25} = \frac{16}{5^2}$$
 답 $\frac{16}{25}$, 소인수 : 5

0018 0.125=
$$\frac{125}{1000}$$
= $\frac{1}{8}$ = $\frac{1}{2^3}$

답 $\frac{1}{8}$, 소인수 : 2

0019 답 5, 15, 1.5

0020 답 5², 5², 425, 0.425

0021 분모의 소인수가 2와 5뿐이므로 유한소수로 나타낼 수 있다.

0022 분모의 소인수에 3이 있으므로 유한소수로 나타낼 수 없다.

0023 $\frac{9}{2 \times 3 \times 5} = \frac{3}{2 \times 5}$ ➡ 분모의 소인수가 2와 5뿐이므로 유 한소수로 나타낼 수 있다.

0024 $\frac{25}{45} = \frac{5}{9} = \frac{5}{3^2}$ ⇒ 분모의 소인수에 3이 있으므로 유한소수 로 나타낼 수 없다. 답 ×

0025 $\frac{3}{24} = \frac{1}{8} = \frac{1}{2^3}$ ⇒ 분모의 소인수가 2뿐이므로 유한소수로

0026 $\frac{66}{120} = \frac{11}{20} = \frac{11}{2^2 \times 5}$ ➡ 분모의 소인수가 2와 5뿐이므로 유 한소수로 나타낼 수 있다.

STEP 2 유형 마스터

p.10 ~ p.16

0027 전략 소수점 아래에서 처음으로 되풀이되는 부분의 양 끝의 숫 자 위에 점을 찍어 나타낸다.

- (1) 1.7777777 $\cdots = 1.7$
- $(2) 0.1020202 \dots = 0.10\dot{2}$
- $32.782782782 \dots = 2.782$
- $\textcircled{4} 3.40214021 \dots = 3.4021$

답 ⑤

0028 전략 분수를 소수로 나타내어 각각의 순환마디를 구한다.

- ① $\frac{4}{3}$ =1.3이므로 순환마디는 3
- ② $\frac{13}{90}$ =0.14이므로 순환마디는 4
- ③ <u>103</u> = 1.14이므로 순환마디는 4
- ④ <u>22</u> = 2.4이므로 순환마디는 4
- ③ <u>40</u> = 4.4이므로 순환마디는 4

따라서 순환마디가 나머지 넷과 다른 하나는 ①이다.

답 ①

0029 $\frac{5}{18}$ =0.2 $\dot{7}$ 이므로 순환마디를 이루는 숫자의 개수는 1개,

 $\frac{3}{55} = 0.054$ 이므로 순환마디를 이루는 숫자의 개수는 2개,

$$∴ a+b=1+2=3$$
 답 3

0030 전략 분수를 순환소수로 나타내어 순환마디를 구한다.

 $\frac{3}{7}$ =0.42857i이므로 순환마디를 이루는 숫자의 개수는 6개

이때 $50=6\times8+2$ 이므로 소수점 아래 50번째 자리의 숫자 는 순환마디의 2번째 숫자인 2와 같다.

0031 $31=3\times10+1$ 이므로 $1.\dot{1}0\dot{4}$ 의 소수점 아래 31번째 자리의 숫자는 순환마디의 첫 번째 숫자인 1과 같다. $\therefore a=1$ 45=3×15이므로 1.104의 소수점 아래 45번째 자리의 숫자 는 순화마디의 3번째 숫자인 4와 같다 $\therefore b=4$

$$∴ a+b=1+4=5$$

0032 (1) $\frac{5}{33}$ = 0.151515…이므로 순환마디는 15이다. ····· (가)

 $(3)\frac{5}{33} = 0.\dot{15}$ 이므로 순환마디를 이루는 숫자의 개수는 2개

이때 100=2×50이므로 소수점 아래 100번째 자리의 숫 자는 순환마디의 2번째 숫자인 5와 같다.(대) 답 (1) 15 (2) 0.15 (3) 5

채점 기준	비율
(개) 순환소수의 순환마디 구하기	20 %
(내) 순환소수를 간단히 나타내기	30 %
(다)순환소수의 소수점 아래 100번째 자리의 숫자 구 하기	50 %

0033 11/13 = 0.846153이므로 순환마디를 이루는 숫자의 개수는 6 개이다

> 이때 $100=6\times16+4$ 이므로 소수점 아래 100번째 자리의 숫자는 순환마디의 4번째 숫자인 1과 같다.

f(100) = 1

또 $200=6\times33+2$ 이므로 소수점 아래 200번째 자리의 숫 자는 순환마디의 2번째 숫자인 4와 같다.

f(200) = 4

$$\therefore f(100) + f(200) = 1 + 4 = 5$$
 답 5

0034 전략 소수점 아래 111번째 자리의 숫자는 순환하는 부분에서 몇 번째 숫자인지 구한다.

> 4.2635에서 순환마디를 이루는 숫자의 개수는 3개이고 소수 점 아래 첫 번째 자리의 숫자 2는 순환하지 않는다.

따라서 소수점 아래 111번째 자리의 숫자는 순환하는 부분 에서 111-1=110(번째) 숫자이고 110=3×36+2이므로 순화마디의 2번째 숫자인 3과 같다

0035 4.571에서 순화마디를 이루는 숫자의 개수는 3개이다. 이때 70=3×23+1이므로 4.571의 소수점 아래 70번째 자 리의 숫자는 순환마디의 첫 번째 숫자인 5와 같다.

또한 0.24781에서 순환마디를 이루는 숫자의 개수는 3개이 고 소수점 아래 첫 번째 자리의 숫자 2와 소수점 아래 2번째 자리의 숫자 4는 순화하지 않는다.

따라서 소수점 아래 70번째 자리의 숫자는 순환하는 부분에 서 70-2=68(번째) 숫자이고 68=3×22+2이므로 순환 마디의 2번째 숫자인 8과 같다. b=8

$$\therefore a+b=5+8=13$$
 답 13

0036 전략 분수의 분모가 10의 거듭제곱 꼴이 되도록 분모, 분자에 같은 수를 곱한다.

$$\frac{6}{160} = \frac{3}{80} = \frac{3}{2^4 \times 5} = \frac{3 \times 5^3}{10^4} = \frac{375}{10000}$$
$$= \boxed{0.0375}$$

0037 $\frac{3}{200} = \frac{3}{2^3 \times 5^2} = \frac{3 \times 5}{2^3 \times 5^3} = \frac{15}{1000} = 0.015$ 이므로 A=5, B=15, C=0.015A + B + C = 5 + 15 + 0.015 = 20.015답 20.015

0038
$$\frac{7}{250} = \frac{7}{2 \times 5^3} = \frac{7 \times 2^2}{2^3 \times 5^3} = \frac{28}{10^3} = \frac{280}{10^4} = \cdots$$
 따라서 $a = 28$, $n = 3$ 일 때 $a + n$ 의 값이 가장 작으므로 $a + n$ 의 최솟값은 $28 + 3 = 31$ 답 31

0039 전략 유한소수로 나타낼 수 있는 분수는 기약분수로 나타낸 후 분모를 소인수분해 하였을 때, 분모의 소인수가 2 또는 5뿐이다.

①
$$\frac{14}{2 \times 3 \times 7} = \frac{1}{3}$$
 ② $\frac{21}{75} = \frac{7}{25} = \frac{7}{5^2}$

$$2\frac{21}{75} = \frac{7}{25} = \frac{7}{5^2}$$

$$3\frac{5}{12} = \frac{5}{2^2 \times 3}$$

$$4\frac{100}{21} = \frac{100}{3 \times 7}$$

$$5\frac{15}{2^2 \times 3} = \frac{5}{2^2}$$

따라서 유한소수로 나타낼 수 있는 것은 ② ⑤이다.

답 2,5

0040 ①
$$\frac{5}{32} = \frac{5}{2^5}$$

$$2\frac{22}{12} = \frac{11}{6} = \frac{11}{2 \times 3}$$

$$3\frac{27}{5\times3^2} = \frac{3}{5}$$

$$4\frac{91}{35} = \frac{13}{5}$$

따라서 유한소수로 나타낼 수 없는 것은 ②이다.

0041
$$\bigcirc \frac{11}{12} = \frac{11}{2^2 \times 3}$$
 $\bigcirc \frac{6}{2^2 \times 3^2 \times 5} = \frac{1}{2 \times 3 \times 5}$

$$\bigcirc \frac{5}{6} = \frac{5}{2 \times 3}$$

$$\bigcirc \frac{21}{2^2 \times 5 \times 7} = \frac{3}{2^2 \times 5}$$

따라서 유한소수로 나타낼 수 있는 것은 ②, ②의 2개이다.

답 2개

0042 전략 주어진 분수를 기약분수로 나타낸 후 분모의 소인수가 2 또는 5만 남도록 하는 <math>a의 값을 구한다.

$$\frac{21}{180} = \frac{7}{60} = \frac{7}{2^2 \times 3 \times 5}$$
이므로 $\frac{21}{180} \times a$ 가 유한소수가 되려면 a 는 3의 배수이어야 한다.

따라서 a의 값이 될 수 있는 가장 작은 자연수는 3이다.

답 3

0043 $\frac{3x}{5 \times 7 \times 18} = \frac{x}{2 \times 3 \times 5 \times 7}$ 이므로 $\frac{3x}{5 \times 7 \times 18}$ 가 유한소 수로 나타내어지려면 x는 3과 7의 공배수, 즉 21의 배수이어 야 한다.

> 따라서 x의 값이 될 수 있는 것은 ④이다. 답 ④

0044 $\frac{x}{140} = \frac{x}{2^2 \times 5 \times 7}$ 이므로 $\frac{x}{140}$ 가 유한소수가 되려면 x는 7의 배수이어야 한다.

> 이때 7의 배수 중 가장 작은 두 자리 자연수는 14이고 가장 큰 두 자리 자연수는 98이므로

a = 14, b = 98

$$a+b=14+98=112$$

답 112

0045 전략 두 분수를 기약분수로 나타낸 후 각각의 분모의 소인수가 2 또는 5만 남도록 하는 A의 값을 구한다.

$$\frac{13}{390} = \frac{1}{30} = \frac{1}{2 \times 3 \times 5}, \frac{7}{245} = \frac{1}{35} = \frac{1}{5 \times 7}$$
이므로

 $\frac{13}{390} \times A$, $\frac{7}{245} \times A$ 가 모두 유한소수로 나타내어지려면 A는 3과 7의 공배수, 즉 21의 배수이어야 한다.

따라서 A의 값이 될 수 있는 가장 작은 자연수는 21이다.

0046 $\frac{5}{12} = \frac{5}{2^2 \times 3}, \frac{7}{22} = \frac{7}{2 \times 11}$ 이므로 $\frac{5}{12} \times A, \frac{7}{22} \times A$ 가 모 두 유한소수로 나타내어지도록 하려면 A는 3과 11의 공배 수, 즉 33의 배수이어야 한다.

따라서 A의 값이 될 수 있는 가장 큰 두 자리 자연수는 99이 다.(니)

답 99

채점 기준	비율
(개) $\frac{5}{12} \times A$, $\frac{7}{22} \times A$ 가 유한소수로 나타내어지도록 하는 자연수 A 의 조건 구하기	60 %
(+) <i>A</i> 의 값이 될 수 있는 가장 큰 두 자리 자연수 구하기	40 %

0047 $\frac{17 \times x}{280} = \frac{17 \times x}{2^3 \times 5 \times 7}, \frac{5 \times x}{176} = \frac{5 \times x}{2^4 \times 11}$ 이므로 두 분수가 모두 유한소수가 되려면 x는 7과 11의 공배수, 즉 77의 배수 이어야 한다

> 이때 77의 배수 중 세 자리 자연수는 154, 231, …, 924이므 로 구하는 세 자리 자연수의 개수는 11개이다.

0048 전략 분모의 소인수가 2 또는 5뿐이도록 하는 *x*의 값을 구한다. $\frac{7}{2^2 \times r}$ 이 유한소수로 나타내어지려면 x는 소인수가 2 또는 5로만 이루어진 수이거나 7의 약수이거나 이들의 곱으로 이 루어진 수이어야 한다.

> 따라서 15 미만의 자연수 중 x의 값이 될 수 있는 수는 1, 2, 4, 5, 7, 8, 10, 14의 8개이다. 답 8개

- 0049 전략 보기의 값을 a에 대입하여 유한소수가 되는지 판단한다. ⑤ a=9일 때, $\frac{15}{2^2 \times 5 \times 9} = \frac{1}{2^2 \times \frac{3}{3}}$ 이므로 유한소수가 될 수 답 ⑤
- 0050 $\frac{3}{5 \times x}$ 이 유한소수가 되도록 하는 $1 \le x < 10$ 인 자연수 x는 1, 2, 3, 4, 5, 6, 8이므로 구하는 합은 1+2+3+4+5+6+8=29답 29
- 0051 전략 분수를 소수로 나타내었을 때 순환소수가 되게 하려면 분 모인 소인수에 2와 5 이외의 수가 있어야 한다.

 $\frac{21}{2^3 \times a} = \frac{3 \times 7}{2^3 \times a}$ 이 순환소수가 되려면 기약분수로 나타내 었을 때, 분모의 소인수에 2와 5 이외의 수가 있어야 한다. 따라서 가장 작은 자연수 a의 값은 9이다. 단 9

0052 전략 보기의 값을 a에 대입하여 유한소수인지 순환소수인지

①
$$\frac{7}{2^2 \times 5^3 \times 7} = \frac{1}{2^2 \times 5^3}$$
 ⇒ 유한소수

②
$$\frac{7}{2^2 \times 5^3 \times 14} = \frac{1}{2^3 \times 5^3}$$
 화유한소수

③
$$\frac{7}{2^2 \times 5^3 \times 21} = \frac{1}{2^2 \times 3 \times 5^3}$$
 → 순환소수

④
$$\frac{7}{2^2 \times 5^3 \times 35} = \frac{1}{2^2 \times 5^4}$$
 화유한소수

0053 $\frac{33}{2^3 \times a \times 5} = \frac{3 \times 11}{2^3 \times a \times 5}$ 이 순환소수가 되려면 기약분수로 나타내었을 때, 분모의 소인수에 2와 5 이외의 수가 있어야한다.

이때 1 < a < 20이므로 자연수 a의 값은 7, 9, 13, 14, 17, 18, 19의 7개이다. 답 7개

0054 $\frac{a}{90}$ 를 유한소수가 되도록 하는 a의 값을 구하여 대입한 후 약분해 본다.

 $\frac{a}{90} = \frac{a}{2 \times 3^2 \times 5}$ 이므로 $\frac{a}{90}$ 가 유한소수가 되려면 a는 3^2 , 즉 9의 배수이어야 한다.

이때 10 < a < 20이므로 a = 18

즉
$$\frac{18}{90}$$
= $\frac{1}{5}$ 이므로 b = 5

$$a+b=18+5=23$$

답 23

0055 $\frac{x}{120} = \frac{x}{2^3 \times 3 \times 5}$ 이므로 $\frac{x}{120}$ 가 유한소수가 되려면 x는 3의 배수이어야 한다.(개) 이때 20 < x < 30이므로 x = 21 또는 x = 24 또는 x = 27 $\frac{21}{120} = \frac{7}{40}, \frac{24}{120} = \frac{1}{5}, \frac{27}{120} = \frac{9}{40}$ 이므로

$$x=24, y=5$$
 (L)

$$\therefore x-3y=24-3\times 5=9$$
 (L)

답 9

채점 기준	비율
(7) 분수가 유한소수가 되도록 하는 자연수 x 의 조건 구하기	30 %
(나) x, y의 값 각각 구하기	각 25 %
(다) x-3y의 값 구하기	20 %

0056 $\frac{a}{180} = \frac{a}{2^2 \times 3^2 \times 5}$ 이므로 $\frac{a}{180}$ 가 유한소수가 되려면 a는 3^2 , 즉 9의 배수이어야 한다. 또 기약분수로 나타내면 $\frac{7}{b}$ 이므로 a는 7의 배수이어야 한다.

따라서 a는 9와 7의 공배수, 즉 63의 배수이고 a는 100 이하의 자연수이므로 a=63

$$\frac{63}{180} = \frac{7}{20}$$
이므로 $b = 20$

$$a+b=63+20=83$$

답 83

0057 전략 구하는 분수를 $\frac{a}{30}$ 로 놓고 a의 조건을 알아본다.

 $\frac{1}{6} = \frac{5}{30}, \frac{3}{5} = \frac{18}{30}$ 이고 $30 = 2 \times 3 \times 5$ 이므로 유한소수로 나타낼 수 있는 분수를 $\frac{a}{30}$ 라 하면 a는 5 < a < 18인 3의 배수이어야 한다.

따라서 구하는 분수는 $\frac{6}{30}$, $\frac{9}{30}$, $\frac{12}{30}$, $\frac{15}{30}$ 의 4개이다.

답 4개

0058 $\frac{2}{3} = \frac{40}{60}$, $\frac{4}{5} = \frac{48}{60}$ 이고 $60 = 2^2 \times 3 \times 5$ 이므로 유한소수로 나타낼 수 있는 분수를 $\frac{a}{60}$ 라 하면 a는 40 < a < 48인 3의 배수이어야 한다.

따라서 구하는 분수는 $\frac{42}{60}$, $\frac{45}{60}$ 이다. **답** $\frac{42}{60}$, $\frac{45}{60}$

0059 $\frac{1}{7} = \frac{8}{56}$, $\frac{5}{8} = \frac{35}{56}$ 이고 $56 = 2^3 \times 7$ 이므로 유한소수로 나타 낼 수 있는 분수를 $\frac{a}{56}$ 라 하면 a는 8 < a < 35인 7의 배수이 어야 하므로 14, 21, 28이다. 따라서 순환소수로만 나타낼 수 있는 분수는 $\frac{9}{56}$, $\frac{10}{56}$, ..., $\frac{34}{56}$ 에서 유한소수로 나타낼 수 있는 분수인 $\frac{14}{56}$, $\frac{21}{56}$, $\frac{28}{56}$ $\frac{9}{56}$

0060 전략 (가), (나)의 조건에서 x의 소인수가 될 수 있는 수를 찾는다. (가)에서 x와 15는 서로소이고 (나)에서 $\frac{15}{x} = \frac{3 \times 5}{x}$ 는 유한 소수로 나타내어지므로 x의 소인수는 2뿐이다. (다)에서 $20 \le x \le 100$ 이므로 이를 만족시키는 소인수가 2뿐 인 자연수 중 가장 큰 수는 64이다. 답 64

제외한 것이므로 그 개수는 26-3=23(개)

0061 $(1)\frac{x}{2\times 3^2\times 5}$ 가 유한소수로 나타내어지려면 x는 3^2 , 즉 9의 배수이어야 한다.

(2) x는 2와 3의 공배수, 즉 6의 배수이다.

(3) (7), (나에서 x는 9와 6의 공배수, 즉 18의 배수이고 (대에서 x는 세 자리 자연수이므로 조건을 모두 만족시키는 자연수 x의 값 중 가장 작은 수는 108이다.

답 (1) 9의 배수이다. (2) 6의 배수이다. (3) 108

0062 따에서 $\frac{n}{30} = \frac{n}{2 \times 3 \times 5}$ 이 유한소수가 되므로 n은 3의 배수 이어야 한다.

(내)에서 $\frac{n}{30}$ 이 정수가 아니므로 n은 30의 배수가 아니어야한다.

(개)에서 $1 \le n \le 200$ 이므로 조건을 모두 만족시키는 자연수 n의 값의 개수는 66-6=60(개) **답** ①

0063 $12=2^2\times 3$ 이므로 유한소수로 나타낼 수 있는 분수를 $\frac{a}{12}$ 라 하면 a는 $1\le a\le 11$ 인 3의 배수이어야 한다. 따라서 유한소수로 나타낼 수 있는 분수는 $\frac{3}{12}=\frac{1}{4}$, $\frac{6}{12}=\frac{1}{2}, \frac{9}{12}=\frac{3}{4}$ 이다. 답 $\frac{1}{4}, \frac{1}{2}, \frac{3}{4}$

0064 전략 유한소수가 아닌 분수의 개수는 전체 분수의 개수에서 유한소수가 되는 분수의 개수를 빼면 된다.

(i) 분모의 소인수가 2뿐인 수는

$$\frac{1}{2}$$
, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$, $\frac{1}{32}$, $\frac{1}{64}$ 의 6개

- (ii) 분모의 소인수가 5뿐인 수는 $\frac{1}{5}$, $\frac{1}{25}$ 의 2개
- (iii) 분모의 소인수가 2와 5뿐인 수는

$$\frac{1}{10}, \frac{1}{20}, \frac{1}{40}, \frac{1}{50}, \frac{1}{80}, \frac{1}{100}$$
 $\stackrel{\triangle}{=}$ 67

(i), (ii), (iii)에서 주어진 분수 중 유한소수가 되는 분수는 6+2+6=14(7i)

따라서 유한소수가 아닌 분수는

답 85개

0065 전략 분수를 순환소수로 나타내어 순환마디를 구한다.

2 - 0.285714이고 50=6×8+2이므로 순환마디가 8번 반복되고 소수점 아래 49번째 자리의 숫자와 50번째 자리의 숫자와 50번째 자리의 숫자는 각각 2, 8이다.

$$\therefore x_1 + x_2 + \cdots + x_{50}$$

$$=(2+8+5+7+1+4)\times 8+2+8$$

$$=226$$

답 226

0066 $\frac{3}{14}$ =0.2i4285 $\dot{7}$ 이므로 순환마디를 이루는 숫자의 개수는 6 개이고 소수점 아래 첫 번째 자리의 숫자 2는 순환하지 않는다.

이때 $51=6\times8+3$ 이므로 순환마디가 8번 반복되고 소수점 아래 50번째, 51번째, 52번째 자리의 숫자는 각각 1,4,2이 다.

따라서 구하는 합은

$$2+(1+4+2+8+5+7)\times 8+1+4+2=225$$
 답 ②

0067
$$\frac{3}{13} = \frac{a_1}{10} + \frac{a_2}{10^2} + \frac{a_3}{10^3} + \dots + \frac{a_{30}}{10^{30}} + \dots$$

 $=0.a_1a_2a_3\cdots a_{30}\cdots$

=0.230769

순환마디를 이루는 숫자의 개수는 6개이고 $30=6\times5$ 이므로 $a_1+a_2+a_3+\dots+a_{30}$

$$=(2+3+0+7+6+9)\times 5=135$$
 답 135

0068 1.2abc의 소수점 아래 200번째, 300번째, 400번째 자리의 숫자는 순환하는 부분에서 199번째, 299번째, 399번째 숫자이다.

 $199=3\times66+1$, $299=3\times99+2$, $399=3\times133$ 이므로 1.2abc의 소수점 아래 200번째, 300번째, 400번째 자리의 숫자는 각각 순환마디의 첫 번째, 2번째, 3번째 숫자와 같으므로 a=3,b=8,c=4

$$a+b-c=3+8-4=7$$

답 7

STEP 1 개념 마스터

p.17

0069 0.12를 x로 놓으면 x=0.121212···

$$\begin{array}{c|cccc}
100x = \boxed{12.121212\cdots} \\
-) & x = & 0.121212\cdots \\
\hline
99 & x = \boxed{12} \\
\therefore & x = \frac{\boxed{12}}{99} = \frac{4}{\boxed{33}}
\end{array}$$

답 12,121212..., 99, 12, 12, 33

0070 0.2형을 x로 놓으면 x=0.2888…

$$100x = 28.888 \cdots$$

$$-) 10 x = 2.888 \cdots$$

$$90 x = 26$$

$$\therefore x = \frac{26}{90} = \frac{13}{45}$$

답 28.888…, 10, 90, 26, 90, $\frac{13}{45}$

0071 답 9

0072 답 37

0073 답 147

0074 답 25

0076 $1.\dot{3} = \frac{13-1}{9} = \frac{12}{9} = \frac{4}{3}$

0077 $1.2\dot{8} = \frac{128 - 12}{90} = \frac{116}{90} = \frac{58}{45}$

0079 답 〇

0080 답 〇

0081 무한소수 중 순환소수가 아닌 무한소수는 유리수가 아니다. **답** ×

STEP 2 유형 마스터

p.18 ~ p.23

0082 전략 첫 순환마디의 앞뒤로 소수점이 오도록 양변에 10의 거듭 제곱을 곱한다.

∋의 양변에 1000을 곱하면	
$1000x = 236.236236 \cdots$	····· ①
①-①을 하면 999x=236	

따라서 가장 편리한 식은 ④이다.

0083 ④ (라) 249 답 ④

0084
$$x=0.34555\cdots$$

⇒의 양변에 1000을 곱하면

$$1000x = 345.555 \cdots$$

□의 양변에 100을 곱하면

$$100x = 34.555 \cdots$$

①-ⓒ을 하면 900x=311

0086

$$x=1.36$$
이라 하면 $x=1.3666\cdots$
 ······ (가)

 ○의 양변에 100 을 곱하면 $100x=136.666\cdots$
 ······ (□)

 ○의 양변에 10 을 곱하면 $10x=13.666\cdots$
 ······ (□)

 ○□- ○을 하면 $90x=123$
 ······ (□)

 ∴ $x=\frac{123}{90}=\frac{41}{30}$
 ····· (□)

답 풀이 참조

답 ④

채점 기준	비율
(가) 순환소수를 <i>x</i> 로 놓기	10 %
(내)소수 부분이 같은 두 식의 차를 이용하여 계산하기	60 %
(대) <i>x</i> 를 기약분수로 나타내기	30 %

0087 전략 주어진 식을 계산하여 순환소수로 나타낸다.

 $0.26+0.006+0.0006+0.00006+\cdots=0.26666\cdots$] 므로

 $x=0.26666\cdots$ ····· \odot 이라 하고

¬의 양변에 100을 곱하면 100*x*=26.666⋯

①-ⓒ을 하면 90x=24

$$\therefore x = \frac{24}{90} = \frac{4}{15}$$

따라서 a=4, b=15이므로

$$a+b=4+15=19$$

0088 전략 순환소수를 분수로 나타내는 공식을 이용한다.

①
$$0.0\dot{4} = \frac{4}{90} = \frac{2}{45}$$
 ② $1.\dot{0}\dot{1} = \frac{101 - 1}{99} = \frac{100}{99}$

$$30.\dot{5}\dot{9} = \frac{59}{90}$$

$$30.\dot{5}\dot{9} = \frac{59}{99}$$
 $41.\dot{2}2\dot{0} = \frac{1220 - 1}{999} = \frac{1219}{999}$

$$(5) 1.203 = \frac{1203 - 12}{990} = \frac{1191}{990} = \frac{397}{330}$$

답 19

0089 ②
$$3.4\dot{9} = \frac{349 - 34}{90}$$
 답 ②

0090 전략 0.83333…을 분수로 나타내어 본다.

$$0.83333\dots = 0.83 = \frac{83 - 8}{90} = \frac{75}{90} = \frac{5}{6}$$

0091
$$(x) = \frac{3705 - 3}{999}$$

$$0.3\dot{27} = \frac{327 - 3}{990} = \frac{324}{990} = \frac{18}{55}$$
이므로 $B = 55$

$$\therefore \frac{B}{A} = \frac{55}{6} = 9.1666 \dots = 9.1\dot{6}$$

0093
$$0.\dot{3} = \frac{3}{9} = \frac{1}{3}$$
이므로

$$1.\dot{6} = \frac{16-1}{9} = \frac{15}{9} = \frac{5}{3}$$
이므로

1.6의 역수는
$$\frac{3}{5}$$
 $\therefore b = \frac{3}{5}$

$$\therefore \frac{a}{b} = a \div b = 3 \div \frac{3}{5} = 3 \times \frac{5}{3} = 5$$

답 5

0094 전략 주어진 등식의 좌변을 계산하여 순환소수로 나타낸다.

$$2 + \frac{4}{10^2} + \frac{4}{10^3} + \frac{4}{10^4} + \cdots$$

 $=2+0.04+0.004+0.0004+\cdots$

 $=2.0444\cdots=2.04$

$$=\frac{204-20}{90}=\frac{184}{90}=\frac{92}{45}$$

따라서 a=92, b=45이므로

$$a+b=92+45=137$$

답 137

0095 전략 먼저 순환소수를 기약분수로 나타낸다.

$$0.1\dot{3} = \frac{13-1}{90} = \frac{12}{90} = \frac{2}{15} = \frac{2}{3 \times 5}$$
이므로

 $0.13 \times a$ 가 유한소수가 되려면 a는 3의 배수이어야 한다. 따라서 a의 값이 될 수 있는 가장 작은 자연수는 3이다.

답 3

0096
$$0.3\dot{5} = \frac{35-3}{90} = \frac{32}{90} = \frac{16}{45} = \frac{16}{3^2 \times 5}$$
이므로

 $0.35 \times x$ 가 유한소수가 되려면 $x = 3^2$ 즉 9의 배수이어야 한 다. 이때 9의 배수 중 가장 작은 자연수는 9이고, 가장 큰 두 자리 자연수는 99이므로 a=9, b=99

$$b - 3a = 99 - 3 \times 9 = 72$$

답 72

0097
$$0.2\dot{3}\dot{6} = \frac{236-2}{990} = \frac{234}{990} = \frac{13}{55} = \frac{13}{5 \times 11}$$
이므로

 $0.236 \times a$ 가 유한소수가 되려면 a는 11의 배수이어야 한다.

또
$$0.194 = \frac{194 - 19}{900} = \frac{175}{900} = \frac{7}{36} = \frac{7}{2^2 \times 3^2}$$
이므로

 $0.194 \times a$ 가 유한소수가 되려면 a는 3^2 , 즉 9의 배수이어야한다.

따라서 a는 11과 9의 공배수, 즉 99의 배수이어야 하므로 a의 값 중 가장 작은 세 자리 자연수는 $99 \times 2 = 198$ (더)

답 198

채점 기준	비율
(가) 0.236×a가 유한소수가 될 조건 구하기	30 %
(나) 0.194×a가 유한소수가 될 조건 구하기	30 %
대 a의 값 중 가장 작은 세 자리 자연수 구하기	40 %

0098 전략 준수는 분자를 제대로 보았고, 태양이는 분모를 제대로 보았음을 이용한다.

> $0.7\dot{8} = \frac{78 - 7}{90} = \frac{71}{90}$ 이고 준수는 분자를 제대로 보았으므로 처음 기약분수의 분자는 71이다.

> $0.\dot{76} = \frac{76}{99}$ 이고 태양이는 분모를 제대로 보았으므로 처음 기약분수의 분모는 99이다.

따라서 처음 기약분수는 $\frac{71}{99}$ 이고 소수로 나타내면

$$\frac{71}{99}$$
 = 0.7171 ··· = 0.71

답 0.71

0099 (1)
$$0.2\dot{6} = \frac{26-2}{90} = \frac{24}{90} = \frac{4}{15}$$
(7)

$$(2) \ 0.58 \ \dot{3} = \frac{583 - 58}{900} = \frac{525}{900} = \frac{7}{12} \qquad \qquad \dots \dots \ (4)$$

(3) 주리는 분모를 제대로 보았고 인수는 분자를 제대로 보았으므로 처음 기약분수는 $\frac{7}{15}$ 이다.

$$(4)\frac{7}{15} = 0.4666 \dots = 0.4\dot{6} \qquad \dots (e)$$

답 $(1)\frac{4}{15}$ $(2)\frac{7}{12}$ $(3)\frac{7}{15}$ (4) $0.4\dot{6}$

채점 기준	비율
(개) 주리가 잘못 본 기약분수 구하기	30 %
(내) 인수가 잘못 본 기약분수 구하기	30 %
(다) 처음 기약분 수 구하기	20 %
(라) 처음 기약분수를 순환소수로 나타내기	20 %

0100 $2.\dot{5} = \frac{25-2}{9} = \frac{23}{9}$ 이고 원석이는 분자를 제대로 보았으므 로 a = 23

$$0.5\dot{2} = \frac{52-5}{90} = \frac{47}{90}$$
이고 수준이는 분모를 제대로 보았으므로 $b=90$

$$\therefore \frac{a}{b} = \frac{23}{90} = 0.2555 \dots = 0.25$$
 \$\frac{1}{5}\$

0101 전략 순환소수끼리의 대소 관계는 순환마디를 풀어 쓴 후 앞자리부터 각 자리의 숫자의 크기를 비교한다.

② 0.6=0.666…이므로 0.6<0.7

③
$$\frac{1}{2}$$
=0.5, 0. $\dot{5}$ =0.555…이므로 $\frac{1}{2}$ <0. $\dot{5}$

④ 0.35=0.35<mark>5</mark>5···, 0.35=0.35**3**5···이므로 0.35>0.35

0102 ① 0.18=0.1888···, 0.18=0.1818···이므로 0.18>0.18

② 0.5=0.5<mark>5</mark>55···, 0.50=0.5**0**50···이므로 0.5>0.50

③ 0.123=0.123**2**3···, 0.123=0.123**1**23···이므로 0.123>0.123

④
$$\frac{37}{99} = 0.37$$
이고 $0.37 = 0.37$ 7····, $0.37 = 0.37$ 37····이므로 $0.37 > \frac{37}{99}$

0103 ① 0.14**i**=0.14**11**1····

② $0.\dot{1}4\dot{2} = 0.142142\cdots$

 $3 \quad 0.14\dot{2} = 0.1422222\cdots$

 $(4) 0.1\dot{4}\dot{2} = 0.142424\cdots$

 $\bigcirc 0.1423 = 0.142333\cdots$

따라서 가장 큰 수는 ④이다.

답 ④

0104 전략 먼저 순환소수를 분수로 나타내어 계산한다.

$$4.9 + 2.3 = \frac{49 - 4}{9} + \frac{23 - 2}{9} = \frac{45}{9} + \frac{21}{9} = \frac{66}{9} = \frac{22}{3}$$

이므로 a=3, b=22

$$a+b=3+22=25$$

답 25

0105
$$0.\dot{8}\dot{4} + 0.\dot{3}\dot{8} = \frac{84}{99} + \frac{38}{99} = \frac{122}{99} = 1.\dot{2}\dot{3}$$

답 ②

0106
$$x = \frac{36}{99} = \frac{4}{11}$$
이므로 $\frac{1}{x} = 1 \div x = 1 \div \frac{4}{11} = \frac{11}{4}$

$$1 + \frac{1}{x} = 1 + \frac{11}{4} = \frac{15}{4}$$

답 ②

0107 3+0,3+0,03+0,003+···=3,333···=3,3ਂ이므로
(좌변)=
$$\frac{1}{90}$$
 × 3. $\dot{3}$ = $\frac{1}{90}$ × $\frac{33-3}{9}$

$$=\frac{1}{90}$$
 × $\frac{30}{9}$ = $\frac{1}{27}$
∴ x =27

0108
$$\frac{17}{30} = x + 0.24$$
 $\frac{17}{30} = x + \frac{24 - 2}{90}$ $\frac{17}{30} = x + \frac{22}{90}$ $\therefore x = \frac{17}{30} - \frac{22}{90} = \frac{51}{90} - \frac{22}{90} = \frac{29}{90}$ $= 0.3222 \dots = 0.32$

0109
$$0.\dot{3}x+2=3.\dot{2}$$
에서 $\frac{3}{9}x+2=\frac{29}{9}$
$$\frac{3}{9}x=\frac{11}{9} \qquad \therefore x=\frac{11}{3}=3.\dot{6}$$
 답 ④

0110
$$\frac{7}{15} - 9a = 0.1\dot{6}$$
 $||A|| \frac{7}{15} - 9a = \frac{15}{90}$ (7)
 $9a = \frac{7}{15} - \frac{15}{90} = \frac{42}{90} - \frac{15}{90} = \frac{27}{90} = \frac{3}{10}$
 $\therefore a = \frac{3}{10} \times \frac{1}{9} = \frac{1}{30} = 0.0\dot{3}$ (4)

····· (내) 답 0.03

채점 기준	비율
(가) 순환소수를 분수로 나타내기	40 %
(내) a의 값을 순환소수로 나타내기	60 %

- 0111 전략 무한소수는 순환소수와 순환소수가 아닌 무한소수로 나누어지고, 순환소수는 모두 유리수이다.
 - ③ 순환소수는 모두 유리수이다.
 - ④ 무한소수 중에는 순화소수가 아닌 무한소수도 있다.

답 ③, ④

- **0112** 유리수는 $\frac{1}{4}$, $-\frac{5}{6}$, $-\frac{13}{27}$, 1.65의 4개이다. 답 4개
- 0113 $\frac{a}{b}(b \neq 0)$ 는 유리수이므로 순환소수가 아닌 무한소수가 될수 없다.

따라서 계산 결과가 될 수 있는 것은 ①, ①, ②, ②이다.

답 ①, ①, ②, ②

- **0114** ① 정수는 유리수이다.
 - ② 순환소수가 아닌 무한소수는 유리수가 아니다.
 - ③ 분수를 소수로 나타내면 순환소수가 될 수도 있다.
 - ④ 정수가 아닌 유리수는 순환소수로 나타내어질 수도 있다.

답 ⑤

0115 ② 무한소수 중에는 순환소수가 아닌 무한소수도 있다.

답 ②

0116 ① 0은 유리수이다.

© 모든 유한소수는 유리수이다. 따라서 옳은 것은 ①, ②, ③이다.

답 ①, ②, ①

0117 전략 $0.\dot{a}\dot{b}=\frac{10a+b}{99}, 0.\dot{b}\dot{a}=\frac{10b+a}{99}$ 임을 이용한다.

 $(1) 0.\dot{a}\dot{b} + 0.\dot{b}\dot{a} = 0.5$ 에서

$$\frac{10a+b}{99} + \frac{10b+a}{99} = \frac{5}{9}$$

$$\frac{11(a+b)}{99} = \frac{5}{9}$$
 : $a+b=5$

- (2) a > b이고 a와 b는 소수이므로 a=3, b=2
- (3) 0.ab=0.32, 0.ba=0.23이므로

$$0.\dot{a}\dot{b} - 0.\dot{b}\dot{a} = 0.\dot{3}\dot{2} - 0.\dot{2}\dot{3} = \frac{32}{99} - \frac{23}{99}$$

$$=\frac{9}{99}$$
=0.0909····=0.09

답 (1) 5 (2) a=3, b=2 (3) 0.09

0118 a > b이므로 $0.\dot{a}\dot{b} > 0.\dot{b}\dot{a}$ 이고 두 수의 차가 $0.\dot{6}\dot{3}$ 이므로 $0.\dot{a}\dot{b} - 0.\dot{b}\dot{a} = 0.\dot{6}\dot{3}$ 에서

$$\frac{10a+b}{99} - \frac{10b+a}{99} = \frac{63}{99}$$

$$\frac{9(a-b)}{99} = \frac{63}{99}$$
 : $a-b=7$

이때 a > b이고 a와 b는 9보다 작은 자연수이므로

$$a = 8, b = 1$$

답 a=8.b=1

0119 0.ab-0.ba=0.4에서

$$\frac{10a + b - a}{90} - \frac{10b + a - b}{90} = \frac{4}{9}$$

$$\frac{8(a-b)}{90} = \frac{4}{9}$$
 : $a-b=5$

답 5

STEP 3 내신 마스터

p.24 ~ p.27

0120 전략 순환소수가 아닌 무한소수는 유리수가 아니다.

⑤ 순환소수가 아닌 무한소수이므로 유리수가 아니다.

답 ⑤

0121 전략 순환소수는 첫 번째 순환마디의 양 끝의 숫자 위에 점을 찍어 나타낸다.

② $2.342342 \cdots = 2.342$

답 ②

- 0122 전략 순환마디를 이루는 숫자의 개수를 이용한다. 순환마디를 이루는 숫자의 개수는 4개이고 $100 = 4 \times 25$ 이 므로 0.7425의 소수점 아래 100번째 자리의 숫자는 순환마 디의 4번째 숫자인 5와 같다.
- 0123 전략 기약분수의 분모를 소인수분해 하였을 때, 소인수 2와 5 의 지수가 같아지도록 분모, 분자에 적당한 수를 곱해 준다.

$$\frac{11}{40} = \frac{11}{2^3 \times 5} = \frac{11 \times 5^2}{2^3 \times 5 \times 5^2} = \frac{275}{1000} = 0.275$$
이므로
 $a = 5^2 = 25, b = 275$

 $\therefore a+b=25+275=300$

답 300

- **0124** $\frac{2}{125} = \frac{2}{5^3} = \frac{2 \times 2^3}{5^3 \times 2^3} = \frac{16}{10^3} = \frac{160}{10^4} = \cdots$ 따라서 a=16, n=3일 때 a+n의 값이 가장 작으므로 a+n의 최속값은 16+3=19 답 ②
- 0125 전략 기약분수의 분모의 소인수에 2와 5 이외의 수가 있는 것
 - $\bigcirc \frac{49}{42} = \frac{7}{6} = \frac{7}{2 \times 3}$ $\bigcirc \frac{33}{50} = \frac{33}{2 \times 5^2}$

따라서 유한소수로 나타낼 수 없는 것은 ①, ②, ②의 3개이

0126 전략 분모의 소인수가 2 또는 5만 남도록 하는 x의 조건을 구

 $\frac{x}{42} = \frac{x}{2 \times 3 \times 7}$ 가 유한소수로 나타내어지려면 x는 3과 7 의 공배수, 즉 21의 배수이어야 한다.

따라서 x의 값 중 가장 작은 두 자리 자연수는 21이다.

- **0127** 전략 두 분수의 분모의 소인수가 2 또는 5만 남도록 하는 *n*의 조건을 구하다.
 - $(1)\frac{13}{90} = \frac{13}{2 \times 3^2 \times 5}$ 이므로 $\frac{13}{90} \times n$ 이 유한소수로 나타내어 지려면 자연수 n은 3^2 , 즉 9의 배수이어야 한다. ·····(개)
 - $(2)\frac{3}{140} = \frac{3}{2^2 \times 5 \times 7}$ 이므로 $\frac{3}{140} \times n$ 이 유한소수로 나타내 어지려면 자연수 n은 7의 배수이어야 한다. (내)
 - (3)(1),(2)에서 n은 9와 7의 공배수, 즉 63의 배수이어야 한다. 따라서 n의 값이 될 수 있는 가장 작은 자연수는 63이다.

....(다)

답 (1) 9의 배수이다. (2) 7의 배수이다. (3) 63

채점 기준	비율
(개) $\frac{13}{90}$ 에 곱해야 할 자연수 n 의 조건 구하기	30 %
(4) $\frac{3}{140}$ 에 곱해야 할 자연수 n 의 조건 구하기	30 %
(H) n 의 값이 될 수 있는 가장 작은 자연수 구하기	40 %

- 0128 전략 보기의 값을 a에 대입하여 기약분수로 나타내었을 때 분 모의 소인수에 2와 5 이외의 수가 있는 것을 찾는다.
 - ③ a=9일 때, $\frac{21}{2^3 \times 7 \times 9} = \frac{1}{2^3 \times 3}$ 이므로 유한소수가 될
- 0129 전략 먼저 $\frac{x}{150}$ 가 유한소수가 되도록 하는 x의 조건을 구한다.

 $\frac{x}{150} = \frac{x}{2 \times 3 \times 5^2}$ 이므로 $\frac{x}{150}$ 가 유한소수로 나타내어지려

면 x는 3의 배수이어야 한다. 또 기약분수로 나타내면 $\frac{3}{y}$ 이 므로 x는 3^2 , 즉 9의 배수이어야 한다.

이때 40 < x < 50이므로 x = 45

$$\frac{45}{150} = \frac{3}{10}$$
이므로 $y = 10$

답 55

0130 전략 구하는 분수 x를 $\frac{a}{48}$ 로 놓고 a의 조건을 구한다.

 $\frac{1}{8} = \frac{6}{48}, \frac{5}{12} = \frac{20}{48}$ 이고 $48 = 2^4 \times 3$ 이므로 $x = \frac{a}{48}$ 라 하면 a는 $6 < a \le 20$ 인 3의 배수이어야 한다.

따라서 구하는 분수 x는 $\frac{9}{48}$, $\frac{12}{48}$, $\frac{15}{48}$, $\frac{18}{48}$ 의 4개이다.

답 4개

0131 전략 양변에 10의 거듭제곱을 곱하여 소수 부분이 같은 두 식 을 만든다.

x=2.57이므로 $x=2.5777\cdots$

.....(¬)

□의 양변에 100을 곱하면

 $100x = 257.777 \cdots$ ····· (L)

⇒의 양변에 10을 곱하면

 $10x = 25.777 \cdots$ ····· (È)

①-(C)을 하면 90x = 232

따라서 가장 편리한 식은 ③이다.

답 ③

0132 전략 $a.\dot{bc} = \frac{abc - ab}{90}$ 임을 이용한다.

②
$$2.1\dot{5} = \frac{215 - 21}{90}$$
 답 ②

- 0133 전략 공식을 이용하여 순환소수를 분수로 나타내어 본다.
 - $\textcircled{4} \ 0.3525252 \cdots = 0.352 = \frac{352 3}{990} = \frac{349}{990}$

0134 전략 순환소수를 분수로 나타내어 *a*, *b*의 값을 구한다.

$$0.5\dot{6} = \frac{56-5}{90} = \frac{51}{90} = \frac{17}{30}$$
이므로 $a = 17$

$$1.2\dot{3} = \frac{123-12}{90} = \frac{111}{90} = \frac{37}{30}$$
이므로 $b = 30$

$$\therefore a+b=17+30=47$$

0135 전략 먼저 0.5⁷을 분수로 바꾼다.

$$0.5\dot{7} = \frac{57-5}{90} = \frac{52}{90} = \frac{26}{45} = \frac{26}{3^2 \times 5}$$
이므로

 $0.57 \times a$ 가 유한소수가 되려면 $a = 3^2$, 즉 9의 배수이어야 한다. 따라서 가장 작은 자연수 a의 값은 9이다. **답** 9

0136 전략 지윤이는 분자를 제대로 보았고, 서준이는 분모를 제대로 보았음을 이용한다.

고 지금을 이용한다. $1.3\dot{5} = \frac{135 - 13}{90} = \frac{122}{90} = \frac{61}{45}$ 이고 지윤이는 분자를 제대로 보았으므로 처음 기약분수의 분자는 61이다.(개) $0.3\dot{4} = \frac{34}{99}$ 이고 서준이는 분모를 제대로 보았으므로 처음 기약분수의 분모는 99이다.(대)
따라서 처음 기약분수는 $\frac{61}{99}$ 이고 순환소수로 나타내면 $\frac{61}{99} = 0.6161 \cdots = 0.6\dot{1}$ (다)

답 0.61

채점 기준	비율
(가) 처음 기약분수의 분자 구하기	40 %
(ii) 처음 기약분수의 분모 구하기	40 %
(ii) 처음 기약분수를 순환소수로 나타내기	20 %

Lecture

기약분수를 소수로 나타낼 때

- 분모를 잘못 보았다. ⇒ 분자는 제대로 보았다.
- 분자를 잘못 보았다. ⇒ 분모는 제대로 보았다.
- 0137 전략 순환소수의 순환마디를 풀어 쓴 후 앞자리부터 각 자리의 숫자를 비교하거나순환소수를 분수로 나타낸 후 대소를 비교한다.
 - ① 0.30=0.3<mark>0</mark>30···, 0.3=0.3<mark>3</mark>3···이므로 0.30<0.3
 - ② 1.80=1.8<mark>0</mark>80···, 1.8=1.8**8**8···이므로 1.80<1.8

③ 0.
$$\dot{7}$$
=0.777…, $\frac{7}{10}$ =0.7이므로 0. $\dot{7}$ > $\frac{7}{10}$

④ 1.
$$\dot{2} = \frac{12-1}{9} = \frac{11}{9} = \frac{110}{90}$$
이므로 1. $\dot{2} < \frac{111}{90}$

⑤ 0.43=0.4343…이므로 0.43< 0.43

답 ⑤

0138 전략 순환소수를 분수로 나타낸 후 $\frac{b}{a}$ 를 구한다.

1.2
$$\dot{7} \times \frac{b}{a} = 0.\dot{5}$$
 $\dot{9}$ $\dot{8} \times \frac{115}{90} \times \frac{b}{a} = \frac{5}{9}$ $\therefore \frac{b}{a} = \frac{5}{9} \times \frac{90}{115} = \frac{10}{23}$

이때 a, b는 서로소인 자연수이므로 a=23, b=10

∴
$$a+b=23+10=33$$
 달 33

0139 전략 순환소수를 분수로 나타낸 후 방정식을 푼다.

$$\frac{8}{11} = x + 0.32$$
에서 $\frac{8}{11} = x + \frac{32}{99}$
$$\therefore x = \frac{8}{11} - \frac{32}{99} = \frac{72}{99} - \frac{32}{99} = \frac{40}{99}$$
$$= 0.4040 \dots = 0.40$$
 답 ①

0140 전략 어떤 수 *a*에 대한 식을 세운 후 순환소수를 분수로 나타낸

$$a \times 1.5 = a \times 1.5 + 0.3$$
에서

$$a \times \frac{15-1}{9} = a \times \frac{3}{2} + \frac{3}{9}, \frac{14}{9}a = \frac{3}{2}a + \frac{1}{3}$$

양변에 18을 곱하면 28*a*=27*a*+6

- 0141 전략 유한소수와 순환소수는 모두 유리수이다.
 - ① 순환소수는 모두 유리수이다.
 - ⓒ 순환소수는 유한소수로 나타낼 수 없지만 유리수이다.
 - ② 기약분수를 소수로 나타내면 유한소수 또는 순환소수로 나타낼 수 있다.

따라서 옳은 것은 ①, 回이다.

답 ①. 🗇

0142 전략 악보에 그려진 음표를 대응되는 숫자로 바꾸어 나타낸다. (1) 악보에 그려진 음표가 '도미솔'이므로 대응되는 숫자를 나 영화며 '135'이고 이것은 스하마디로 하는 스하소스는

열하면 '135'이고, 이것을 순환마디로 하는 순환소수는 0.i35이다.(개)

$$(2) \ 0. \ \dot{1}3\dot{5} = \frac{135}{999} = \frac{5}{37} \qquad \qquad \cdots \cdots (4)$$

답 (1) $0.\dot{1}3\dot{5}$ (2) $\frac{5}{37}$

채점 기준	비율
(카) 악보의 3개의 음에 대응되는 숫자를 순환마디로 하는 순환소수 구하기	50 %
(내)(1)에서 구한 순환소수를 기약분수로 나타내기	50 %

0143 전략 $\frac{5}{11}$ 를 순환소수로 나타내어 x의 값을 구한다.

$$\frac{5}{11}$$
=0.4545 \cdots = $\frac{4}{10}$ + $\frac{5}{10^2}$ + $\frac{4}{10^3}$ + $\frac{5}{10^4}$ + \cdots 이므로 a_1 = a_3 = a_5 = \cdots =4, a_2 = a_4 = a_6 = \cdots =5 $\therefore x$ = a_1 + a_2 + a_3 + \cdots + a_{41} = $20 \times (a_1$ + a_2)+ a_1 = $20 \times (4+5)$ + 4 = 184

184=18×10+4이므로 숫자판의 바늘이 시계 방향으로 184칸 회전하였을 때, 바늘이 가리키는 숫자는 4이다.

답 4

2 단항식의 계산

STEP 1 개념 마스터

p.30 ~ p.31

0144

답 24

0145

답 2²×5⁵

0146

답 a⁴b²

0147 $2^4 \times 2^5 = 2^{4+5} = 2^9$

답 2⁹

0148 $x^5 \times x^3 = x^{5+3} = x^8$

답 x^8

0149 $x^2 \times x \times x^3 = x^{2+1+3} = x^6$

답 $x^{\scriptscriptstyle 6}$

0150 $5^2 \times 5^3 \times 3^2 \times 3^4 = 3^{2+4} \times 5^{2+3} = 3^6 \times 5^5$

0151 $a^3 \times b \times a \times b^2 = a^{3+1}b^{1+2} = a^4b^3$

0154 $(a^2)^3 \times (a^4)^2 = a^6 \times a^8 = a^{6+8} = a^{14}$

답 3⁶×5⁵

0152 $(2^3)^4 = 2^{3\times 4} = 2^{12}$

답 a⁴b³

0132 (2) -2 -2

답 2¹²

답 a¹⁴

0153 $(a^5)^2 = a^{5 \times 2} = a^{10}$

답 a¹⁰

 $3a=24 \cdots a$

0155 $(x^2)^3 \times y^3 \times (y^4)^3 = x^6 \times y^3 \times y^{12} = x^6 y^{3+12} = x^6 y^{15}$

답 x^6y^{15}

0156 $a^2 \times b^2 \times (a^2)^2 \times (b^2)^3 = a^2 \times b^2 \times a^4 \times b^6$

 $=a^{2+4}b^{2+6}=a^6b^8$ **답** a^6b^8

0157 $x^5 \div x = x^{5-1} = x^4$

답 x^4

0158 $x^{10} \div x^2 = x^{10-2} = x^8$

답 x⁸

0159 $y^5 \div y^5 = 1$

답 1

0160 $a^2 \div a^7 = \frac{1}{a^{7-2}} = \frac{1}{a^5}$

답 $\frac{1}{a^5}$

0161 $y^8 \div y^{10} = \frac{1}{y^{10-8}} = \frac{1}{y^2}$

답 $\frac{1}{v^2}$

0162 $(x^3y)^2 = x^{3\times 2}y^2 = x^6y^2$

답 x^6y^2

0163 $(3xy^2)^4 = 3^4x^4y^{2\times 4} = 81x^4y^8$

답 81x⁴y⁸

0164 $(-2a^2b^3)^3 = (-2)^3a^{2\times3}b^{3\times3} = -8a^6b^9$

답 -8a⁶b⁹

0165 $(-a^3b^2c)^4 = (-1)^4a^{3\times4}b^{2\times4}c^4 = a^{12}b^8c^4$

답 $a^{12}b^8c^4$

0166 $(-3x^2y^5)^3 = (-3)^3x^{2\times3}y^{5\times3} = -27x^6y^{15}$

0167 $\left(\frac{x}{y^2}\right)^3 = \frac{x^3}{y^{2\times 3}} = \frac{x^3}{y^6}$

답 $\frac{x^3}{y^6}$

답 $-27x^6y^{15}$

0168 $\left(\frac{5y^2}{x}\right)^2 = \frac{5^2y^{2\times 2}}{r^2} = \frac{25y^4}{r^2}$

답 $\frac{25y^4}{x^2}$

0169 $\left(-\frac{x^3}{2y^2}\right)^4 = \frac{(-1)^4 x^{3\times 4}}{2^4 y^{2\times 4}} = \frac{x^{12}}{16y^8}$

 $\frac{x^{12}}{16v^8}$

0170 $\left(-\frac{2x^2}{5y}\right)^2 = \frac{(-2)^2 x^{2\times 2}}{5^2 y^2} = \frac{4x^4}{25y^2}$

답 $\frac{4x^4}{25y^2}$

STEP 2 유형 마스터

p.32 ~ p.38

0171 전략 $a^m \times a^n = a^{m+n}$ 을 이용한다.

 $3 \times 3^4 \times 3^a = 3^{1+4+a} = 3^{12}$ 이므로 1+4+a=12

 $\therefore a=7$

답 7

0172 $a^2 \times b^2 \times a^3 \times b = a^{2+3} \times b^{2+1} = a^5 b^3$

답 a^5b^3

0173 $x^{3a} \times x^3 = x^{3a+3} = x^{27}$ 이므로 3a+3=27

3a=24 $\therefore a=8$

답 8

0174 $2^6 \times 2^a \times 2 = 2^{6+a+1} = 2^{a+7}$ 이고 $512 = 2^9$ 이므로

 $2^{a+7}=2^9$

즉 a+7=9이므로 a=2

답 2

0175 전략 $(a^m)^n = a^{mn}$ 을 이용한다.

 $(1)(x^4)^2 = x^{4 \times 2} = x^8$

② $x^4 + x^5$ 은 더 이상 간단히 할 수 없다.

 $3x \times x^2 \times x^5 = x^{1+2+5} = x^8$

 $(4) x \times x^4 \times y^3 \times y^2 \times x = x^{1+4+1}y^{3+2} = x^6y^5$

 $(3) (x^3)^3 \times (y^5)^2 \times x^2 \times y^3 = x^9 \times y^{10} \times x^2 \times y^3$

 $=x^{9+2}y^{10+3}=x^{11}y^{13}$ 답 ④

0176 $(x^3)^2 \times y^2 \times (y^2)^3 = x^6 \times y^2 \times y^6$

$$=x^6 \times y^{2+6}$$

 $=x^6y^8$

0177 2³⁰⁰은 (2³)¹⁰⁰이므로 8¹⁰⁰이고,

3²⁰⁰은 (3²)¹⁰⁰이므로 [9]¹⁰⁰이다.

이때 두 수 중에서 밑은 [9]100이 더 크고 지수는 같으므로

[3²⁰⁰이 [2³⁰⁰]보다 더 크다.

답 풀이 참조

답 x⁶y⁸

0178 ① $2^{30} = (2^3)^{10} = 8^{10}$

(2) $3^{20} = (3^2)^{10} = 9^{10}$

 $34^{15}=(2^2)^{15}=2^{30}=(2^3)^{10}=8^{10}$

(5) $9^5 = (3^2)^5 = 3^{10}$

이때 지수는 모두 10으로 같고 밑이 가장 큰 수는 9^{10} 이므로 가장 큰 수는 2^{0} 이다. **답** 2^{0}

=5

=3

$$\ \, (3)\,x^3 \div x^6 = \frac{1}{x^{6-3}} = \frac{1}{x^3} = \frac{1}{x^\square} \, \text{and} \, \,$$

 $\square = 3$

$$\textcircled{4} \ x^3 \times x^5 \div x^4 = x^{3+5} \div x^4 = x^8 \div x^4 = x^{8-4} = x^4 = x^{-1} \text{ and } x^4 = x^{-1} \text{ and }$$

$$(5)(x^3)^2 \div x^4 = x^6 \div x^4 = x^{6-4} = x^2 = x^{\Box}$$
에서

따라서 🗌 안에 들어갈 수가 가장 작은 것은 ⑤이다. 🕻 ⑤

0180
$$(a^2)^4 \div (a^3)^2 \div a^2 = a^8 \div a^6 \div a^2$$

= $a^{8-6} \div a^2$
= $a^2 \div a^2 = 1$ 답③

0181
$$a^{10} \div a^4 \div a^3 = a^{10-4} \div a^3 = a^6 \div a^3 = a^{6-3} = a^3$$

① $a^{10} \div (a^4 \div a^3) = a^{10} \div a^{4-3} = a^{10} \div a$

$$= a^{10-1} = a^{9}$$
(2) $a^{10} \div a^{4} \times a^{3} = a^{10-4} \times a^{3} = a^{6} \times a^{3}$

 $=a^{6+3}=a^9$

$$=a^{10-7}=a^3$$

$$\textcircled{4} a^{10} \times a^4 \div a^3 = a^{10+4} \div a^3 = a^{14} \div a^3$$

 $=a^{14-3}=a^{11}$

⑤
$$a^{10} \times (a^4 \div a^3) = a^{10} \times a^{4-3} = a^{10} \times a$$

= $a^{10+1} = a^{11}$

따라서 $a^{10} \div a^4 \div a^3$ 과 계산 결과가 같은 것은 ③이다.

답 ③

0182 전략
$$(a^mb^n)^l = a^{ml}b^{nl}, \left(\frac{a^m}{b^n}\right)^l = \frac{a^{ml}}{b^{nl}}$$
(단, $b \neq 0$)임을 이용한다.

① $(4xy^4)^3 = 4^3x^3y^{4\times3} = 64x^3y^{12}$

②
$$(-2x^2y^3)^5 = (-2)^5x^{2\times 5}y^{3\times 5} = -32x^{10}y^{15}$$

$$(3)(-3x^3y^5)^4 = (-3)^4x^{3\times4}y^{5\times4} = 81x^{12}y^{20}$$

$$(4) \left(\frac{2b}{a^2}\right)^6 = \frac{2^6b^6}{a^{2\times 6}} = \frac{64b^6}{a^{12}}$$

§
$$\left(-\frac{a^3}{h^4}\right)^5 = (-1)^5 \times \frac{a^{3\times 5}}{h^{4\times 5}} = -\frac{a^{15}}{h^{20}}$$
 답§

0183
$$\bigcirc (x^3y)^4 = x^{3\times 4}y^4 = x^{12}y^4$$

 $\bigcirc (-3a^3)^2 = (-3)^2a^{3\times 2} = 9a^6$

따라서 옳은 것은 ①, ①, ②이다.

답 ①. ①. ②

0184
$$\left(\frac{2x^3y}{z^5}\right)^4 = \frac{16x^ay^b}{z^c}$$
에서
$$\left(\frac{2x^3y}{z^5}\right)^4 = \frac{2^4x^{3\times 4}y^4}{z^{5\times 4}} = \frac{16x^{12}y^4}{z^{20}}$$
이므로

$$a=12, b=4, c=20$$

$$\therefore a+b+c=12+4+20=36$$

답 36

0185 전략 지수법칙을 이용한다.

①
$$x^8 \div x^4 = x^{8-4} = x^4$$

②
$$x^2 \times x^2 \times x^2 = x^{2+2+2} = x^6$$

$$(3) \left(\frac{x^3}{-2y^2}\right)^3 = \frac{x^{3\times 3}}{(-2)^3 y^{2\times 3}} = -\frac{x^9}{8y^6}$$

$$=\frac{1}{x^{15-7}}=\frac{1}{x^8}$$

$$\textcircled{5} (y^3)^2 \times (x^5)^2 \times (y^4)^2 = y^6 \times x^{10} \times y^8$$

$$=x^{10}y^{6+8}=x^{10}y^{14}$$

답 ③.⑤

0186 (1)
$$(x^4)^2 = x^{4 \times 2} = x^8$$

$$(2) x^2 \times x^6 = x^{2+6} = x^8$$

$$3x^{10} \div x^2 = x^{10-2} = x^8$$

$$(4) x^{10} \div x^5 \div x^3 = x^{10-5} \div x^3 = x^5 \div x^3$$

$$=x^{5-3}=x^2$$

따라서 계산 결과가 나머지 넷과 다른 하나는 ④이다.

답 ④

0187 ①
$$x^2 \times (x^3 \times x^4) = x^2 \times x^{3+4} = x^2 \times x^7$$

$$=x^{2+7}=x^9$$

(2)
$$a^2 \div (a \times a^5) = a^2 \div a^{1+5} = a^2 \div a^6$$

$$=\frac{1}{a^{6-2}}=\frac{1}{a^4}$$

$$(3x^2y)^3 = 3^3x^{2\times 3}y^3 = 27x^6y^3$$

$$(5) x^{4} \div (x^{5} \div x^{3}) = x^{4} \div x^{5-3} = x^{4} \div x^{2}$$

답 ③

0188 전략 지수법칙을 이용하여 좌변을 간단히 한 후 우변과 비교한다.

$$\textcircled{1} \ a^{\scriptscriptstyle 5} \div a^{\scriptscriptstyle \square} {=} \frac{1}{a} \text{ and } \frac{1}{a^{\scriptscriptstyle \square-5}} {=} \frac{1}{a}$$

$$\square$$
-5=1 \therefore \square =6

- ② $(a^2)^\square \div a^6 = 1$ 에서 $a^{2 \times \square} \div a^6 = 1$ $2 \times \square = 6$ $\therefore \square = 3$
- ③ $(xy^{\square})^3 = x^3y^6$ 에서 $x^3y^{\square \times 3} = x^3y^6$
 - $\times 3=6$ $\therefore =2$
- $(4)\left(\frac{y^{\Box}}{r^2}\right)^2 = \frac{y^8}{r^4} \text{ odd } \frac{y^{\Box \times 2}}{r^4} = \frac{y^8}{r^4}$
- $\times 2=8$ $\therefore =4$ $\textcircled{5} x^3 \times (x^2)^3 \div x^{\square} = x^5 \text{ and } x^3 \times x^6 \div x^{\square} = x^5$ $x^9 \div x^{\Box} = x^5, x^{9-\Box} = x^5$ $9-\square=5$ \therefore $\square=4$
- 따라서 인에 들어갈 수가 가장 작은 것은 ③이다. 답 ③
- **0189** (좌변)= $a^{3x} \times b^{4y} \times a \times b^{6}$ $=a^{3x+1}b^{4y+6}$ 이때 $a^{3x+1}b^{4y+6}=a^{10}b^{18}$ 이므로 3x+1=10에서 3x=9 $\therefore x=3$ 4y+6=18에서 4y=12 : y=3x+y=3+3=6답 6
- **0190** $(a^3)^2 \times a^x = a^6 \times a^x = a^{6+x} = a^{10}$ 이므로 6+x=10 $\therefore x=4$ ···· (7}) $(b^2)^y \div b^8 = b^{2y} \div b^8 = \frac{1}{b^{8-2y}} = \frac{1}{b^2}$ 이므로 8-2y=2, -2y=-6 : y=3....(니) x-y=4-3=1....(다)

답 1

채점 기준	비율
(카) <i>x</i> 의 값 구하기	40 %
(내 <i>y</i> 의 값 구하기	40 %
(대) $x-y$ 의 값 구하기	20 %

- **0191** $\left(-\frac{2x^a}{y^3}\right)^b = \frac{cx^{21}}{y^9}$ 에서 $\frac{(-2)^b x^{ab}}{y^{3b}} = \frac{cx^{21}}{y^9}$ 이므로 $(-2)^b = (-2)^3 = c$ $\therefore c = -8$ ab=3a=21 $\therefore a=7$ a+b+c=7+3+(-8)=2답 2
- 0192 전략 지수법칙을 이용하여 좌변을 간단히 한다.

$$3^{14} \div 3^x \times 3^2 = 3^{14-x+2} = 3^{16-x} = 3^5$$
이므로
$$16-x=5 \qquad \therefore x=11$$
 답 11

0193
$$(3^3)^x \times (3^2)^4 = 3^{3x} \times 3^8 = 3^{3x+8} = 3^{23}$$
이므로 $3x+8=23, 3x=15$ $\therefore x=5$ $5^{20} \div (5^2)^y = 5^{20} \div 5^{2y} = 5^{20-2y} = 5^4$ 이므로 $20-2y=4, -2y=-16$ $\therefore y=8$ $\therefore x+y=5+8=13$ 답 13

0194
$$\frac{3^{3a-1}}{3^{a+1}}$$
= 3^{3a-1} ÷ 3^{a+1} = $3^{3a-1-(a+1)}$ = 3^{2a-2} 이고 81 = 3^4 이므로 3^{2a-2} = 3^4 $2a$ - 2 = 4 , $2a$ = 6 $∴ a = 3 답③$

0195
$$(x^ay^bz^c)^d=x^{ad}y^{bd}z^{cd}=x^{15}y^9z^{21}$$
이므로 $ad=15,bd=9,cd=21$ 이때 d 의 값은 $15,9,21$ 의 최대공약수일 때 가장 크므로 $d=3$ 따라서 $a=5,b=3,c=7$ 이므로 $a+b+c+d=5+3+7+3=18$ 답 18

0196 전략 밑을 통일하여 지수법칙을 이용한다.

$$4=2^2,8=2^3,128=2^7$$
이므로 $4^x \times 8^{x-1}=128$ 에서 $(2^2)^x \times (2^3)^{x-1}=2^7$ $2^{2x} \times 2^{3x-3}=2^7$ $2x+(3x-3)=7$ $5x-3=7,5x=10$ $\therefore x=2$ 답 2

- **0197** (1) 4²=(2²)²=2⁴, 32=2⁵이므로 $2^{a} \times 4^{2} \times 32 = 2^{a} \times 2^{4} \times 2^{5} = 2^{a+9} = 2^{11}$
 - a+9=11 : a=2···· (7}) $(2) 27^2 = (3^3)^2 = 3^6, 9^2 = (3^2)^2 = 3^4, 81 = 3^4$ 이므로 $27^2 \div (9^2 \div 3^b) = 3^6 \div (3^4 \div 3^b) = 3^6 \div 3^{4-b}$ $=3^{6-(4-b)}=3^{b+2}=3^4$ b+2=4 $\therefore b=2$(나)

 - (3) $ab = 2 \times 2 = 4$(다)

답 (1) 2 (2) 2 (3) 4

채점 기준	비율
(개) a의 값 구하기	40 %
(H) b의 값 구하기	40 %
(다) ab의 값 구하기	20 %

- **0198** 8=2³, 16=2⁴, 32=2⁵이므로 $8^{2x-1} \times 16^{x+2} = 32^{x+6}$ 에서 $(2^3)^{2x-1} \times (2^4)^{x+2} = (2^5)^{x+6}, 2^{6x-3} \times 2^{4x+8} = 2^{5x+30}$ (6x-3)+(4x+8)=5x+3010x+5=5x+30, 5x=25 : x=5답 5
- **0199** 전략 108을 소인수분해 한다. $108^3 = (2^2 \times 3^3)^3 = 2^6 \times 3^9$ 이므로 m = 6, n = 9n+n=6+9=15답 15
- $\mathbf{0200} \quad 2^{104} \times 5^{50} \times (0.05)^{50} \! = \! 2^{104} \times 5^{50} \times \left(\frac{1}{20}\right)^{50}$ $=2^{104} \times 5^{50} \times \left(\frac{1}{2^2 \times 5}\right)^{50}$ $=2^{104}\times5^{50}\times\frac{1}{2^{100}\times5^{50}}$ $=2^4=16$ 답 16

a+b+c+d=8+4+2+1=15

0202 전략 먼저 덧셈식을 곱셈식으로 바꾼 후 지수법칙을 이용한다. $9^4 + 9^4 + 9^4 = 3 \times 9^4 = 3 \times (3^2)^4 = 3 \times 3^8 = 3^9$ 즉 $3^9 = 3^a$ 이므로 a = 9 $5^3+5^3+5^3+5^3+5^3=5\times5^3=5^4$ 즉 $5^4 = 5^b$ 이므로 b = 4

a+b=9+4=13

0203
$$6^6+6^6+6^6+6^6+6^6+6^6=6\times 6^6=6^7$$
 답 ②

답 13

....(다)

답 A⁶

 $(7^2)^3 = 7^c$ 에서 $7^6 = 7^c$ $\therefore c = 6$

a+b-c=6+4-6=4....(라)

답 4

채점 기준	비율
(가) a의 값 구하기	30 %
(내 <i>b</i> 의 값 구하기	30 %
(대 <i>c</i> 의 값 구하기	30 %
(라) $a+b-c$ 의 값 구하기	10 %

$$\begin{array}{ll} \textbf{0205} & \frac{2^3 + 2^3}{3^6 + 3^6 + 3^6} \times \frac{9^4 + 9^4}{8^2 + 8^2 + 8^2 + 8^2} \\ & = \frac{2 \times 2^3}{3 \times 3^6} \times \frac{2 \times 9^4}{4 \times 8^2} = \frac{2^4}{3^7} \times \frac{2 \times (3^2)^4}{2^2 \times (2^3)^2} \\ & = \frac{2^4}{3^7} \times \frac{2 \times 3^8}{2^2 \times 2^6} = \frac{2^4}{3^7} \times \frac{3^8}{2^7} \\ & = \frac{3}{2^3} = \frac{3}{8} \end{array}$$

0206 전략 27을 3의 거듭제곱으로 고친다. $27^{10} = (3^3)^{10} = 3^{30} = 3^{5 \times 6} = (3^5)^6 = A^6$

0207
$$32^3 = (2^5)^3 = 2^{15} = 2^{3 \times 5} = (2^3)^5 = A^5$$
 답⑤

0208
$$24^2 = (2^3 \times 3)^2 = 2^6 \times 3^2 = (2^3)^2 \times 3^2 = A^2 B$$
 L $A^2 B$

0210 전략 2와 5를 지수가 같게 묶는다. $2^{16} \times 5^{20} = 2^{16} \times 5^{16} \times 5^4 = 5^4 \times (2 \times 5)^{16}$ $=625\times10^{16}$ 따라서 $2^{16} \times 5^{20}$ 은 19자리 자연수이므로 n=19답 19

0211 (1)
$$5^4 \times 20^6 = 5^4 \times (2^2 \times 5)^6 = 5^4 \times 2^{12} \times 5^6$$

 $= 2^{12} \times 5^{10} = 2^2 \times 2^{10} \times 5^{10}$
 $= 2^2 \times (2 \times 5)^{10} = 4 \times 10^{10}$
 $\therefore a = 4, b = 10$
(2) $5^4 \times 20^6 \stackrel{\circ}{\sim} 11$ 자리 자연수이므로 $n = 11$
답 (1) $a = 4, b = 10$ (2) 11

0212
$$A = \frac{2^{43} \times 35^{20}}{14^{20}} = \frac{2^{43} \times (5 \times 7)^{20}}{(2 \times 7)^{20}} = \frac{2^{43} \times 5^{20} \times 7^{20}}{2^{20} \times 7^{20}}$$

$$= 2^{23} \times 5^{20} = 2^{3} \times 2^{20} \times 5^{20}$$

$$= 2^{3} \times (2 \times 5)^{20} = 8 \times 10^{20}$$
따라서 $A = 21$ 자리 자연수이다. 답 21자리

0213 전략 같은 수의 덧셈식을 곱셈식으로 바꾼다. $(5^5+5^5+5^5+5^5)(2^6+2^6+2^6+2^6+2^6)$ $=(4\times5^5)\times(5\times2^6)=2^2\times5^5\times5\times2^6$ $=2^8 \times 5^6 = 2^2 \times 2^6 \times 5^6$ $=2^2 \times (2 \times 5)^6 = 4 \times 10^6$ 따라서 주어진 식은 7자리 자연수이다. **답** 7자리

0214
$$a=2^{x-1}=2^x\div 2=\frac{2^x}{2}$$
에서 $2^x=2a$ $b=3^{x+1}=3^x\times 3$ 에서 $3^x=\frac{b}{3}$ $\therefore 6^x=(2\times 3)^x=2^x\times 3^x=2a\times \frac{b}{3}=\frac{2}{3}ab$ 답 $\frac{2}{3}ab$

0215
$$b=3^{x-1}=3^x\div 3=\frac{3^x}{3}$$
에서 $3^x=3b$
 $\therefore 72^x=(2^3\times 3^2)^x=2^{3x}\times 3^{2x}$
 $=(2^x)^3\times (3^x)^2=a^3\times (3b)^2$
 $=a^3\times 9b^2=9a^3b^2$ 달 $9a^3b^2$

$$\begin{array}{ll} \textbf{0217} & a = 3^{x-1} = 3^x \div 3 = \frac{3^x}{3} \text{ only } 3^x = 3a \\ & \div 27^{2x} \times \left(\frac{1}{9}\right)^{x+3} = (3^3)^{2x} \times \left(\frac{1}{3^2}\right)^{x+3} = 3^{6x} \times \frac{1}{3^{2x+6}} \\ & = 3^{6x} \times \frac{1}{3^{2x}} \times \frac{1}{3^6} = 3^{4x} \times \frac{1}{3^6} \\ & = (3^x)^4 \times \frac{1}{3^6} = (3a)^4 \times \frac{1}{3^6} \\ & = 3^4 a^4 \times \frac{1}{3^6} = \frac{a^4}{3^2} \\ & = \frac{a^4}{9} \end{array}$$

- **0218** 전략 10억= $100000000000=10^9$ 이므로 $1 \text{ nm} = \frac{1}{10^9} \text{ m임을}$
 - 이용한다.
 - 1 m의 10억분의 1이 1 nm이므로
 - $1 \text{ nm} = \frac{1}{10^9} \text{ m}, \stackrel{\leq}{=} 1 \text{ m} = 10^9 \text{ nm}$
 - $100 \text{ m} = 100 \times 10^9 \text{ nm} = 10^2 \times 10^9 \text{ nm}$
 - $=10^{2+9} \, \text{nm} = 10^{11} \, \text{nm}$
- **0219** 4 GB와 8 MB를 바이트로 나타내면
 - 4 GB=4×2³⁰바이트
 - $=2^2 \times 2^{30}$ 바이트
 - =232비이트
 - $8 \, MB = 8 \times 2^{20}$ 바이트
 - =2³×2²⁰바이트
 - =223바이트
 - 이때 $2^{32} \div 2^{23} = 2^{32-23} = 2^9$ 이므로 용량이 4 GB인 메모리 카 드에 용량이 8 MB인 사진을 2⁹장까지 저장할 수 있다.
 - **답** 2⁹장

답 10¹¹ nm

- 0220 전략 1 L=1000 mL임을 이용하여 단위를 통일시킨다.
 - 1 L=1000 mL=103 mL이므로
 - $2 \times 10^5 L = 2 \times 10^5 \times 10^3 mL = 2 \times 10^8 mL$
 - 또 400 mL=2²×10² mL이므로
 - $(2\times10^8)\div(2^2\times10^2)=\frac{1}{2}\times10^6$
 - 이때 $\frac{1}{2} \times 10^6 = \frac{1}{2} \times 10 \times 10^5 = 5 \times 10^5$ 이므로 5×10^5 명의
 - 학생들에게 나누어 줄 수 있다.
 - $\therefore a=5, n=5$

답 a=5, n=5

STEP 1 개념 마스터

- p.39
- $\mathbf{0221} \quad -4ab \times 6b^2 = -4 \times 6 \times a \times b \times b^2$
 - $= -24ab^{3}$

답 $- 24ab^3$

0222 $a^2b^3 \times (-6a^3b^2) \times 3ab$

$$= -6 \times 3 \times a^2 \times a^3 \times a \times b^3 \times b^2 \times b$$

 $=-18a^6b^6$

- 답 -18a⁶b⁶
- **0223** $(-3x)^2 \times (-5xy) = 9x^2 \times (-5xy)$

$$=9\times(-5)\times x^2\times x\times y$$

- 답 $-45x^3y$
- **0224** $(2a^2)^2 \times \left(-\frac{1}{3}a^3\right)^2 = 4a^4 \times \frac{1}{9}a^6$

$$=4\times\frac{1}{9}\times a^4\times a^6$$

$$=\frac{4}{9}a^{10}$$

답 $\frac{4}{9}a^{10}$

0225 $6a^4 \div 3ab = \frac{6a^4}{3ab} = \frac{2a^3}{b}$

- **0226** $\frac{2}{3}x^2y \div \frac{1}{6}xy^2 = \frac{2}{3}x^2y \times \frac{6}{ry^2} = \frac{4x}{y}$
- **0227** $(-2x^3y)^3 \div (4xy^3)^2 = -8x^9y^3 \div 16x^2y^6$

$$= \frac{-8x^9y^3}{16x^2y^6} = -\frac{x^7}{2y^3} \qquad \text{tf } -\frac{x^7}{2y^3}$$

- **0228** $(10xy^2)^2 \div (-2x^2y)^3 \div 5xy$

$$=100x^2y^4 \div (-8x^6y^3) \div 5xy$$

$$=100x^{2}y^{4}\times\frac{1}{-8x^{6}y^{3}}\times\frac{1}{5xy}$$

$$=-\frac{5}{2x^5}$$

- 답 $-\frac{5}{2x^5}$
- **0229** $-4a^2 \times \frac{9}{4}a \div 9a = -4a^2 \times \frac{9}{4}a \times \frac{1}{9a} = -a^2$
- **0230** $12x^2y \div (-4xy) \times 3y^2 = 12x^2y \times \frac{1}{-4xy} \times 3y^2$
- **0231** $(2x^3y^4)^2 \times (3x^2y)^2 \div x^4y^2 = 4x^6y^8 \times 9x^4y^2 \div x^4y^2$
 - - 답 $36x^6y^8$

STEP 2 유형 마스터

- p.40 ~ p.43
- 0232 전략 지수법칙을 이용하여 괄호를 풀고 계수는 계수끼리, 문자 는 문자끼리 곱한다.

$$(a^2b)^2 \times (-ab^3)^2 \times (-2ab)^3$$

$$= a^4b^2 \times a^2b^6 \times (-8a^3b^3)$$

$$=-8a^9b^{11}$$

- 답 -8a⁹b¹¹
- **0233** ② $(-2ab)^2 \times 4b = 4a^2b^2 \times 4b = 16a^2b^3$
 - $(3) (-a^2b)^3 \times 2ab^2 = -a^6b^3 \times 2ab^2 = -2a^7b^5$
 - (4) $-5x \times (-2xy)^3 = -5x \times (-8x^3y^3) = 40x^4y^3$
 - (5) $(-3x^2y)^3 \times (-xy)^2 = -27x^6y^3 \times x^2y^2 = -27x^8y^5$
 - 따라서 옳지 않은 것은 ③이다.
- 답 ③
- **0234** $3ab \times (-2a)^2 \times (-3ab^2)^3$

 $=-324a^6b^7$

- $=3ab \times 4a^2 \times (-27a^3b^6)$
- $\mathbf{t} 324a^6b^7$

0235 전략 지수법칙을 이용하여 괄호를 풀고 나눗셈을 역수의 곱셈으로 바꾸어 계산한다.

$$\begin{split} &\frac{1}{8}x^2y^3 \div \left(\frac{1}{4}x^3y\right)^2 \div \frac{1}{(-3x^2y^3)^3} \\ &= \frac{1}{8}x^2y^3 \div \frac{1}{16}x^6y^2 \div \frac{1}{-27x^6y^9} \\ &= \frac{1}{8}x^2y^3 \times \frac{16}{x^6y^2} \times (-27x^6y^9) \\ &= -54x^2y^{10} \end{split}$$

0237
$$\frac{3}{4}x^4y^3 \div \frac{1}{2}x^2y \div \frac{6x}{y} = \frac{3}{4}x^4y^3 \times \frac{2}{x^2y} \times \frac{y}{6x}$$

$$= \frac{1}{4}xy^3 \qquad \cdots \qquad (7)$$

따라서
$$a = \frac{1}{4}$$
, $b = 1$, $c = 3$ 이므로(년

$$a \times (b+c) = \frac{1}{4} \times (1+3) = 1$$
 (E)

답 1

채점 기준	비율
(가) 좌변을 간단히 하기	60 %
(나) a, b, c의 값 구하기	20 %
(대) $a \times (b+c)$ 의 값 구하기	20 %

0238 전략 a:b:c=1:2:30|므로 $a=k, b=2k, c=3k (k\neq 0)$ 로 놓는다.

$$(3ab^2c)^2 \div (-2a)^4c^3 \div 6b$$

= $9a^2b^4c^2 \div 16a^4c^3 \div 6b$
= $9a^2b^4c^2 \times \frac{1}{16a^4c^3} \times \frac{1}{6b} = \frac{3b^3}{32a^2c}$
 $a:b:c=1:2:3$ 이므로 $a=k,\ b=2k,\ c=3k\ (k\neq 0)$ 라 하면

$$\frac{3b^3}{32a^2c} = \frac{3 \times (2k)^3}{32 \times k^2 \times 3k} = \frac{3 \times 8k^3}{96k^3} = \frac{24k^3}{96k^3} = \frac{1}{4} \qquad \textbf{ } \qquad$$

0239 전략 지수법칙을 이용하여 괄호를 풀고 나눗셈은 역수의 곱셈으로 바꾸어 계산한다.

$$\begin{array}{l}
\boxed{1 - \frac{3}{8}x^4y^2 \div \left(-\frac{3}{4}x^3y^2\right)} \\
= -\frac{3}{8}x^4y^2 \times \left(-\frac{4}{3x^3y^2}\right) = \frac{1}{2}x \\
\boxed{2 6x^2y^2 \div 3x^3y^2 \times 4xy} \\
= 6x^2y^2 \times \frac{1}{3x^3y^2} \times 4xy = 8y \\
\boxed{3 (-2a^2x^2)^2 \div (3ax^2)^3 \times 27a^2x}
\end{array}$$

$$=4a^{4}x^{4} \div 27a^{3}x^{6} \times 27a^{2}x$$

$$=4a^{4}x^{4} \times \frac{1}{27a^{3}r^{6}} \times 27a^{2}x = \frac{4a^{3}}{x}$$

0240
$$(5x^2)^2 \div (-2x^3y)^3 \times 4x^2y$$

 $= 25x^4 \div (-8x^9y^3) \times 4x^2y$
 $= 25x^4 \times \frac{1}{-8x^9y^3} \times 4x^2y$
 $= -\frac{25}{2x^3y^2}$ 답 $-\frac{25}{2x^3y^2}$

0241
$$(-x^2y)^3 \div \left(\frac{x}{y^2}\right)^3 \times xy^2$$

$$= -x^6y^3 \div \frac{x^3}{y^6} \times xy^2$$

$$= -x^6y^3 \times \frac{y^6}{x^3} \times xy^2$$

$$= -x^4y^{11}$$
따라서 $a = 4, b = 11$ 이므로
 $a + b = 4 + 11 = 15$

0242 전략 $A \times \square \div B = C$ 이면 $\square = C \div A \times B$ 임을 이용한다.

$$= 4x^{3}y^{3} \div \left(-\frac{4}{3}xy^{2}\right)^{2} \times (-2y)^{3}$$

$$= 4x^{3}y^{3} \div \frac{16}{9}x^{2}y^{4} \times (-8y^{3})$$

$$= 4x^{3}y^{3} \times \frac{9}{16x^{2}y^{4}} \times (-8y^{3})$$

$$= -18xy^{2}$$

0244
$$(3x^2y)^3 \times \frac{1}{(\boxed{})} \times (-x^2y) = \frac{3}{2}x^2y^4$$

$$\boxed{} = (3x^2y)^3 \times (-x^2y) \div \frac{3}{2}x^2y^4$$

$$= 27x^6y^3 \times (-x^2y) \times \frac{2}{3x^2y^4} = -18x^6 \quad \text{답} \quad -18x^6$$

0245
$$\frac{3}{2}y^2 \times A = \frac{1}{2}xy^2$$
이므로
$$A = \frac{1}{2}xy^2 \div \frac{3}{2}y^2 = \frac{1}{2}xy^2 \times \frac{2}{3y^2} = \frac{x}{3} \qquad \qquad \cdots \cdots (>)$$

$$\frac{9}{2}x^2 \times B = \frac{3}{2}y^2 \circ | \text{므로}$$

$$B = \frac{3}{2}y^2 \div \frac{9}{2}x^2 = \frac{3}{2}y^2 \times \frac{2}{9x^2} = \frac{y^2}{3x^2} \qquad \qquad \cdots \cdots \text{(L)}$$

$$B \times C = A \circ | \text{므로} \frac{y^2}{3x^2} \times C = \frac{x}{3}$$

$$\therefore C = \frac{x}{3} \div \frac{y^2}{3x^2} = \frac{x}{3} \times \frac{3x^2}{y^2} = \frac{x^3}{y^2} \qquad \cdots \cdots \text{(E)}$$

답
$$A = \frac{x}{3}$$
, $B = \frac{y^2}{3x^2}$, $C = \frac{x^3}{y^2}$

채점 기준	비율
(가) <i>A</i> 의 식 구하기	30 %
(H) <i>B</i> 의 식 구하기	30 %
(대) C의 식 구하기	40 %

0246 전략 좌변을 간단히 한 후 좌변과 우변을 비교한다. 이때 계수는 계수끼리, 지수는 밑이 같은 지수끼리 비교한다.

$$\begin{split} &(-2x^4y)^A \div 4xy^B \times 2x^3y^4 \\ &= (-2)^A x^{4A} y^A \times \frac{1}{4xy^B} \times 2x^3y^4 \\ &= \frac{(-2)^A}{2} x^{4A+2} y^{A+4-B} \\ &= Cx^{14} y^5 \\ &4A + 2 = 14 \text{ and } 4A = 12 \qquad \therefore A = 3 \\ &A + 4 - B = 5 \text{ and } 3 + 4 - B = 5 \qquad \therefore B = 2 \\ &\frac{(-2)^A}{2} = C \text{ and } C = \frac{-8}{2} = -4 \\ &\therefore A + B + C = 3 + 2 + (-4) = 1 \end{split}$$

$$\begin{array}{lll} \textbf{0247} & (3x^3y)^A \times 2x^4y^2 \div 6x^By \\ & = 3^Ax^{3A}y^A \times 2x^4y^2 \times \frac{1}{6x^By} \\ & = \frac{3^A}{3}x^{3A+4-B}y^{A+1} \\ & = Cx^5y^4 & \cdots & (7) \\ & A+1 = 4 \text{ odd } A = 3 \\ & 3A+4-B=5 \text{ odd } 9+4-B=5 & \therefore B=8 \\ & \frac{3^A}{3} = C \text{ odd } C = \frac{3^3}{3} = 9 & \cdots & (4) \\ & \therefore A+B+C=3+8+9=20 & \cdots & (5) \end{array}$$

채점 기준비율(가) 좌변을 간단히 하기50 %(나) A, B, C의 값 각각 구하기각 10 %(다) A+B+C의 값 구하기20 %

답 20

$$\begin{array}{ll} \textbf{0248} & \left(\frac{1}{2}x^3y^2\right)^A \div (x^2y^A)^2 \times \left(-\frac{2x}{3y^2}\right)^A \\ & = \frac{1}{2^A}x^{3A}y^{2A} \times \frac{1}{x^4y^{2A}} \times (-1)^A \times \frac{2^Ax^A}{3^Ay^{2A}} \\ & = \frac{x^{4A-4}}{(-3)^Ay^{2A}} = \frac{x^8}{By^C} \\ & 4A - 4 = 89 |A| & 4A = 12 \qquad \therefore A = 3 \end{array}$$

$$(-3)^A = B$$
에서 $B = (-3)^3 = -27$
 $2A = C$ 에서 $C = 2 \times 3 = 6$
 $\therefore A - B + C = 3 - (-27) + 6 = 36$ 달 36

0249 전략 어떤 \P 어떤 \P 서에 \P 를 곱해야 할 것을 잘못하여 나누었더니 \P 가 되었다면 \P

$$A \div \left(-\frac{3}{2}a^3b^2\right) = 10b$$
에서
$$A = 10b \times \left(-\frac{3}{2}a^3b^2\right) = -15a^3b^3$$
 따라서 바르게 계산한 식은
$$-15a^3b^3 \times \left(-\frac{3}{2}a^3b^2\right) = \frac{45}{2}a^6b^5$$
 답 $\frac{45}{2}a^6b^5$

0250 (1)
$$A \div \left(-\frac{5}{6}a^2b^4\right) = 20ab^2$$
에서(가)

$$A = 20ab^2 \times \left(-\frac{5}{6}a^2b^4\right) = -\frac{50}{3}a^3b^6$$
(4)

(2) 바르게 계산한 식은

$$\left(-\frac{50}{3}a^3b^6\right) \times \left(-\frac{5}{6}a^2b^4\right) = \frac{125}{9}a^5b^{10}$$
 (C1)

답 (1)
$$-\frac{50}{3}a^3b^6$$
 (2) $\frac{125}{9}a^5b^{10}$

채점 기준	비율
(가) 잘못 계산한 식 세우기	30 %
(나) 어떤 식 <i>A</i> 구하기	30 %
(다) 바르게 계산한 식 구하기	40 %

0251 어떤 식을 *A*라 하면

$$A imes rac{1}{3} x y^2 = 6 x^3 y^5$$
에서
$$A = 6 x^3 y^5 \div rac{1}{3} x y^2 = 6 x^3 y^5 imes rac{3}{x y^2} = 18 x^2 y^3$$
 따라서 바르게 계산한 식은
$$18 x^2 y^3 \div rac{1}{3} x y^2 = 18 x^2 y^3 imes rac{3}{x y^2} = 54 x y$$
 답 $54 x y$

0252 전략 (원기둥의 부피)=(밑넓이) \times (높이)임을 이용한다. 물의 높이를 h라 하면 $\pi \times (3ab)^2 \times h = 24\pi a^3 b^3$ 에서 $9\pi a^2 b^2 \times h = 24\pi a^3 b^3$ $h = 24\pi a^3 b^3 \div 9\pi a^2 b^2$ $= 24\pi a^3 b^3 \times \frac{1}{9\pi a^2 b^2} = \frac{8}{3}ab$ 답 $\frac{8}{3}ab$

0253 (부회)=
$$\left(\frac{1}{2} \times 2ab^2 \times 3a^2\right) \times 5ab = 15a^4b^3$$
 답 ②

0254
$$\overline{AB} \times 4a^6b^2 = (6a^3b^3)^2$$
에서 $\overline{AB} = (6a^3b^3)^2 \div 4a^6b^2$ $= 36a^6b^6 \times \frac{1}{4a^6b^2} = 9b^4$ 달 9 b^6

0255 원뿔의 높이를 *h*라 하면

$$\frac{1}{3} \times \pi \times (3a^2b^3)^2 \times h = 21\pi a^8b^9$$
에서

$$\frac{1}{3} \times \pi \times 9a^4b^6 \times h = 21\pi a^8b^9$$
, $3\pi a^4b^6 \times h = 21\pi a^8b^9$

$$\therefore h \!=\! 21\pi a^8 b^9 \div 3\pi a^4 b^6 \!=\! 21\pi a^8 b^9 \times \frac{1}{3\pi a^4 b^6} \!=\! 7a^4 b^3$$

0256 $V_1 = \pi \times (3a^2b)^2 \times 4ab^2 = \pi \times 9a^4b^2 \times 4ab^2 = 36\pi a^5b^4$ $V_2 = \pi \times (4ab^2)^2 \times 3a^2b = \pi \times 16a^2b^4 \times 3a^2b = 48\pi a^4b^5$

$$\therefore \frac{V_1}{V_2} = \frac{36\pi a^5 b^4}{48\pi a^4 b^5} = \frac{3a}{4b}$$

답 ③

0257 전략 찰흙의 부피와 구의 부피를 각각 구한다.

(찰흙의 부피)=
$$(2x^2y^2)^2 \times \frac{\pi x^2}{y}$$

$$=4x^4y^4 \times \frac{\pi x^2}{y} = 4\pi x^6y^3$$

이때
$$4\pi x^6 y^3 \div \frac{4}{3}\pi x^6 y^3 = 4\pi x^6 y^3 \times \frac{3}{4\pi x^6 y^3} = 3$$
이므로 찰흙으로 만들 수 있는 구의 개수는 3개이다. **답** 3개

Lecture |

반지름의 길이가 r인 구에서

(겉넓이)= $4\pi r^2$, (부피)= $\frac{4}{3}\pi r^3$

STEP 3 내신 마스터

p.44 ~ p.47

0258 전략 지수법칙을 이용하여 좌변을 간단히 한다.

(2)
$$\bigcirc x^2 \times x^4 = x^{2+4} = x^6$$

$$\bigcirc (x^3)^4 = x^{3 \times 4} = x^{12}$$

$$\textcircled{c} x^{10} \div x^5 = x^{10-5} = x^5$$
 $\textcircled{e} \left(\frac{b^3}{a^4}\right)^2 = \frac{b^{3\times 2}}{a^{4\times 2}} = \frac{b^6}{a^8}$

답 (1) ② ② (2) 풀이 참조

0259 전략 지수법칙을 이용한다.

$$x^{5a+2} \times x^2 = x^{24}$$
에서 $(5a+2)+2=24$

$$5a=20$$
 $\therefore a=4$

0260 전략 지수법칙을 이용하여 좌변의 괄호를 푼 후 우변과 지수를

$$\left(\frac{x^a}{2y^2}\right)^b = \frac{x^3}{8y^c}$$
 of $\frac{x^{ab}}{2^by^{2b}} = \frac{x^3}{8y^c}$

 $2^b = 8 = 2^3$ 에서 b = 3

$$x^{ab}=x^3$$
에서 $ab=3$, $3a=3$ $\therefore a=1$

$$y^{2b} = y^{c}$$
에서 $c = 2b = 2 \times 3 = 6$

$$\therefore a+b+c=1+3+6=10$$

답 10

0261 전략 지수법칙을 이용하여 좌변을 간단히 한 후 우변과 지수를

①
$$x^{4+\Box -1} = x^6$$
에서 $4+\Box -1=6$ $\Box = 3$

②
$$x^{4-\Box+1} = x^2$$
에서 $4-\Box+1=2$ ∴ $\Box=3$

$$3x^{1-3+\square}$$
= x 에서 $1-3+$ $=1$ ∴ $=3$

④
$$x^{6-\Box-1} = x^3$$
에서 $6-\Box-1=3$ ∴ $\Box=2$

0262 전략 $(ab)^x = a^x b^x$ 임을 이용한다.

$$\frac{2^{3a-2}}{2^{a+1}} = 2^{3a-2} \div 2^{a+1} = 2^{3a-2-(a+1)} = 2^{2a-3}$$
이고

 $128=2^{7}$ 이므로 2a-3=7, 2a=10

0263 전략 $(a^mb^n)^l = a^{ml}b^{nl}$ 임을 이용한다.

$$(x^a y^b)^c = x^{ac} y^{bc} = x^{16} y^{12}$$
이므로 $ac = 16, bc = 12$

이때 c는 16과 12의 공약수이고 $c \neq 1$ 이므로

c=2 또는 c=4

(i) c = 2일 때 ac = 16에서 2a = 16∴ *a*=8

$$bc=12$$
에서 $2b=12$ $\therefore b=6$

*a*와 *b*는 서로소가 아니다.

(ii) c = 4일 때 ac = 16에서 4a = 16 $\therefore a = 4$

$$bc=12$$
에서 $4b=12$ $\therefore b=3$

a와 b는 서로소이다.

따라서 옳은 것은 ①, ⑤이다.

답 ④

참고 16과 12의 공약수는 16과 12의 최대공약수인 4의 약수 와 같다.

0264 전략 밑을 통일하여 지수법칙을 이용한다.

$$4^{2x-1} \times 8^{x-2} = 16^{x+1}$$
에서

$$(2^2)^{2x-1} \times (2^3)^{x-2} = (2^4)^{x+1}$$
 (7)

$$2^{4x-2} \times 2^{3x-6} = 2^{4x+4}$$
 (4)

$$(4x-2)+(3x-6)=4x+4$$

$$3x=12$$
 ∴ $x=4$ ······(३)

채점 기준	비율
(개)주어진 등식의 밑을 2로 나타내기	30 %
(나) 지수법칙을 이용하여 지수 정리하기	20 %
(다 $)$ 지수법칙을 이용하여 x 에 대한 방정식 세우기	30 %
(라) <i>x</i> 의 값 구하기	20 %

0265 전략 소인수분해가 되는 수는 모두 소인수분해 한 후 지수법칙 을 이용한다.

 $2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10 \times 11 \times 12$

 $=2\times3\times2^2\times5\times(2\times3)\times7\times2^3\times3^2\times(2\times5)$

 $\times 11 \times (2^2 \times 3)$

$$=\!2^{10}\!\times\!3^5\!\times\!5^2\!\times\!7\!\times\!11$$

따라서
$$a=10, b=5, c=2, d=1, e=1$$
이므로 $a+b+c+d+e=10+5+2+1+1=19$

답 ③

0266 전략 밑을 통일하여 지수법칙을 이용한다.

$$8^5 \times (0.5)^{11} = (2^3)^5 \times (\frac{1}{2})^{11} = 2^{15} \times \frac{1}{2^{11}} = 2^4 = 16$$

$$\frac{8^4}{16^4} = \frac{(2^3)^4}{(2^4)^4} = \frac{2^{12}}{2^{16}} = \frac{1}{2^4} = \frac{1}{16}$$

$$\therefore b = \frac{1}{16}$$

$$\therefore ab = 16 \times \frac{1}{16} = 1$$

답 ③

0267 전략 덧셈식을 곱셈식으로 바꾼 후 지수법칙을 이용한다.

 $(3^2+3^2+3^2+3^2)(5^4+5^4+5^4)(15^6+15^6)$

$$= (4 \times 3^2) \times (3 \times 5^4) \times (2 \times 15^6) \qquad \qquad \cdots (7)$$

 $=2^2\times3^2\times3\times5^4\times2\times(3\times5)^6$

 $=2^2 \times 3^2 \times 3 \times 5^4 \times 2 \times 3^6 \times 5^6$

$$=2^3 \times 3^9 \times 5^{10}$$
(4)

따라서 a=3, b=9, c=10이므로

$$a+b+c=3+9+10=22$$
(t)

답 22

채점 기준	비율
(개) 좌변의 덧셈식을 곱셈식으로 바꾸기	30 %
(나) 좌변을 간단히 하기	40 %
(대) $a+b+c$ 의 값 구하기	30 %

0268 전략 15, 45를 소인수분해 한다.

$$\frac{2^{20} \times 15^{40}}{45^{20}} = \frac{2^{20} \times (3 \times 5)^{40}}{(3^2 \times 5)^{20}} = \frac{2^{20} \times 3^{40} \times 5^{40}}{3^{40} \times 5^{20}}$$
$$= 2^{20} \times 5^{20} = (2 \times 5)^{20} = 10^{20}$$

따라서 21자리 자연수이므로 n=21

답 21

─ Lecture
─

자릿수 구하기 \Rightarrow $a \times 10^n$ 꼴로 만들기 \Rightarrow 주어진 수의 자릿수는 $\{(a \cap x) + n\}$

0269 전략 27을 3의 거듭제곱으로 고친다.

$$27^{x+1} = (3^3)^{x+1} = 3^{3x+3} = 3^{3x} \times 3^3$$

= $27 \times (3^x)^3 = 27a^3$ 답 ⑤

0270 전략 3^x 을 a를 사용한 식으로, 2^x 을 b를 사용한 식으로 나타낸

$$a = 3^{x+1} = 3^x \times 3$$
에서 $3^x = \frac{a}{3}$

$$b = 2^{x-2} = 2^x \div 2^2 = \frac{2^x}{4}$$
 에서 $2^x = 4b$

$$\therefore 12^{x} = (2^{2} \times 3)^{x} = 2^{2x} \times 3^{x} = (2^{x})^{2} \times 3^{x}$$

$$= (4b)^2 \times \frac{a}{3} = 16b^2 \times \frac{a}{3} = \frac{16}{3}ab^2 \qquad \qquad \text{ \ \ } \frac{16}{3}ab^2$$

0271 절 30 °C에서 대장균의 수가 135분 후에 몇 배로 증가하는지

30 ℃에서 대장균의 수는 45분마다 2배로 증가하고, 135=45×3이므로 135분 후에는 2³배로 증가한다. 따라서 30 °C에서 대장균이 5³마리 있을 때, 135분 후에는 $5^3 \times 2^3 = (2 \times 5)^3 = 10^3$ (마리)가 된다.

0272 전략 (시간)= <u>(거리)</u> 임을 이용하여 태양의 빛이 태양을 출발 하여 지구까지 오는 데 걸리는 시간을 구한다.

빛의 속력이 초속 3.0×10⁵ km이므로

$$\frac{1.5 \times 10^8}{3.0 \times 10^5} = 0.5 \times 10^3 = 500(\text{\&})$$

따라서 현재 우리가 보고 있는 태양의 빛은 500초 전에 태양 을 출발한 것이다. 답 500초

0273 전략 7의 거듭제곱의 일의 자리의 숫자를 구해 본다.

$$7^{50} \div 7^{30} = 7^{50-30} = 7^{20}$$

한편 7의 거듭제곱의 일의 자리의 숫자는 7, 9, 3, 1이 반복 된다.

이때 $20 = 4 \times 5$ 이므로 7^{20} 의 일의 자리의 숫자는 1이다.

답 ①

0274 전략 (2,8,4) 또는 (8,4,2) 또는 (4,2,8)로 만들어지는 수를 구해 본다.

> 세 숫자를 시계 방향으로 돌아가며 한 번씩 사용할 수 있는 수는 (2, 8, 4) 또는 (8, 4, 2) 또는 (4, 2, 8)로 만들어지는 수이다.

(i)(2,8,4)일 때

 $2^8 \div 4 = 2^8 \div 2^2 = 2^6$

(ii) (8, 4, 2)일 때

 $8^4 \div 2 = (2^3)^4 \div 2 = 2^{12} \div 2 = 2^{11}$

(iii) (4, 2, 8)일 때

 $4^2 \div 8 = (2^2)^2 \div 2^3 = 2^4 \div 2^3 = 2$

따라서 가장 작은 수는 2이다.

답 2

0275 전략 지수법칙을 이용하여 괄호를 풀고 나눗셈은 역수의 곱셈 으로 바꾸어 계산한다.

$$A = (-2x^{2})^{3} \times 5x^{3}y^{2} = -8x^{6} \times 5x^{3}y^{2} = -40x^{9}y^{2}$$

$$B = (2xy^{2})^{3} \div (-4x^{2}y^{4})^{2}$$

$$= 8x^{3}y^{6} \div 16x^{4}y^{8}$$

$$= \frac{8x^{3}y^{6}}{16x^{4}y^{8}} = \frac{1}{2xy^{2}}$$

답
$$A = -40x^9y^2$$
, $B = \frac{1}{2xy^2}$

0276 전략 먼저 지수법칙을 이용하여 괄호를 푼다.

$$(ab^2)^3 \div (a^2b^3)^4 \times a^6b^7 = a^3b^6 \div a^8b^{12} \times a^6b^7$$

$$= a^3b^6 \times \frac{1}{a^8b^{12}} \times a^6b^7$$

$$= ab$$
 달 ②

0277 전략 지수법칙을 이용하여 괄호를 풀고 나눗셈은 역수의 곱셈 으로 바꾸어 계산한다.

①
$$9a \times 4a^5 \div 3a^3 = 9a \times 4a^5 \times \frac{1}{3a^3} = 12a^3$$

②
$$6ab^2 \times (-a^3) \div 2b^2 = 6ab^2 \times (-a^3) \times \frac{1}{2b^2} = -3a^4$$

$$(3(3x^4y^3)^2 \div x^3y^2 \times (2x^2y)^3$$

$$=9x^8y^6 \times \frac{1}{x^3y^2} \times 8x^6y^3 = 72x^{11}y^7$$

$$(4)(2x^2y^3)^2 \times (-xy^2) \div (x^2y)^3$$

$$=4x^{4}y^{6} imes(-xy^{2}) imesrac{1}{x^{6}y^{3}}=-rac{4y^{5}}{x}$$

$$\textcircled{5} 4x^3y^4 \div \left(-\frac{2}{5}x^2\right) \times \left(-\frac{1}{3}y\right)^2$$

$$=4x^3y^4 \times \left(-\frac{5}{2x^2}\right) \times \frac{1}{9}y^2 = -\frac{10}{9}xy^6$$

따라서 옳지 않은 것은 ⑤이다.

0278 절략 괄호가 있을 때에는 괄호 안의 식을 먼저 계산한다.

$$A = (-3x^{2}y^{5})^{2} \times \frac{4}{3}xy^{3} \div \frac{1}{2}x^{2}y$$

$$= 9x^{4}y^{10} \times \frac{4}{3}xy^{3} \div \frac{1}{2}x^{2}y$$

$$= 9x^{4}y^{10} \times \frac{4}{3}xy^{3} \times \frac{2}{x^{2}y} = 24x^{3}y^{12} \qquad \cdots (7)$$

$$=9x^{4}y^{10} \times \frac{4}{3}xy^{3} \times \frac{2}{x^{2}y} = 24x^{3}y^{12} \qquad \cdots (7)$$

$$B = \frac{3}{2}x^{2}y^{5} \div \left\{ \left(\frac{1}{4}x^{2}y \right)^{2} \times (-3xy) \right\}$$

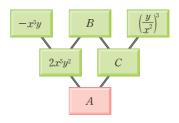
$$= \frac{3}{2}x^{2}y^{5} \div \left\{ \frac{1}{16}x^{4}y^{2} \times (-3xy) \right\}$$

$$= \frac{3}{2}x^{2}y^{5} \div \left(-\frac{3}{16}x^{5}y^{3} \right)$$

$$= \frac{3}{2}x^{2}y^{5} \times \left(-\frac{16}{3x^{5}y^{3}} \right) = -\frac{8y^{2}}{x^{3}} \qquad \cdots (4)$$

$$\therefore \frac{A}{B} = 24x^{3}y^{12} \div \left(-\frac{8y^{2}}{x^{3}} \right)$$

$$=24x^3y^{12}\times\left(-\frac{x^3}{8y^2}\right)$$


 $\mathbf{t} - 3x^6y^{10}$

....(다)

답 ⑤

채점 기준	비율
(가) A 구하기	40 %
(내) <i>B</i> 구하기	40 %
$\text{(t)} \frac{A}{B} \vec{\tau} \vec{\delta} \vec{\tau}$	20 %

0279 전략 가장 윗줄의 빈칸부터 차례로 구한다.

위의 그림에서

$$-x^3y imes B = 2x^5y^2$$
에서 $B = 2x^5y^2 \div (-x^3y) = -2x^2y$

$$C = B \times \left(\frac{y}{r^2}\right)^3 = -2x^2y \times \frac{y^3}{r^6} = -\frac{2y^4}{r^4}$$

$$\therefore A = 2x^5y^2 \times C = 2x^5y^2 \times \left(-\frac{2y^4}{r^4}\right) = -4xy^6$$
 답 $-4xy^6$

0280 전략 $A \div \square \times B = C$ 이면 $\square = A \times B \div C$ 임을 이용한다.

0281 전략 좌변을 간단히 한 후 좌변과 우변을 비교한다. 이때 계수는 계수끼리, 지수는 밑이 같은 지수끼리 비교한다.

$$\begin{split} &\frac{1}{3}x^{a}y^{4}z\div(-4xy^{b}z^{6})\times(-2xy^{b}z^{3})^{2}\\ &=\frac{1}{3}x^{a}y^{4}z\times\left(-\frac{1}{4xy^{b}z^{6}}\right)\times4x^{2}y^{2b}z^{6}\\ &=-\frac{1}{3}x^{a+1}y^{4+b}z\!=\!cx^{3}y^{5}z \end{split}$$

$$a+1=3$$
에서 $a=2,4+b=5$ 에서 $b=1,c=-\frac{1}{3}$

$$\therefore a-b+c=2-1+\left(-\frac{1}{3}\right)=\frac{2}{3}$$

답 ③

0282 전략 어떤 식을 A라 하고 $A \div 3xy = 9x^3y$ 에서 A를 구한다.

어떤 식을 A라 하면

 $A \div 3xy = 9x^3y$ 에서

 $A = 9x^3y \times 3xy = 27x^4y^2$

따라서 바르게 계산한 식은

$$27x^4y^2 \times 3xy = 81x^5y^3$$

답 ③

0283 전략 (원뿔의 부피) $=\frac{1}{3}$ \times (밑넓이) \times (높이)임을 이용하여 P와 Q를 각각 구한다.

$$P = \frac{1}{2} \times \pi \times (2ab)^2 \times 6b = 8\pi a^2 b^3$$

$$Q = \frac{1}{3} \times \pi \times (6b)^2 \times 2ab = 24\pi ab^3$$

이때
$$\frac{P}{Q} = \frac{8\pi a^2 b^3}{24\pi a b^3} = \frac{a}{3}$$
이므로 $P = Q = \frac{a}{3}$ 배이다. 답 ⑤

다항식의 계산

STEP 1 개념 마스터

p.50 ~ p.51

0284 (주어진 식)=2a+3b+3a-4b=5a-b

답 5a-b

0285 (주어진 식)=2x+y+5-3x-2y

=-x-y+5

답 -x-y+5

0286 (주어진 식)=-x-3y+x-y=-4y

답 -4y

0287 (주어진 식)=4x-3y+6-2x-y+1 =2x-4y+7

답 2*x*−4*y*+7

0288 (주어진 식)=x+2y-(3x-y+x)=x+2y-(4x-y)

=x+2y-4x+y

답-3x + 3y

0289 (주어진 식)= $a-\{2a+3(a-b+2a+2b)\}$ $=a-\{2a+3(3a+b)\}$

=-3x+3y

=a-(11a+3b)

=a-11a-3b

=-10a-3b

답 -10a-3b

0290 답

0291 *x*에 대한 일차식이다.

답 ×

0292 $2x^2+5x-2x^2+3=5x+3$ 이므로 x에 대한 일차식이다.

답 ×

0293 $x^2 - 3x + 2x^2 = 3x^2 - 3x$ 이므로 x에 대한 이차식이다.

답 〇

0294 (주어진 식)= $a^2-a+3+2a^2+4a-2$

 $=3a^2+3a+1$

답 $3a^2+3a+1$

0295 (주어진 식)=-3x²+4x+2-2x²+3x-1

 $=-5x^2+7x+1$ **답** $-5x^2+7x+1$

0296 (주어진 식)=4x²+8x-2-x²-4x-3

 $=3x^2+4x-5$

답 $3x^2+4x-5$

0297 답 $-6x^2 + 2xy$ 0298 **답** $-2a^2 + a$

0299 답 $xy+7y^2-10y$

0300 답 $-4x^3+20x^2-16x$

0301 (주어진 식)=-2x²+6x-3x²+6x $=-5x^2+12x$ $\mathbf{t} - 5x^2 + 12x$

0302 (주어진 식)=6x²-3xy-4xy-2y² $=6x^2-7xy-2y^2$ **답** $6x^2-7xy-2y^2$

0303 (주어진 식)= $\frac{8ab}{-2a}+\frac{4a}{-2a}$ =-4b-2 답 -4b-2

0304 (주어진 식)= $\frac{-9a^2}{3a}+\frac{15ab}{3a}=-3a+5b$

답 -3a+5b

0305 (주어진 식)= $\frac{4x^2}{-2x} - \frac{6xy}{-2x} + \frac{2x}{-2x}$ =-2x+3y-1답 -2x+3y-1

0306 (주어진 식)= $\left(2xy-\frac{1}{2}y\right)\times\frac{2}{y}$ $=2xy\times\frac{2}{y}-\frac{1}{2}y\times\frac{2}{y}$ 답 4*x*−1

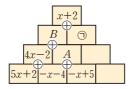
0307 (주어진 식)= $(a^2-2ab+3ac)\times\left(-\frac{4}{a}\right)$ $=a^2 \times \left(-\frac{4}{a}\right) - 2ab \times \left(-\frac{4}{a}\right) + 3ac \times \left(-\frac{4}{a}\right)$ =-4a+8b-12c답 -4a+8b-12c

STEP 2 유형 마스터

p.52 ~ p.57

0308 전략 분모의 최소공배수로 통분하여 계산한다.

0309 3(x+2y)-2(x-y)=3x+6y-2x+2y=x+8y답 x+8y


0310
$$\frac{3x-2y}{3} - \frac{x+3y}{4} + \frac{x-y}{2}$$

$$= \frac{4(3x-2y)-3(x+3y)+6(x-y)}{12}$$

$$= \frac{12x-8y-3x-9y+6x-6y}{12}$$

$$= \frac{15x-23y}{12} = \frac{5}{4}x - \frac{23}{12}y$$
따라서 $a = \frac{5}{4}$, $b = -\frac{23}{12}$ 이므로
$$a+3b = \frac{5}{4} + 3 \times \left(-\frac{23}{12}\right) = -\frac{9}{2}$$
 답 $-\frac{9}{2}$

0311 (개의 규칙은 아랫줄의 이웃한 칸에 있는 두 다항식을 더하여 윗줄을 채우는 것이다.

따라서 위의 그림에서

$$A = (-x-4) + (-x+5) = -2x+1$$

 $B = (4x-2) + (-2x+1) = 2x-1$
 $\therefore \bigcirc = (x+2) - (2x-1)$
 $= x+2-2x+1$
 $= -x+3$ 답 $-x+3$

0312 전략 먼저 분배법칙을 이용하여 괄호를 푼다.

$$3(x^2+2x+4)-(4x^2-3x-5)$$

$$=3x^2+6x+12-4x^2+3x+5$$

$$=-x^2+9x+17$$
 따라서 x 의 계수는 9이다. 답 9

0313 ③
$$(2x^2+5x+2)-3(x^2+2x-2)$$

 $=2x^2+5x+2-3x^2-6x+6$
 $=-x^2-x+8$
④ $(3x^2+5x+3)-4(x^2-2x+3)$
 $=3x^2+5x+3-4x^2+8x-12$
 $=-x^2+13x-9$
⑤ $(5x^2-4x+1)-3(x^2+x+3)$
 $=5x^2-4x+1-3x^2-3x-9$
 $=2x^2-7x-8$
따라서 옳지 않은 것은 ④이다.

0314
$$2x^2-3x-2-(ax^2-4x+5)$$

 $=2x^2-3x-2-ax^2+4x-5$
 $=(2-a)x^2+x-7$
이때 $(2-a)x^2+x-7=4x^2+bx-7$ 이므로
 $2-a=4,1=b$ 에서 $a=-2,b=1$
 $\therefore a+b=-2+1=-1$ 답 -1

0316
$$7x^2 + 3x - \{3x^2 + 5x - (x^2 - 4x - 1)\}$$

= $7x^2 + 3x - (3x^2 + 5x - x^2 + 4x + 1)$
= $7x^2 + 3x - (2x^2 + 9x + 1)$
= $7x^2 + 3x - 2x^2 - 9x - 1$
= $5x^2 - 6x - 1$ (가)
파라서 $a = 5, b = -6, c = -1$ 이므로(나)
 $a + 2b + c = 5 + 2 \times (-6) + (-1) = -8$ (다)

채점 기준	비율
(가) 주어진 식 계산하기	60 %
(나) a, b, c의 값 각각 구하기	각10%
(대) $a+2b+c$ 의 값 구하기	10 %

0317 전략 어떤 식을 A로 놓고 식을 세운다.

어떤 식을
$$A$$
라 하면
$$A-(3x^2-4x+1)+(2x-9)=-x+1$$
$$\therefore A=-x+1+(3x^2-4x+1)-(2x-9)$$
$$=-x+1+3x^2-4x+1-2x+9$$
$$=3x^2-7x+11$$
답 $3x^2-7x+11$

0318
$$a-2b+5+A=4a-b+3$$
에서
 $A=4a-b+3-(a-2b+5)$
 $=4a-b+3-a+2b-5$
 $=3a+b-2$
 $4a+5b+1-B=10a+b$ 에서
 $B=4a+5b+1-(10a+b)$
 $=4a+5b+1-10a-b$
 $=-6a+4b+1$
 $\therefore A-B=3a+b-2-(-6a+4b+1)$
 $=3a+b-2+6a-4b-1$
 $=9a-3b-3$ 답 $9a-3b-3$

0319 전략 먼저 세 다항식이 모두 주어진 줄에서 세 다항식의 합을 구한다.

$a^2 + 4$	-2a-2	
$2a^{2}-2a$	9	
-a+1	©	$a^2 - 2a - 1$

세로 첫 번째 줄에서

$$(a^2+4)+(2a^2-2a)+(-a+1)=3a^2-3a+5$$

가로 세 번째 중에서

$$(-a+1)+\bigcirc+(a^2-2a-1)=3a^2-3a+5$$

세로 두 번째 줄에서

$$(-2a-2)+\bigcirc+(2a^2+5)=3a^2-3a+5$$

0320
$$6x-[x-3y+\{4x-2y-(y+[])\}]$$

 $=6x-\{x-3y+(4x-2y-y-[])\}$
 $=6x-(x-3y+4x-3y-[])$
 $=6x-(5x-6y-[])$
 $=6x-5x+6y+[]$
 $=x+6y+[]$
이때 $x+6y+[]=2x-y$ 이므로
 $=2x-y-(x+6y)$

0321 전략 어떤 식을 A로 놓고 잘못 계산한 식을 세운다. 어떤 식을 A라 하면

$$A-(x-2y+1)=4x-5y+2$$

$$A = 4x - 5y + 2 + (x - 2y + 1) = 5x - 7y + 3$$

따라서 바르게 계산한 식은

$$5x-7y+3+(x-2y+1)=6x-9y+4$$

0322 (1)
$$A - (2x^2 + 3x - 1) = -x^2 - x + 4$$

 $\therefore A = -x^2 - x + 4 + (2x^2 + 3x - 1)$
 $= x^2 + 2x + 3$ (7)

(2) 바르게 계산한 식은

$$(x^2+2x+3)+(2x^2+3x-1)=3x^2+5x+2$$
(4)

답 (1)
$$x^2+2x+3$$
 (2) $3x^2+5x+2$

채점 기준	비율
(개) 어떤 식 <i>A</i> 구하기	60 %
(내) 바르게 계산한 식 구하기	40 %

0323 어떤 식을 A라 하면

$$x^{2} - \frac{1}{2}x - 1 + A = \frac{5}{3}x^{2} - \frac{3}{4}x + 1$$

$$\therefore A = \frac{5}{3}x^{2} - \frac{3}{4}x + 1 - \left(x^{2} - \frac{1}{2}x - 1\right)$$

$$= \frac{5}{3}x^{2} - \frac{3}{4}x + 1 - x^{2} + \frac{1}{2}x + 1$$

$$= \frac{2}{3}x^{2} - \frac{1}{4}x + 2$$

따라서 바르게 계산한 식은

0324 전략 A(B+C+D) = AB + AC + AD임을 이용한다. $-2x(5x+y-1) = -10x^2 - 2xy + 2x$ 이므로 a = -10, b = -2, c = 2 $\therefore a-b+c=-10-(-2)+2=-6$ 답 -6

0325 ① $2x(x+3) = 2x^2 + 6x$ (2) $-2x(2x-y-1) = -4x^2 + 2xy + 2x$ (5) $-y(2x+y-3) = -2xy-y^2+3y$ 답 ③, ④

0326
$$-5x(y-3x)+y(4x-1)=-5xy+15x^2+4xy-y$$
 = $15x^2-xy-y$ 따라서 x^2 의 계수는 15 , xy 의 계수는 -1 이므로 그 합은 $15+(-1)=14$ 답 14

0327 전략 나누는 단항식이 분수 꼴이면 나눗셈을 역수의 곱셈으로 바꾸어 계산한다.

0328
$$(6x^2y - 3xy) \div (-2xy)$$

= $(6x^2y - 3xy) \times \left(-\frac{1}{2xy}\right)$
= $6x^2y \times \left(-\frac{1}{2xy}\right) - 3xy \times \left(-\frac{1}{2xy}\right)$
= $-3x + \frac{3}{2}$
따라서 $a = -3$, $b = \frac{3}{2}$ 이므로
 $a \div b = -3 \div \frac{3}{2} = -3 \times \frac{2}{3} = -2$ 달 -2

0329
$$(3x^2y^2+2x^2y)\div \frac{1}{5}xy=(3x^2y^2+2x^2y) imes \frac{5}{xy}$$

$$=3x^2y^2 imes \frac{5}{xy}+2x^2y imes \frac{5}{xy}$$

$$=15xy+10x$$
 따라서 $A=15, B=10$ 이므로 $A-B=15-10=5$ 달 5

0330
$$(12x^2y - 6xy^2) \div (-3xy) - (6x^2 - 2xy) \div \frac{1}{2}x$$

 $= (12x^2y - 6xy^2) \times \left(-\frac{1}{3xy}\right) - (6x^2 - 2xy) \times \frac{2}{x}$
 $= 12x^2y \times \left(-\frac{1}{3xy}\right) - 6xy^2 \times \left(-\frac{1}{3xy}\right)$
 $-\left(6x^2 \times \frac{2}{x} - 2xy \times \frac{2}{x}\right)$
 $= -4x + 2y - (12x - 4y)$
 $= -4x + 2y - 12x + 4y$
 $= -16x + 6y$ 달 $-16x + 6y$

0331 전략 나눗셈을 역수의 곱셈으로 바꾸어 계산한다.
$$(4x^3y^2 - 6x^2y^3) \div 2xy - (x^2 - 2xy) \times 3y$$

$$= (4x^3y^2 - 6x^2y^3) \times \frac{1}{2xy} - (x^2 - 2xy) \times 3y$$

$$= 2x^2y - 3xy^2 - 3x^2y + 6xy^2$$

$$= -x^2y + 3xy^2$$
 답 $-x^2y + 3xy^2$

$$0332 \quad \textcircled{1} (6a^{3} - 8a^{2}) \div (-2a) = (6a^{3} - 8a^{2}) \times \left(-\frac{1}{2a}\right)$$

$$= -3a^{2} + 4a$$

$$\textcircled{2} (15a^{2} + 5a) \div 5a = (15a^{2} + 5a) \times \frac{1}{5a}$$

$$= 3a + 1$$

$$\textcircled{3} (x - 3)x - 3(x^{2} + 4x - 5)$$

$$= x^{2} - 3x - 3x^{2} - 12x + 15$$

$$= -2x^{2} - 15x + 15$$

$$\textcircled{4} (-3x + 2y)y + (24y^{3} - 18xy^{2}) \div 6y$$

$$= -3xy + 2y^{2} + (24y^{3} - 18xy^{2}) \times \frac{1}{6y}$$

$$= -3xy + 2y^{2} + 4y^{2} - 3xy$$

$$= 6y^{2} - 6xy$$

$$\textcircled{5} (12x^{2} - 9xy) \div 3x + (2x^{2} + xy) \div x$$

$$= (12x^{2} - 9xy) \times \frac{1}{3x} + (2x^{2} + xy) \times \frac{1}{x}$$

$$= 4x - 3y + 2x + y$$

답 ⑤

=6x-2y

0333
$$3x(x-1) - \{x^2 - x(-2x+3)\} \div (-x)$$

 $= 3x^2 - 3x - (x^2 + 2x^2 - 3x) \div (-x)$
 $= 3x^2 - 3x - (3x^2 - 3x) \div (-x)$
 $= 3x^2 - 3x - (3x^2 - 3x) \times \left(-\frac{1}{x}\right)$
 $= 3x^2 - 3x - (-3x+3)$
 $= 3x^2 - 3x + 3x - 3 = 3x^2 - 3$
따라서 $a = 3, b = 0, c = -3$ 이므로
 $a + b - c = 3 + 0 - (-3) = 6$

0334 전략 색칠한 부분의 넓이는 세 직각삼각형의 넓이의 합과 같음 을 이용한다.

(색칠한 부분의 넓이)
$$= (세 \ \text{직각삼각형의 넓이의 합})$$

$$= \frac{1}{2} \times (2a - 2b) \times 2b$$

$$+ \frac{1}{2} \times 2b \times b + \frac{1}{2} \times 2a \times b$$

$$= 2ab - 2b^2 + b^2 + ab$$

$$= 3ab - b^2$$
답 $3ab - b^2$

0335 (길의 넓이)=
$$x(4x+2)+x(3x+1)-x^2$$

= $4x^2+2x+3x^2+x-x^2$
= $6x^2+3x$ (m²) 답 ($6x^2+3x$) m²

0336 큰 직육면체의 높이를 h_1 , 작은 직육면체의 높이를 h_2 라 하면 $3x \times 6 \times h_1 = 36x^3 + 90xy^2$ 에서 $h_1 = \frac{36x^3 + 90xy^2}{18x} = 2x^2 + 5y^2$ $x \times 6 \times h_2 = 24x^3 - 18xy^2$ 에서 $h_2 = \frac{24x^3 - 18xy^2}{6x} = 4x^2 - 3y^2$ $\therefore h = h_1 + h_2 = (2x^2 + 5y^2) + (4x^2 - 3y^2) = 6x^2 + 2y^2$ 따라서 a = 6, b = 2이므로 a + b = 6 + 2 = 8 답 8

0337 전략 먼저 주어진 식을 계산한 후 x, y의 값을 대입한다.

$$\frac{x^{2}y - xy^{2}}{xy} - \frac{3xy^{2} - x^{2}y^{2}}{xy^{2}} = x - y - (3 - x)$$

$$= x - y - 3 + x$$

$$= 2x - y - 3$$

$$= 2 \times 5 - (-3) - 3$$

$$= 10$$

0338
$$xy(x-y)-y(xy+x^2)=x^2y-xy^2-xy^2-x^2y$$
 $=-2xy^2$ $=-2\times(-2)\times1^2$ $=4$ 답 4

답 10

채점 기준	비율
(가) 주어진 식 계산하기	60 %
(내) 식의 값 구하기	40 %

0340 전략 먼저 주어진 식을 간단히 한다.

$$2(3A+2B)-2(2A-B)$$

$$=6A+4B-4A+2B$$

$$=2A+6B$$

$$=2(3x-2y)+6(2x+y)$$

$$=6x-4y+12x+6y$$

$$=18x+2y$$

답 18x+2y

0341
$$3x-y=3(a+2b)-(2a-b)$$

= $3a+6b-2a+b$
= $a+7b$ 답 $a+7b$

$$\begin{array}{ll} \textbf{0343} & B = (-6x^3y + 9x^2y) \div 3xy \\ & = (-6x^3y + 9x^2y) \times \frac{1}{3xy} \\ & = -2x^2 + 3x \\ & C = (2x^3y^2)^3 \div (2x^4y^3)^2 \\ & = 8x^9y^6 \div 4x^8y^6 = \frac{8x^9y^6}{4x^8y^6} = 2x \\ & \therefore 2A - [2B + 2C + 3\{A - (B + C)\}] \\ & = 2A - \{2B + 2C + 3(A - B - C)\} \\ & = 2A - (2B + 2C + 3A - 3B - 3C) \\ & = 2A - (3A - B - C) \\ & = 2A - 3A + B + C \\ & = -A + B + C \end{array}$$

채점 기준	비율
(가) <i>B</i> 를 계산하기	20 %
(나) <i>C</i> 를 계산하기	20 %
(다) 주어진 식 간단히 하기	30 %
(라) 주어진 식을 x 에 대한 식으로 나타내기	30 %

0344 전략 x, y에 대한 다항식을 x에 대한 식으로 나타내려면 주어진 등식을 y=(x)에 대한 식)으로 정리한다.

$$(1) 2x+y=3x+2y+3$$
에서 $y=-x-3$ 이므로 $x+3y+3=x+3(-x-3)+3$ $=x-3x-9+3=-2x-6$ $(2) 2x+y=3x+2y+3$ 에서 $x=-y-3$ 이므로 $x+3y+3=-y-3+3y+3=2y$ 답 $(1) -2x-6$ $(2) 2y$

0345
$$x+y=6$$
에서 $x=-y+6$
 $5x+3y=5(-y+6)+3y$
 $=-5y+30+3y$
 $=-2y+30$ 답 ③

0346
$$7y+x+5=2x+y$$
에서 $x=6y+5$
 $5x-15y-13=5(6y+5)-15y-13$
 $=30y+25-15y-13$
 $=15y+12$ 답 $15y+12$

0347
$$(2x+y): (x-y)=3: 2$$
에서 $2(2x+y)=3(x-y)$
 $4x+2y=3x-3y, 5y=-x$
 $\therefore y=-\frac{1}{5}x$
 $4x+5y=4x+5\times\left(-\frac{1}{5}x\right)=4x-x=3x$
따라서 $a=3, b=0$ 이므로
 $a+b=3+0=3$

STEP 3 내신 마스터

p.58 ~ p.61

0348 전략 먼저 분배법칙을 이용하여 괄호를 푼다.

$$2(4x+2y+1)-(x-2y)$$

=8x+4y+2-x+2y
=7x+6y+2

- 0349 전략 식을 계산한 후 차수가 가장 큰 항의 차수가 2인 것을 찾 는다.
 - ① 일차식이다.
 - ③ x^3 이 있으므로 이차식이 아니다.
 - ④ 6x-5+x-8=7x-13이므로 일차식이다.
 - $(5) 2x^2-4-2(x^2+x)=2x^2-4-2x^2-2x=-2x-4$ 므로 일차식이다. 답 ②
- 0350 전략 이차항은 이차항끼리, 일차항은 일차항끼리, 상수항은 상 수항끼리 계산한다.

$$(1)(a+2b)+(2a-5b)=3a-3b$$

$$2a^{2} - \{1 + 2a^{2} - 3(a - 2)\}$$

$$= 2a^{2} - (1 + 2a^{2} - 3a + 6)$$

$$= 2a^{2} - (2a^{2} - 3a + 7)$$

$$= 2a^{2} - 2a^{2} + 3a - 7$$

$$= 3a - 7$$

$$3(a-2b+5) - (3a+7b-6) = a-2b+5-3a-7b+6 = -2a-9b+11$$

$$(a^2+5a-2)+(-3a^2+a-2)=-2a^2+6a-4$$

따라서 옳은 것은 ③, ⑤이다.

답 ③,⑤

0351 전략 (소괄호) → {중괄호} → [대괄호]의 순서로 푼다.

$$\begin{array}{l} -2x^2 - 6 - [x + 3x^2 - \{4 + 5x - 2x^2 + (-x + x^2)\}] \\ = -2x^2 - 6 - \{x + 3x^2 - (\boxed{-x^2 + 4x + 4})\} \\ = -2x^2 - 6 - (x + 3x^2 + x^2 - 4x - 4) \end{array}$$

$$=-2x^2-6-(x+3x^2+x^2-4x-4)$$

$$=-2x^2-6-(\boxed{4x^2-3x-4})$$

$$=-2x^2-6-4x^2+3x+4$$

$$= |-6x^2 + 3x - 2|$$

따라서
$$A = -x^2 + 4x + 4$$
, $B = 4x^2 - 3x - 4$,

$$C = -6x^2 + 3x - 2$$
이므로

$$A+B-C=(-x^2+4x+4)+(4x^2-3x-4)$$

$$-(-6x^2+3x-2)$$

$$= -x^2 + 4x + 4 + 4x^2 - 3x - 4 + 6x^2 - 3x + 2$$

$$=9x^2-2x+2$$

답 $9x^2 - 2x + 2$

(소괄호) ➡ {중괄호} ➡ [대괄호]의 순서로 괄호를 푼다.

−⊕가 있으면 : 괄호 안의 부호는 그대로 → 가 있으면: 괄호 안의 부호는 반대로

0352 전략 A+B=C에서 A=C-B임을 이용한다.

$$= -2x^{2} + 4x - 5 - (3x^{2} - 5x + 2)$$

$$= -2x^{2} + 4x - 5 - 3x^{2} + 5x - 2$$

$$= -5x^{2} + 9x - 7$$

답 ②

0353 전략 가로 첫 번째 줄에서 (카에 알맞은 식을 먼저 구한다.

$$(7)+(x+y)=3x$$
에서

$$(7) = 3x - (x+y) = 2x - y$$

$$(7)+(-x-y)=(나)에서$$

$$(2x-y)+(-x-y)=(4)$$

$$\therefore$$
 (4)= $x-2y$

0354 전략 조건을 이용하여 A, B에 대한 식을 각각 세운다.

$$(7)$$
 $A + (-x^2 + 1) = x^2 - 3$

$$A = x^2 - 3 - (-x^2 + 1)$$

$$=x^2-3+x^2-1=2x^2-4$$

(나)
$$A - (3x^2 + 5x - 2) = B$$
에서

$$A = 2x^2 - 4$$
를 대입하면

$$B=2x^2-4-(3x^2+5x-2)$$

$$=2x^2-4-3x^2-5x+2$$

$$=-x^2-5x-2$$

답 $- x^2 - 5x - 2$

답 ②

Lecture

어떤 식 A 구하기

$$A+B=C \Rightarrow A=C-B$$

$$A - B = C \Rightarrow A = C + B$$

$$A \times B = C \Rightarrow A = C \div B$$

$$A \div B = C \Rightarrow A = C \times B$$

 $B \div A = C \Rightarrow A = B \div C$

0355 전략 (소괄호) → {중괄호} → [대괄호]의 순서로 푼다.

$$7x-2\{5x+3y-()+5y\}$$

$$=7x-2\{5x+8y-()\}$$

$$=7x-10x-16y+2($$

$$=-3x-16y+2()$$

이때
$$-3x-16y+2$$
(____)= $3x-12y$ 이므로

$$2(\boxed{)}=3x-12y-(-3x-16y)$$

$$=3x-12y+3x+16y$$

$$=6x+4y$$

$$\therefore \boxed{ } = (6x+4y) \div 2 = 3x+2y$$

답 ④

- **0356** 전략 어떤 식을 A로 놓고 잘못 계산한 식을 세운다.
 - 어떤 식을 *A*라 하면

$$A+(2x^2+x-1)=3x^2+3x$$
에서

···· (7})

....(니)

....(다)

$$A = 3x^2 + 3x - (2x^2 + x - 1)$$

$$=3x^2+3x-2x^2-x+1$$

$$=x^2+2x+1$$

따라서 바르게 계산한 식은

$$x^2+2x+1-(2x^2+x-1)$$

$$=x^2+2x+1-2x^2-x+1$$

$$=-x^2+x+2$$

$$\mathbf{t} - x^2 + x + 2$$

채점 기준	비율
(zł) 어떤 식을 <i>A</i> 로 놓고 잘못 계산한 식 세우기	30 %
(나) 어떤 식 <i>A</i> 구하기	30 %
(G) 바르게 계산한 식 구하기	40 %

0357 전략 먼저 분배법칙을 이용하여 괄호를 푼다.

$$2y(y-x+3)-x(4x-7y-4)$$

= $2y^2-2xy+6y-4x^2+7xy+4x$
= $-4x^2+2y^2+5xy+4x+6y$
따라서 $a=-4$, $b=5$ 이므로
 $a+b=-4+5=1$ 답 ①

0358 전략 나눗셈을 역수의 곱셈으로 바꾸어 계산한다.

$$(-4xy+2y^2) \div \left(-\frac{2}{5}y\right)$$

$$= (-4xy+2y^2) \times \left(-\frac{5}{2y}\right)$$

$$= -4xy \times \left(-\frac{5}{2y}\right) + 2y^2 \times \left(-\frac{5}{2y}\right)$$

$$= 10x - 5y$$

0359 전략 (소괄호) → {중괄호} → [대괄호]의 순서로 푼다.

$$34x - \{y - (5y - 4x)\}$$

$$= 4x - (y - 5y + 4x)$$

$$= 4x - (4x - 4y)$$

$$= 4x - 4x + 4y$$

$$= 4y$$

$$\begin{split} & \underbrace{ \left\{ 2x - \left[2y - x - \left\{ 3x - (x - y) \right\} \right] \right] } \\ & = 2x - \left\{ 2y - x - (3x - x + y) \right\} \\ & = 2x - \left\{ 2y - x - (2x + y) \right\} \\ & = 2x - (2y - x - 2x - y) \\ & = 2x - (-3x + y) \\ & = 2x + 3x - y \\ & = 5x - y \end{split}$$

따라서 옳지 않은 것은 ③이다.

0360 전략 나눗셈을 역수의 곱셈으로 바꾸어 계산한다.

$$(12x^2y - 4x^2y^3) \div (-4xy) \div \frac{x}{y}$$

$$= (12x^2y - 4x^2y^3) \times \left(-\frac{1}{4xy}\right) \times \frac{y}{x}$$

$$= (-3x + xy^2) \times \frac{y}{x}$$

$$= -3y + y^3$$
 旨 ⑤

0361 전략 식을 계산하여 *xy*의 계수와 *y*의 계수를 구한다.

채점 기준	비율
(개) 주어진 식 계산하기	60 %
(내) a, b의 값 각각 구하기	각 15 %
(대) a+b의 값 구하기	10 %

0362 절의 식을 계산한 후 각 항의 계수가 모두 같음을 이용한다.

$$2x(x-y+a)-(4xy^2-2xy) \div by$$

$$=2x(x-y+a)-(4xy^2-2xy) \times \frac{1}{by}$$

$$=2x^2-2xy+2ax-\frac{4}{b}xy-\frac{2}{b}x$$

$$=2x^2+\left(-2-\frac{4}{b}\right)xy+\left(2a+\frac{2}{b}\right)x$$
이때 각 항의 계수가 모두 같으므로
$$-2-\frac{4}{b}=2$$
, $2a+\frac{2}{b}=2$ 이다.
$$-2-\frac{4}{b}=2$$
에서 $-\frac{4}{b}=4$ $\therefore b=-1$

$$2a+\frac{2}{b}=2$$
에서 $2a-2=2$, $2a=4$ $\therefore a=2$

$$\therefore ab=2\times(-1)=-2$$

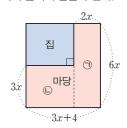
0363 전략
$$A \div B = C$$
에서 $A = C \times B$ 임을 이용한다.

0364 전략 어떤 다항식을 *A*로 놓고 잘못 계산한 식을 세운다.

어떤 다항식을 A라 하면

$$A \div 3x = 2x + 4y - 1$$
이므로

$$A = (2x+4y-1) \times 3x = 6x^2 + 12xy - 3x$$


따라서 바르게 계산한 식은

답 ③

$$(6x^2+12xy-3x)\times 3x=18x^3+36x^2y-9x^2$$

0365 전략 마당을 직사각형 두 개로 나누어서 넓이의 합을 구한다.

마당을 오른쪽 그림과 같이 두 부 분으로 나누면 (마당의 넓이) = \bigcirc + \bigcirc = $2x \times 6x$ + $\{(3x+4)-2x\} \times 3x$

답 ④

$$=12x^2+(x+4)\times 3x$$

$$=12x^2+3x^2+12x$$

$$=15x^2+12x$$

답 ②

0366 전략 $A \times B = C$ 에서 $A = C \div B$ 임을 이용한다. (직사각형의 넓이)=(가로의 길이)×(세로의 길이)이므로

(가로의 길이)
$$\times \frac{2}{5}xy = 8x^3y^2 - 6xy^4$$

$$\therefore$$
 (가로의 길이)= $(8x^3y^2-6xy^4)\div\frac{2}{5}xy$
$$=(8x^3y^2-6xy^4)\times\frac{5}{2xy}$$
$$=20x^2y-15y^3$$

답 ②

0367 전략 원기둥의 높이를 h로 놓고 부피에 대한 식을 세운다.

- (1) 원기둥의 밑면인 원의 반지름의 길이가 2a이므로 (밑면의 넓이)= $\pi \times (2a)^2 = 4\pi a^2$
- (2) 원기둥의 높이를 h라 하면 (원기둥의 부피)=(밑넓이)×(높이)이므로

$$4\pi a^2 \times h = 2\pi a^3 + 4a^2b$$

 $h = (2\pi a^3 + 4a^2b) \div 4\pi a^2$

$$= (2\pi a^{3} + 4a^{2}b) \times \frac{1}{4\pi a^{2}}$$

$$= 2\pi a^{3} \times \frac{1}{4\pi a^{2}} + 4a^{2}b \times \frac{1}{4\pi a^{2}}$$

$$= \frac{a}{2} + \frac{b}{2}$$

따라서 원기둥의 높이는 $\frac{a}{2} + \frac{b}{\pi}$ 이다.

답 (1) $4\pi a^2$ (2) $\frac{a}{2} + \frac{b}{\pi}$

채점 기준	비율
(개) 원기둥의 밑면의 넓이 구하기	30 %
(내) 원기둥의 높이 구하기	70 %

(기둥의 부피)=(밑넓이)×(높이)

(뿔의 부피) $=\frac{1}{3}$ ×(밑넓이)×(높이)

0368 전략 삼각기둥 모양의 그릇에서의 물의 부피와 직육면체 모양 의 그릇에서의 물의 부피가 같음을 이용하여 식을 세운다. 삼각기둥 모양의 그릇에 가득 들어 있는 물의 부피는

$$\left\{\frac{1}{2} \times 2a \times (3b+1)\right\} \times 3a = (3ab+a) \times 3a$$
$$= 9a^2b + 3a^2$$

직육면체 모양의 그릇에 물을 옮겼을 때의 물의 높이를 h라

 $9a^2b + 3a^2 = 3a \times 2a \times h$ 에서

 $9a^2b + 3a^2 = 6a^2 \times h$

답 ①

0369 전략 먼저 주어진 식을 계산한 후 x, y의 값을 대입한다.

$$\frac{x^{2}-2xy}{x} - \frac{3xy-4y^{2}}{y}$$

$$=x-2y-(3x-4y)$$

$$=x-2y-3x+4y$$

$$=-2x+2y$$

$$=-2\times 1+2\times (-2)$$

$$=-6$$

0370 전략 먼저 주어진 식을 간단히 한다.

$$3(A-4B)+2A+8B$$

= $3A-12B+2A+8B$
= $5A-4B$
= $5(2x-y)-4(-x+3y)$
= $10x-5y+4x-12y$
= $14x-17y$

0371 전략 먼저 주어진 등식을 x=(y)에 대한 식)으로 정리한다.

$$4x+3y=6(x-1)+2y$$

$$4x+3y=6x-6+2y$$

$$-2x=-y-6 ∴ x=\frac{1}{2}y+3$$

$$6x-y+3=6\left(\frac{1}{2}y+3\right)-y+3$$

$$(x-y+3) = 6(\frac{1}{2}y+3) - y+3$$

$$= 3y+18-y+3$$

$$= 2y+21$$

답 2y+21

0372 전략 먼저 주어진 비례식을 y=(x)에 대한 식)으로 정리한다.

(2x-4y+3): (-x+2y-4)=3:1에서

$$2x-4y+3=3(-x+2y-4)$$

$$2x-4y+3=-3x+6y-12$$

$$-10y = -5x - 15$$
 $\therefore y = \frac{1}{2}x + \frac{3}{2}$

$$x+2y-3=x+2\left(\frac{1}{2}x+\frac{3}{2}\right)-3$$

$$=x+x+3-3$$

=2r

답 ②

일차부등식

STEP 1 개념 마스터

p.64 ~ p.65

0373

답 x<2

0374

답 $2x+3 \ge -5$

0375 부등식에 x=2를 대입하면 $2 \le -2 + 4 \times 2$ (참)

답

0376 부등식에 x=-2를 대입하면

 $-2>2\times(-2)+2$ (거짓)

0377

답 >

0378

답 >

0379

답 >

0380

답 <

0381

0382

답 <

답 >

0383

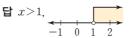
답 ≥

0384 2x+3=7은 일차방정식이다.

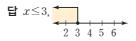
답 ×

0385 2x < 2(x-1)에서 2x < 2x-2, 2 < 0

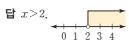
답 ×


0386

답 〇

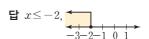

0387 $\frac{1}{r}$ -1은 분모에 문자가 있으므로 일차식이 아니다.

따라서 주어진 부등식은 일차부등식이 아니다. 답 ×


0388 x+1>2의 양변에서 1을 빼면 x>1

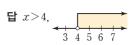
0389 3*x* ≤ 9의 양변을 3으로 나누면 *x* ≤ 3

0390 -2x<-4의 양변을 -2로 나누면 x>2



0391 2x-5>1에서 2x>1+5

2x > 6 $\therefore x > 3$


0392 $3x+4 \le x$ 에서 $3x-x \le -4$

 $2x \le -4$ $\therefore x \le -2$

0393 2-x < 2x-10에서 -x-2x < -10-2

-3x < -12 $\therefore x > 4$

0394 2(x-3) > -x에서 2x-6 > -x

3x > 6 $\therefore x > 2$

답 x>2

0395 양변에 10을 곱하면 5*x*>2*x*-9

3x > -9 $\therefore x > -3$

답 x>-3

0396 양변에 6을 곱하면 3*x*+18≥*x*+4

 $2x \ge -14$ $\therefore x \ge -7$

답 $x \ge -7$

0397 양변에 10을 곱하면 2(x-1) < 5(x+2)

2x-2 < 5x+10, -3x < 12 $\therefore x > -4$ **답** x > -4

STEP 2 유형 마스터

p.66 ~ p.73

0398 전략 주어진 보기의 식에 부등호가 있는지 확인한다.

© 방정식 마 다항식

따라서 부등식인 것은 ᄀ, ②, ②, ④이다. 답 ᄀ, ②, ②, ④

0399 ⑤ 방정식

답 ⑤

0400 ② 방정식 ③ 다항식 ⑤ 부등식이 아니다. **답** ①, ④

0401 전략 수 또는 식의 대소 관계를 결정하는 표현을 찾아 부등식 으로 나타낸다.

① $x \leq 5$

 $2x+3 \ge 5$

0402 23시와 24시 사이에 소음을 측정하였으므로 야간 최고 소음 도의 기준이 적용된다.

> 따라서 x dB은 기준 52 dB 이하이므로 $x \le 52$ 답 ③

0403 전략 x=2를 주어진 부등식에 각각 대입한다.

x=2를 주어진 부등식에 각각 대입하면 ① 2-2>0 (거짓)

② 3-2<0 (거짓)

③ 3×2≤5 (거짓)

④ 3×2+1≥9 (거짓)

⑤ -5+4×2≥3 (참)

따라서 x=2가 해인 것은 5이다.

답 ⑤

- 0404 x=-2를 주어진 부등식에 각각 대입하면
 - $\bigcirc -3 \times (-2) \le -12$ (거짓)
 - © 2×(-2)+1>5 (거짓)
 - © 2×(-2)+3>-6 (참)

 - $\bigcirc 5 \times (-2) \le 3 \times (-2) + 6$ (참)
 - $(\mathbf{H}) 2 1 < 4 \times (-2) 4$ (거짓)

따라서 x=-2가 해인 것은 \bigcirc , \bigcirc , \bigcirc 이다. **답** \bigcirc , \bigcirc , \bigcirc

- **0405** ① 3×3-4<8 (참)
- ② 1-3×(-2)>5 (참)
- ③ 2×2+1≥5 (참)
- ④ 4×0≥5×0 (참)
- ⑤ 1-1<-2 (거짓)

따라서 주어진 수가 부등식의 해가 아닌 것은 ⑤이다.

답 ⑤

- **0406** x=-1일 때, $-1+2<2\times(-1)+3$ (거짓)
 - x=0일 때, $0+2<2\times0+3$ (참)
 - x=1일 때, $1+2<2\times1+3$ (참)
 - x=2일 때, $2+2<2\times2+3$ (참)
 - x=3일 때, $3+2<2\times3+3$ (참)

따라서 주어진 부등식의 해는 0, 1, 2, 3의 4개이다. …… (내)

답 4개

····· (zl-)

채점 기준	비율
(フl) x의 값을 부등식에 대입하여 참인지 확인하기	70 %
(나) 부등식의 해의 개수 구하기	30 %

- 0407 전략 부등식의 성질을 이용하여 식을 변형한다.
 - ③ a > b이면 5a > 5b이므로 5a 5 > 5b 5
 - ④ a > b이면 -1+a > -1+b
- 답 ③. ④
- **0408** -3a-4 < -3b-4에서 -3a < -3b $\therefore a > b$
 - $\bigcirc a > b$
- $\bigcirc 3a < -3b$
- $(3) \frac{a}{2} < 3 \frac{b}{2}$ $(5) \frac{a}{4} > \frac{b}{4}$
- 답 ③
- **0409** ① 3a+1<3b+1이면 3a<3b이므로 a < b
 - 2 a 1 < -b 1이면 -a < -b이므로 a > b
 - ③ -2a+1 < -2b+1이면 -2a < -2b이므로 a > b
 - ④ 2a-3>2b-3이면 2a>2b이므로 a>b
 - ⑤ a+2>b+2이면 a>b

따라서 부등호의 방향이 나머지 넷과 다른 하나는 ①이다.

- **0410** ① *a*>*b*이므로 -5a<-5b
 - ② a > b이므로 2a > 2b $\therefore 2a 3 > 2b 3$
 - ③ a>b이므로 $\frac{a}{2}>\frac{b}{2}$ $\therefore \frac{a}{2}+1>\frac{b}{2}+1$
 - ④ a=-1, b=-2일 때, a>b이지만 $\frac{1}{a}<\frac{1}{b}$
 - ⑤ *b*<*a*이고 *b*<0이므로 *b*²>*ab*
- 답 ②

0411 전략 부등식의 각 변에 x의 계수를 곱한 후 상수항을 더한다.

 $-1 \le x < 2$ 에서 $-6 < -3x \le 3$, $-4 < -3x + 2 \le 5$

 $\therefore -4 < A \leq 5$

답 -4<A≤5

0412 $-3 < x \le 1$ 에서 $-6 < 2x \le 2$

 $\therefore -7 < 2x - 1 \le 1$

따라서 2x-1의 값이 될 수 있는 음의 정수는 -6, -5, -4, -3. -2. -1의 6개이다.

답 6개

채점 기준	비율
(가) 2 <i>x</i> — 1의 값의 범위 구하기	60 %
(4) 2x - 1의 값이 될 수 있는 음의 정수의 개수 구하기	40 %

0413 3x-y=4에서 y=3x-4

0 < x < 5에서 0 < 3x < 15. -4 < 3x - 4 < 11

 $\therefore -4 < y < 11$

답 -4<y<11

- 0414 전략 부등식의 모든 항을 좌변으로 이항하여 정리한다.
 - ① -2 > 0이므로 일차부등식이 아니다.
 - ② 부등식이 아니다.
 - ③ $2x+2 \le 0$ 이므로 일차부등식이다.
 - ④ 6>0이므로 일차부등식이 아니다.
 - (5) $-x^2-2x+2<0$ 이므로 일차부등식이 아니다.

따라서 일차부등식인 것은 ③이다.

답 ③

- - ①, ②, ⓑ 부등식이 아니다.
 - © 0>0이므로 일차부등식이 아니다.
 - $② -x \ge 0$ 이므로 일차부등식이다.

따라서 일차부등식인 것은 ۞, ②의 2개이다.

답 2개

0416 $\frac{1}{2}x-5 \ge ax-4+\frac{3}{2}x$ 에서

 $(-a-1)x-1 \ge 0$

이 부등식이 일차부등식이 되려면

 $-a-1\neq 0$ $\therefore a\neq -1$

답 ②

0417 전략 미지수 x를 포함한 항은 좌변으로, 상수항은 우변으로 이 항하여 부등식을 정리한다.

-2x-3>7에서 -2x>10 $\therefore x<-5$

- ① 2x+10>0에서 2x>-10 $\therefore x>-5$
- ② x-1<2x+4에서 -x<5 ∴ x>-5
- ③ 4x > 3x 5에서 x > -5
- ④ 3x+6<1에서 3x<-5 $\therefore x<-\frac{5}{2}$
- ⑤ $-\frac{x}{5} > 1$ 에서 x < -5

따라서 주어진 부등식과 해가 같은 것은 ⑤이다. 답 ⑤

- **0418** $3x+5 \le x+13$ 에서 $2x \le 8$ $\therefore x \le 4$ 따라서 부등식을 만족시키는 자연수 x의 값은 1, 2, 3, 4이므 로그합은1+2+3+4=10 답 10
- **0419** $-3x+2 \ge x+6$ $-3x-x \ge 6-2$

 \bigcirc 에서 해는 $x \le -1$ 이어야 하므로 풀이 과정 중 틀린 부분 은 이기고, 이를 설명할 수 있는 부등식의 성질은 ⑤이다.

0420 전략 먼저 부등식의 해를 구한다.

-6x > 36 + 10x 에서 -16x > 36 $\therefore x < -\frac{9}{4}$ 따라서 부등식의 해를 수직선 위에

- 나타내면 오른쪽 그림과 같다.
- **0421** (1) 3x+8 < 5x+2에서 -2x < -6 $\therefore x > 3$ (2)(1)에서 구한 해를 수직선 위에 나

타내면 오른쪽 그림과 같다.

답 (1) x>3 (2) 풀이 참조

채점 기준	비율
(가) 부등식 풀기	50 %
(내) 부등식의 해를 수직선 위에 나타내기	50 %

- **0422** 수직선 위에 나타낸 부등식의 해는 $x \le -2$ 이다.
 - ① $5-2x \ge -9$ 에서 $-2x \ge -14$ $\therefore x \le 7$
 - 2x+5<6에서 x<1
 - ③ 2x-1 < -5에서 2x < -4 $\therefore x < -2$
 - ④ $5-2x \ge 9$ 에서 $-2x \ge 4$ $\therefore x \le -2$
 - ⑤ $2x-5 \le 1$ 에서 $2x \le 6$ $\therefore x \le 3$
- 0423 전략 분배법칙을 이용하여 괄호를 먼저 푼다.

3(x+2) < 2(x+7) + 5x에서 3x+6 < 2x+14+5x, -4x < 8 : x > -2

답 x > -2

답 ④

0424 $4x+2 \ge 3(x-1)$ 에서 $4x+2 \ge 3x-3$ $\therefore x \ge -5$ 따라서 부등식의 해를 수직선 위에 바르게 나타낸 것은 ③이 다. 답 ③

- **0425** $5(3-x) \ge 2x-1$ 에서 $15-5x \ge 2x-1$ $-7x \ge -16$ $\therefore x \le \frac{16}{7}$ 따라서 부등식을 만족시키는 자연수 x는 1, 2의 2개이다. 답 2개
- **0426** 2(x-3) > 7x+4에서 2x-6 > 7x+4-5x > 10 $\therefore x < -2$ 따라서 부등식을 만족시키는 x의 값 중 가장 큰 정수는 -3**답** -3

0427 전략 부등식의 양변에 분모의 최소공배수를 곱하여 x의 계수

- 를 정수로 고친다. $\frac{1-2x}{3} > 2 - \frac{x}{4}$ 의 양변에 12를 곱하면 4(1-2x) > 24-3x, 4-8x > 24-3x-5x > 20 : x < -4따라서 부등식을 만족시키는 x의 값 중 가장 큰 정수는
- **0428** 0.4x+1.2≥0.9x-1의 양변에 10을 곱하면 $4x+12 \ge 9x-10, -5x \ge -22$ $\therefore x \le \frac{22}{5}$ 답 ①, $x \leq \frac{22}{\pi}$
- **0429** $\frac{1}{2}x \frac{x-2}{4} > 2 + x$ 의 양변에 4를 곱하면 2x-(x-2)>4(2+x), 2x-x+2>8+4x-3x > 6 $\therefore x < -2$ 답 x<-2
- **0430** $\frac{1}{5}(3x+2) \ge 0.4x+1$ 의 양변에 10을 곱하면 $2(3x+2) \ge 4x+10, 6x+4 \ge 4x+10$ $2x \ge 6$ $\therefore x \ge 3$ 따라서 부등식의 해를 수직선 위에 바르게 나타낸 것은 ⑤이 답 ⑤
- **0431** $\frac{1}{5}x+0.4>x-2$ 의 양변에 10을 곱하면 2x+4>10x-20, -8x>-24 : x<3따라서 부등식을 만족시키는 자연수 x의 값은 1, 2이므로 그 합은 1+2=3(나)

답 3

채점 기준	비율
(개) 부등식 풀기	60 %
(나) 부등식을 만족시키는 모든 자연수 x 의 값의 합 구하기	40 %

0432 $\frac{2}{3}x - 0.5 \le \frac{x+1}{3}$ 의 양변에 6을 곱하면 $4x-3 \le 2(x+1), 4x-3 \le 2x+2$

$$2x \le 5$$
 $\therefore x \le \frac{5}{2}$

따라서 부등식을 만족시키는 자연수 x는 1, 2의 2개이다.

답 2개

- **0433** $\frac{1}{2}x-\frac{2x-3}{10}>0.4(x-1)$ 의 양변에 10을 곱하면 5x-(2x-3)>4(x-1)5x-2x+3>4x-4, -x>-7 : x<7즉 부등식을 만족시키는 가장 큰 정수는 6이므로 A=6 $\frac{x+1}{2} - \frac{x+2}{4} > 1$ 의 양변에 12를 곱하면 4(x+1)-3(x+2)>124x+4-3x-6>12, x-2>12즉 부등식을 만족시키는 가장 작은 정수는 15이므로 B=15A + B = 6 + 15 = 21
- 0434 전략 x의 계수가 미지수인 경우 나누는 x의 계수가 양수인지 음수인지 확인하여 부등호의 방향을 정한다.

 $-ax+3 \ge 2$ 에서

$$-ax \ge -1$$
 $a < 0$ 일 때, $-a > 0$ 이므로 부등호의 방향이 바뀌지 않는다.

답 $x \ge \frac{1}{a}$

0435 ax-a>0에서

$$ax>a$$
 $x<1$ $x<1$ 나 $a<00$ 이므로 부등호의 방향이 바뀐다.

답 x<1

0436 (a-2)x≥3a-6에서

$$\begin{array}{c} (a-2)x{\geq}3(a-2) \\ x{\leq}\frac{3(a-2)}{a-2} \end{array} \rightarrow \begin{array}{c} a{<}2$$
일 때, $a-2{<}00$ 므로 부등호의 방향이 바뀐다.

 $\therefore x \leq 3$

따라서 부등식을 만족시키는 자연수 x는 1, 2, 3의 3개이다.

답 3개

0437 -2a+3>a+6에서 -3a>3 $\therefore a<-1$ ax-2>-(x-2a)에서 ax-2>-x+2a(a+1)x>2(a+1) a<-1일 때, a+1<00므로 $x<\frac{2(a+1)}{a+1}$ 부등호의 방향이 바뀐다.

 $\therefore x < 2$

답 x<2

0438 전략 주어진 부등식을 $x < (+), x > (+), x \le (+), x \ge (+), x \ge (+)$ 중 어 느 하나의 꼴로 고친 후 주어진 부등식의 해와 비교한다.

$$5x-a \le 2x$$
에서 $3x \le a$ $\therefore x \le \frac{a}{3}$

이때 해가 $x \le 5$ 이므로

$$\frac{a}{3}$$
=5 $\therefore a$ =15

답 15

- **0439** $\frac{1}{5}(x-a) \le 0.1x+0.7$ 의 양변에 10을 곱하면 $2(x-a) \le x+7$, $2x-2a \le x+7$ $\therefore x \le 2a+7$ 이때 해가 $x \le 13$ 이므로 2a + 7 = 132a=6 $\therefore a=3$ 답 3
- 0440 전략 x의 계수가 미지수인 경우 주어진 해의 부등호의 방향을 보고 x의 계수의 부호를 정한다.

ax+2>0에서 ax>-2

이때 해가 x < 4이므로 a < 0

따라서
$$x < -\frac{2}{a}$$
이므로 $-\frac{2}{a} = 4$

$$\therefore a = -\frac{1}{2}$$

답 $-\frac{1}{2}$

x에 대한 일차부등식을 정리하여 $ax\!>\!b$ 꼴로 만들었을 때

- (1) 주어진 해가 x > k이면 a > 0이고, $\frac{b}{a} = k$
- (2) 주어진 해가 x < k이면 a < 0이고, $\frac{b}{a} = k$
- **0441** 8-5*x*≤*a*+*x*에서

이때 부등식의 해 중 가장 작은 수가 1이므로

부등식의 해는
$$x \ge 1$$
 ····· (나)

따라서
$$\frac{-a+8}{6}$$
=1이므로 $-a+8=6$

답 2

채점 기준	비율
(7) 부등식의 해를 a 를 사용하여 나타내기	40 %
(나) 부등식의 해 구하기	30 %
(대) <i>a</i> 의 값 구하기	30 %

0442 전략 미지수가 없는 부등식을 먼저 푼다.

$$2x-1>4x-3$$
에서 $-2x>-2$ $\therefore x<1$ ······ \bigcirc

$$5x + 2 < a \circ | \mathcal{A} | 5x < a - 2 \qquad \therefore x < \frac{a - 2}{5} \qquad \dots \dots \bigcirc$$

 \bigcirc , \bigcirc 이 서로 같으므로 $\frac{a-2}{5}=1$

$$a$$
-2=5 ∴ a =7 **답** 7

0443 $x-6 \le 5(x+2)$ 에서 $x-6 \le 5x+10$

$$-4x \le 16$$
 $\therefore x \ge -4$

.....(¬)

$$3x \ge a - 4$$
에서 $x \ge \frac{a - 4}{3}$

....(L)

$$\bigcirc$$
, \bigcirc 이 서로 같으므로 $\frac{a-4}{3} = -4$

$$a-4 = -12$$
 : $a = -8$

답 -8

0444 $\frac{3}{4}x-4 \ge -1$ 의 양변에 4를 곱하면

$$3x-16 \ge -4, 3x \ge 12$$
 $\therefore x \ge 4$

 $4(5-x) \le a$ 에서 $20-4x \le a$

$$-4x \le a - 20$$
 $\therefore x \ge \frac{-a + 20}{4}$ $\cdots \bigcirc$

 \bigcirc , \bigcirc 이 서로 같<u>으므로 $\frac{-a+20}{4}=4$ </u>

$$-a+20=16$$
 : $a=4$

0445 2-0.8 $x \le 0.2x - 1$ 의 양변에 10을 곱하면

$$20-8x \le 2x-10, -10x \le -30$$
 $\therefore x \ge 3$

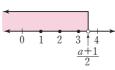
 $\frac{x-5}{2} \ge \frac{x}{4} - a$ 의 양변에 4를 곱하면

 $2(x-5) \ge x-4a, 2x-10 \ge x-4a$

$$\therefore x \ge -4a+10$$

①, ①이 서로 같으므로 -4a+10=3

$$-4a = -7$$
 $\therefore a = \frac{7}{4}$

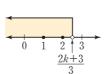

답 7

답 4

0446 전략 주어진 부등식을 만족시키는 자연수 x의 개수가 3개가 되도록 부등식의 해를 수직선 위에 나타내어 본다.

$$4x-1 < 2x+a$$
에서 $2x < a+1$ $\therefore x < \frac{a+1}{2}$

이때 부등식을 만족시키는 자 연수 x의 개수가 3개이려면 오 른쪽 그림과 같아야 하므로


$$3 < \frac{a+1}{2} \le 4, 6 < a+1 \le 8$$

$$\therefore 5 < a \le 7$$

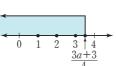
3-x>2(x-k)에서 3-x>2x-2k

$$-3x > -2k-3$$
 $\therefore x < \frac{2k+3}{2}$

이때 부등식을 만족시키는 자연수 x의 개수가 2개이려면 오른쪽 그림 과 같아야 하므로

 $2 < \frac{2k+3}{3} \le 3, 6 < 2k+3 \le 9$

$$3 < 2k \le 6$$
 $\therefore \frac{3}{2} < k \le 3$


0448 $1-\frac{2x+3}{6} \ge \frac{x}{3} - \frac{a}{2}$ 의 양변에 6을 곱하면

$$6 - (2x+3) \ge 2x - 3a$$
, $6 - 2x - 3 \ge 2x - 3a$

$$-4x \ge -3a - 3 \qquad \therefore x \le \frac{3a + 3}{4}$$

이때 부등식을 만족시키는 자연

수 x의 개수가 3개이려면 오른 쪽 그림과 같아야 하므로

$$3 \le \frac{3a+3}{4} < 4, 12 \le 3a+3 < 16$$

0449 전략 주어진 부등식을 $x<(+), x>(+), x\leq(+), x\geq(+)$ 중 어 느 하나의 꼴로 고친 후 부등식의 해와 비교한다.

(a+b)x+2a-3b<0에서 (a+b)x<-2a+3b

이 부등식의 해가 $x>-\frac{3}{4}$ 이므로 a+b<0

$$\therefore x > \frac{-2a+3b}{a+b}$$

즉
$$\frac{-2a+3b}{a+b} = -\frac{3}{4}$$
이므로 $-8a+12b = -3a-3b$

$$-5a = -15b$$
 $\therefore a = 3b$

이때 a+b < 0에 a=3b를 대입하면

$$4b < 0$$
 $\therefore b < 0$

(a-2b)x+3a-b < 0에 a=3b를 대입하면

$$bx+9b-b<0, bx<-8b$$

따라서 b < 0이므로 x > -8

답 x>-8

0450 (-2a+b)x-a+3b>0에서 (-2a+b)x>a-3b

이 부등식의 해가
$$x>-1$$
이므로 $-2a+b>0$

$$\therefore x > \frac{a-3b}{-2a+b}$$

즉
$$\frac{a-3b}{-2a+b}$$
= -1 이므로 $a-3b=2a-b$

$$-a=2b$$
 $\therefore a=-2b$

이때 -2a+b>0에 a=-2b를 대입하면

$$5b>0$$
 $\therefore b>0$

(a-b)x-2a+2b < 0에 a = -2b를 대입하면

$$-3bx+4b+2b<0, -3bx<-6b$$

따라서
$$-3b < 0$$
이므로 $x > 2$

답 x>2

0451 ax+b < 0에서 ax < -b

이 부등식의 해가
$$x>3$$
이므로 $a<0$

$$\therefore x > -\frac{b}{a}$$

즉
$$-\frac{b}{a}$$
=3이므로 $b=-3a$

$$(a+b)x+2a-b>0$$
에 $b=-3a$ 를 대입하면

$$-2ax+2a+3a>0, -2ax>-5a$$

따라서
$$-2a > 0$$
이므로 $x > \frac{5}{2}$

답 $x > \frac{5}{2}$

STEP 1 개념 마스터

p.74

0452 (2) 3x+5≤11에서

$$3x \le 6$$
 $\therefore x \le 2$

따라서 자연수 *x*는 1, 2의 2개이다.

답 (1) 3x+5≤11 (2) 2개

0453 (3) 900x+200 ≤ 12000에서

$$900x \le 11800$$
 $\therefore x \le \frac{118}{9} = 13.111 \cdots$

따라서 공책을 최대 13권까지 담을 수 있다.

답 (1) 900x원 (2) 900x+200 ≤ 12000 (3) 13권

0454 $\,$ (1) 집에서 학교까지 갈 때 걸린 시간은 $\frac{x}{3}$ 시간, 학교에서 집으로 올 때 걸린 시간은 $\frac{x}{5}$ 시간이므로

$$\frac{x}{3} + \frac{x}{5} \le 1$$

 $(2)\frac{x}{3} + \frac{x}{5} \le 1$ 의 양변에 15를 곱하면

$$5x + 3x \le 15, 8x \le 15$$
 $\therefore x \le \frac{15}{8}$

따라서 집에서 학교까지의 거리는 $\frac{15}{8}$ km 이하이다.

답 (1)
$$\frac{x}{3} + \frac{x}{5} \le 1$$
 (2) $\frac{15}{8}$ km

0455 (1)
$$\frac{9}{100} \times 400 = 36$$
 (g)

 $(3)\,36 {\le} \frac{8}{100} { imes} (400 {+} x)$ 의 양변에 100을 곱하면

 $3600 \le 8(400+x), 3600 \le 3200+8x$

$$-8x \le -400$$
 : $x \ge 50$

따라서 물을 50 g 이상 넣어야 한다.

답 (1)
$$36 \text{ g}$$
 (2) $36 \le \frac{8}{100} \times (400 + x)$ (3) 50 g

STEP 2 유형 마스터

p.75 ~ p.83

0456 전략 두 정수 중 작은 수가 *x* 이면 큰 수는 *x* + 4임을 이용한다. 두 정수는 *x* , *x* + 4이므로

x+(x+4)<12 $\therefore x<4$

따라서 정수 x의 최댓값은 3이다. 답 3

0457 어떤 홀수를 *x*라 하면

5x - 14 < 3x : x < 7

따라서 이와 같은 홀수 중에서 가장 큰 수는 5이다.

답 5

0458 연속하는 세 자연수를 x-1, x, x+1이라 하면 (x-1)+x+(x+1)<57(가)

 $\therefore x < 19$

따라서 x의 값 중 가장 큰 자연수는 18이므로 구하는 세 자연수는 17, 18, 19이다.

답 17, 18, 19

채점기준	비율
(가) 세 자연수를 x-1, x, x+1로 놓기	20 %
(나) 일차부등식 세우기	40 %
(I) 문제의 뜻에 맞는 답 구하기	40 %

0459 전략 다음 달 시험에서 받아야 하는 점수를 x점으로 놓고 부등 식을 세운다.

다음 달 시험에서 x점을 받는다고 하면

$$\frac{94+88+x}{3} \ge 92$$
 : $x \ge 94$

따라서 다음 달 시험에서 94점 이상을 받아야 한다.

답 94점

0460 세 번째 시험에서 x점을 받는다고 하면

 $\frac{83+88+x}{3} \ge 85$: $x \ge 84$

따라서 세 번째 시험에서 최소 84점을 받아야 한다.

답 84점

0461 여섯 번째 시험에서 x점을 받는다고 하면

 $83+87+90+82+86+x \ge 86$ $\therefore x \ge 88$

따라서 여섯 번째 시험에서 88점 이상을 받아야 한다.

답 88점

답 5자루

답 5권

0462 전략 참외의 개수를 *x*개로 놓고 부등식을 세운다.

참외를 x개 담는다고 하면

$$2000x + 3500 \le 20000$$
 $\therefore x \le \frac{33}{4}$

따라서 참외는 최대 8개까지 담을 수 있다. 답 8개

0463 장미를 *x*송이 산다고 하면

 $1500x + 1000 \le 15000$ $\therefore x \le \frac{28}{3}$

따라서 장미는 최대 9송이까지 살 수 있다. 답 9송이

0464 볼펜을 *x*자루 넣는다고 하면

 $600 \times 5 + 1000x + 2000 \le 10000$ $\therefore x \le 5$

따라서 볼펜은 최대 5자루까지 넣을 수 있다.

0465 전략 공책을 x권 산다고 할 때, 살 수 있는 수첩의 권수를 x를 사용하여 나타낸다.

공책을 x권 산다고 하면 수첩은 (9-x)권 살 수 있으므로

 $500(9-x)+800x \le 6000$ $\therefore x \le 5$

따라서 공책은 최대 5권까지 살 수 있다.

0466 아이스크림을 x개 산다고 하면 과자는 (18-x)개 살 수 있

 $1000(18-x)+1200x \le 20000$ $\therefore x \le 10$

따라서 아이스크림은 최대 10개까지 살 수 있다. 답 10개

0467 800원짜리 사과를 x개 산다고 하면 500원짜리 사과는

(15-x)개살수있으므로 ······⟨▽

 $800x + 500(15 - x) \le 10000$

 $\therefore x \leq \frac{25}{3}$

따라서 800원짜리 사과는 최대 8개까지 살 수 있다.

....(다)

답 8개

채점 기준	비율
$^{(7)}$ 800원짜리 사과와 500원짜리 사과의 개수를 x 를	30 %
사용하여 나타내기	30 %
(내) 일차부등식 세우기	40 %
(다) 문제의 뜻에 맞는 답 구하기	30 %

0468 전략 주차 시간을 *x*분으로 놓고 (기본요금)+(추가 요금)을 구하여 부등식을 세운다.

주차를 x분 동안 한다고 하면

 $3000 + 50(x - 30) \le 8000$ $\therefore x \le 130$

따라서 최대 130분 동안 주차할 수 있다.

0469 한 달 동안 x통의 전화를 건다고 하면

6500+40*x*≤13500 ∴ *x*≤175 따라서 한 달 동안 최대 175통의 전화를 걸 수 있다.

답 175통

답 130분

- 0470 동물원에 x명이 입장한다고 하면
 3000×5+1200(x-5)≤75000 ∴ x≤55
 따라서 최대 55명까지 입장할 수 있다.
- **0471** 전략 x개월 후의 지현이의 예금액과 보검이의 예금액을 각각 구하여 부등식을 세운다.

x개월 후부터 보검이의 예금액이 지현이의 예금액보다 많아 진다고 하면

 $20000 + 2000x < 5000 + 4000x \qquad \therefore x > \frac{15}{2}$

따라서 8개월 후부터이다. 답 8개월

16000 + 1000x < 8000 + 2000x $\therefore x > 8$

따라서 9개월 후부터이다. 답 9개월

 $7000 + 17000x \ge 3(10000 + 5000x)$ $\therefore x \ge \frac{23}{2}$

따라서 12개월 후부터이다. 답 12개월

0474 전략 대형 할인점에서 사는 가격과 왕복 차비의 합이 집 앞의 문방구에서 사는 가격보다 적어야 한다.

공책을 x권 산다고 하면

1000x > 800x + 2600 : x > 13

따라서 공책을 14권 이상 살 때 대형 할인점에서 사는 것이 유리하다. **답** 14권 **0475** 장미를 *x* 송이 산다고 하면

2000x > 1500x + 3000 $\therefore x > 6$

따라서 장미를 7송이 이상 사는 경우 도매 시장에서 사는 것이 유리하다. 답 7송이

0476 과자를 *x*개 산다고 하면

 $1200x > 1200 \times \frac{80}{100} \times x + 2400$ $\therefore x > 10$

따라서 과자를 11개 이상 사는 경우 할인 매장에서 사는 것이 유리하다. **답** 11개

0477 놀이공원에 x명이 간다고 하면

 $25000 \!\times\! \frac{70}{100} \!\times\! x \!<\! 25000 \!\times\! \frac{50}{100} \!\times\! 5 \!+\! 25000 \!\times\! (x\!-\!5)$

 $\therefore x > \frac{25}{3}$

따라서 9명 이상이면 생일 이벤트로 할인받는 것보다 통신 사 제휴카드로 할인받는 것이 더 유리하다. **답** ③

0478 티셔츠를 x장 구입한다고 하면

 $6000 \times \frac{90}{100} \times x < 6000x - 10000$ $\therefore x > \frac{50}{3}$

따라서 최소 17장의 티셔츠를 구입해야 한다. 답 1

0479 전략 택시를 탈 때, 1.6 km 이후로는 200 m당 100원씩 요금이 올라가므로 1 km당 500원씩 요금이 올라간다.

1.6 km 이후 택시 요금은 200 m당 100원씩 올라가므로

1 km당 500원씩 올라간다.

x km 떨어진 지점까지 이동한다고 하면

 $1450 \times 4 > 4800 + 500(x - 1.6)$ $\therefore x < \frac{18}{5}$

따라서 $\frac{18}{5}$ km 미만 떨어진 지점까지 이동할 때 택시를 타

는 것이 유리하다.

답 $\frac{18}{5}$ km

참고 1 km=1000 m

0480 전략 입장하는 사람 수를 *x*명으로 놓고, *x*명의 입장료와 50명의 단체 입장권의 가격을 각각 구하여 부등식을 세운다.

입장객 수를 x명(x < 50)이라 하면

 $3000x > 3000 \times \frac{80}{100} \times 50$ $\therefore x > 40$

따라서 41명 이상이면 50명의 단체 입장권을 구입하는 것이 유리하다. **답** 41명

0481 입장객 수를 x명(x<30)이라 하면

 $50000 \times \frac{90}{100} \times x > 50000 \times \frac{80}{100} \times 30$ $\therefore x > \frac{80}{3}$

따라서 27명 이상이면 30명의 단체권을 구입하는 것이 유리하다. **답** 27명

0482 관람객 수를 x명(x<50)이라 하면

 $11000 \times \frac{90}{100} \times x > 11000 \times \frac{80}{100} \times 50$ $\therefore x > \frac{400}{9}$

따라서 45명 이상이면 50명의 단체 관람료보다 더 많은 관람 료를 지불하게 된다. **답** 45명

0483 전략 정가를 *x*원으로 놓고 (이익금)=(판매 가격)-(원가)임을 이용하여 부등식을 세운다.

정가를 x원이라 하면

$$x \times \left(1 - \frac{10}{100}\right) - 4500 \ge 4500 \times \frac{30}{100}$$
 $\therefore x \ge 6500$

따라서 정가는 6500원 이상으로 정해야 한다. 답 6500원

0484 정가를 *x*원이라 하면

 $x \times \left(1 - \frac{10}{100}\right) - 1200 \ge 1200 \times \frac{20}{100} \qquad \therefore x \ge 1600$

따라서 정가가 될 수 없는 것은 ① 1550원이다. **답** ①

0485 원가를 *x*원이라 하면

 $\therefore x \ge 10000$

따라서 원가의 최솟값은 10000원이다.

답 10000원

0486 전략 (삼각형의 넓이) $=\frac{1}{2} \times (밑변의 길이) \times (높이)임을 이용한다.$

삼각형의 높이를 $x \, \mathrm{cm}$ 라 하면

$$\frac{1}{2} \times 6 \times x \ge 36$$
 $\therefore x \ge 12$

따라서 높이는 12 cm 이상이어야 한다.

답 12 cm

- 0487 (가장 긴 변의 길이)<(나머지 두 변의 길이의 합)이므로</td>

 x+8<(x+3)+(x+1)</td>
 ∴ x>4

 따라서 x의 값이 될 수 없는 것은 ① 4이다.
 답 ①
- 0488 2(10+x) < 36 $\therefore x < 8$ 따라서 x의 값이 될 수 있는 가장 큰 자연수는 7이다.

답 7

0489 윗변의 길이를 *x* cm라 하면

$$\frac{1}{2} \times (x+16) \times 9 \ge 90 \qquad \dots$$

 $\therefore x \ge 4$

따라서 윗변의 길이는 4 cm 이상이어야 한다. ·····(내

답 4 cm

채점 기준	비율
(개) 일차부등식 세우기	50 %
(내) 문제의 뜻에 맞는 답 구하기	50 %

0490 전략 뛰어간 거리를 x km로 놓고 걸어간 거리를 x를 사용하여 나타낸다.

뛰어간 거리를 x km라 하면 걸어간 거리는 (14-x) km이 므로

$$\frac{14-x}{3} + \frac{x}{9} \le 2 \qquad \therefore x \ge 12$$

따라서 뛰어간 거리는 12 km 이상이다. **답** 12 km

0491 인라인스케이트를 타고 간 거리를 x km라 하면 걸어간 거리는 (5-x) km이므로 \cdots (7)

$$\frac{x}{3} + \frac{5-x}{2} \le 2$$
(L)

 $\therefore x > 3$

따라서 인라인스케이트를 타고 간 거리는 최소 3 km이다.

....(다

답 3 km

채점 기준	비율
(개) 인라인스케이트를 타고 간 거리와 걸어간 거리를	30 %
x를 사용하여 나타내기	30 %
(나) 일차부등식 세우기	30 %
따 문제의 뜻에 맞는 답 구하기	40 %

0492 전략 2시간 15분을 $\frac{9}{4}$ 시간으로 고친 후 부등식을 세운다.

올라갈 때의 거리를 x km라 하면 내려올 때의 거리는 (x+2) km이고

2시간 $15분은 2\frac{15}{60}$ 시간= $\frac{9}{4}$ 시간이므로

$$\frac{x}{3} + \frac{x+2}{4} \le \frac{9}{4}$$
 $\therefore x \le 3$

따라서 올라갈 수 있는 거리는 최대 3 km이다. 답 3 km

0493 전략 총 걸린 시간은 (왕복하여 걷는 시간) + (물건을 사는 데 걸린 시간)임을 이용한다.

역에서 상점까지의 거리를 x km라 하면

$$\frac{x}{3} + \frac{20}{60} + \frac{x}{3} \le 1$$
 $\therefore x \le 1$

따라서 역에서 1 km 이내에 있는 상점을 이용할 수 있다.

답 1 km

0494 집에서 도서관까지의 거리를 x m라 하면

$$\frac{x}{60} + 15 + \frac{x}{80} \le 50$$
 $\therefore x \le 1200$

따라서 집에서 도서관까지의 거리는 최대 1200 m이다.

답 1200 m

0495 역에서 상점까지의 거리를 x km라 하면

$$\frac{x}{3} + \frac{15}{60} + \frac{x}{4} \le 1$$
 $\therefore x \le \frac{9}{7}$

따라서 역에서 $\frac{9}{7}$ km 이내에 있는 상점을 이용할 수 있다.

답 $\frac{9}{7}$ km

0496 형이 출발한 지 x시간 후에 동생을 추월한다고 하면

$$4\left(x+\frac{20}{60}\right) < 6x$$
 : $x > \frac{2}{3}$

즉 $\frac{2}{3}$ (시간)= $\frac{2}{3}$ ×60(분)=40(분)이므로

형이 출발한 지 40분 후에 동생을 추월한다. 답 40분

0497 지효가 출발한 지x분 후에 정아가 지효를 추월한다고 하면 60x < 100(x-10) : x > 25

따라서 지효가 출발한 지 25분 후에 정아가 지효를 추월한

0498 전략 (소금의 양)= (소금물의 농도) × (소금물의 양)임을 이용

10%의 소금물의 양을 x g이라 하면 섞은 후의 소금물의 양 은 (300+x) g이므로

$$\frac{5}{100} \times 300 + \frac{10}{100} \times x \ge \frac{8}{100} \times (300 + x)$$

따라서 10 %의 소금물을 450 g 이상 섞어야 한다.

0499 5 %의 소금물의 양을 x g이라 하면 섞은 후의 소금물의 양 은 (200+x) g이므로

$$\frac{8}{100} \times 200 + \frac{5}{100} \times x \le \frac{7}{100} \times (200 + x)$$

따라서 5 %의 소금물을 100 g 이상 섞어야 한다.

답 100 g

0500 10 %의 설탕물의 양을 x g이라 하면 5 %의 설탕물의 양은 (500-x) g이므로

$$\frac{10}{100} \times x + \frac{5}{100} \times (500 - x) \ge \frac{8}{100} \times 500$$

 $\therefore x \ge 300$

따라서 10 %의 설탕물을 300 g 이상 섞어야 한다.

0501 전략 (소금의 양)= (소금물의 농도) × (소금물의 양)임을 이용

20 %의 소금물 300 g에 들어 있는 소금의 양은

$$\frac{20}{100} \times 300 = 60 \text{ (g)}$$

이때 물을 x g 더 넣는다고 하면

$$60 \le \frac{10}{100} \times (300 + x)$$
 $\therefore x \ge 300$

따라서 물을 300 g 이상 넣어야 한다.

답 300 g

0502 5 %의 소금물 200 g에 들어 있는 소금의 양은

$$\frac{5}{100} \times 200 = 10 \text{ (g)}$$

이때 물을 x g 증발시킨다고 하면

$$10 \ge \frac{8}{100} \times (200 - x) \qquad \therefore x \ge 75$$

따라서 물을 75 g 이상 증발시켜야 한다.

답 75 g

0503 6 %의 소금물 200 g에 들어 있는 소금의 양은

$$\frac{6}{100} \times 200 = 12 \text{ (g)}$$

이때 소금을 x g 더 넣는다고 하면

$$12 + x \ge \frac{10}{100} \times (200 + x)$$
 $\therefore x \ge \frac{80}{9}$

따라서 소금을 $\frac{80}{9}$ g 이상 넣어야 한다. 답 $\frac{80}{9}$ g

0504 $\overline{BP} = x \text{ cm}$ 라 하면 $\overline{CP} = (10 - x) \text{ cm}$

$$\triangle APD = \frac{1}{2} \times (6+10) \times 10$$

$$- \Big\{ \frac{1}{2} \times 6 \times x + \frac{1}{2} \times (10 - x) \times 10 \Big\}$$

$$=80-(3x+50-5x)$$

 $=2x+30 \text{ (cm}^2)$

이때 $2x+30 \ge 40$ 이므로 $2x \ge 10$

따라서 \overline{BP} 의 길이가 될 수 없는 것은 ① 4 cm이다. 답 ①

0505 BP=x cm라 하면

 $\triangle APM$

$$= 20 \times 16 - \left\{ \frac{1}{2} \times 16 \times x + \frac{1}{2} \times 8 \times (20 - x) + \frac{1}{2} \times 20 \times 8 \right\}$$

$$=320-(8x+80-4x+80)$$

 $=160-4x \text{ (cm}^2)$

이때 $160-4x \le 100$ 이므로 $-4x \le -60$ $\therefore x \ge 15$

따라서 BP의 길이를 15 cm 이상으로 해야 한다.

답 15 cm

0506 구멍을 *x*개 뚫었다고 하면

(입체도형의 겉넓이)

$$=\pi\times4^{2}\times2+2\pi\times4\times7-\pi\times\left(\frac{1}{2}\right)^{2}\times2\times x$$

$$+2\pi \times \frac{1}{2} \times 7 \times x$$

$$=32\pi+56\pi-\frac{1}{2}\pi x+7\pi x$$

$$=\frac{13}{2}\pi x + 88\pi \text{ (cm}^2)$$

이때 $\frac{13}{2}\pi x + 88\pi \ge 88\pi \times 2$ 이므로 $\frac{13}{2}x \ge 88$

$$\therefore x \ge \frac{176}{13} = 13.5 \cdots$$

따라서 구멍을 최소 14개 뚫어야 한다.

답 14개

0507 집에서 축구장까지의 거리를 x km라 하면

$$\frac{x}{20} - \frac{x}{30} \ge \frac{10}{60}$$
 $\therefore x \ge 10$

따라서 집에서 축구장까지의 거리는 10 km 이상이므로 시속 25 km로 달린다면 최소 $\frac{10}{25} = \frac{2}{5}$ (시간),

즉 $\frac{2}{5} \times 60 = 24$ (분)이 걸린다.

답 ②

0508 집에서 수목원까지의 거리를 x km라 하면

$$\frac{x}{40} - \frac{x}{50} \ge \frac{6}{60} \qquad \therefore x \ge 20$$

따라서 집에서 수목원까지의 거리는 20 km 이상이므로 시속 $40 \text{ km로 달릴 때 최소 } \frac{20}{40} = \frac{1}{2} (시간)$ 이 걸린다.

답 $\frac{1}{2}$ 시간

0509 학교에서 현준이네 집까지의 거리를 x m라 하면

$$\frac{x}{24} - \frac{x}{30} < 5$$
 $\therefore x < 600$

따라서 학교에서 현준이네 집까지의 거리는 600 m 미만이 답 600 m

STEP 3 내신 마스터

p.84 ~ p.87

0510 전략 수 또는 식의 대소 관계를 결정하는 표현을 찾아 부등식 으로 나타낸다.

①
$$3x-2 \ge 7$$

$$(2)200-x>100$$

$$3\frac{x}{60} < \frac{5}{6}$$

4 100x + 600 < 7000

답 ⑤

0511 전략 최저 기온의 의미를 알고 부등식으로 나타낸다. 최저 기온은 기온이 가장 낮을 때의 기온이므로 바르게 표현 한 것은 ③ *c* ≥ 18이다.

I ecture ⊢

최저 기온이 a °C 이면 기온이 a °C 이상임을 의미하고, 최고 기온이 a °C 이면 기온이 a °C 이하임을 의미한다.

0512 전략 x=1을 주어진 부등식에 각각 대입한다.

x=1을 주어진 부등식에 각각 대입하면

- ① 1-3>0 (거짓)
- ② 2×1-1<1 (거짓)
- ③ -2×1+3<5 (참)
- ④ 3×1+2<4-1 (거짓)
- ⑤ 1+1>6-1 (거짓)

따라서 x=1이 해인 것은 ③이다.

답 ③

- 0513 전략 부등식의 성질을 이용하여 식을 변형한다.
 - ① a > b이면 -4a < -4b이므로 -4a + 2 < -4b + 2
 - ② a < b이면 $\frac{a}{7} < \frac{b}{7}$ 이므로 $\frac{a}{7} 1 \le \frac{b}{7} 1$

- ③ a+1<b+1이면 a < b
- ④ $\frac{2-a}{3} < \frac{2-b}{3}$ 이면 2-a < 2-b이므로

$$-a < -b$$
 $\therefore a \ge b$

 $(\underline{3} \frac{a}{2} < \frac{b}{2})$ 이면 $\frac{2}{5}a \leq \frac{2}{5}b$

따라서 부등호의 방향이 나머지 넷과 다른 하나는 ④이다.

단 ②

- **0514** 전략 부등식의 각 변에 *x*의 계수를 곱한 후 상수항을 더한다.
 - (1) $2x < 8 \Rightarrow 2x + 1 < 9$

$$2\frac{x}{4} < 1 \Rightarrow \frac{x}{4} + 4 < 5$$

$$3 - \frac{3}{2}x > -6 \Rightarrow 4 - \frac{3}{2}x > -2$$

$$\textcircled{4}-3x\!>\!-12\! \Leftrightarrow\! -3x\!-\!1\!>\!-13$$

$$\bigcirc \frac{x}{8} < \frac{1}{2} \Rightarrow \frac{x}{8} - \frac{1}{2} < 0$$

따라서 옳지 않은 것은 ③이다.

답 ③

0515 전략 주어진 부등식에서 x의 값의 범위를 먼저 구한다.

$$-5 < 3x + 1 < 10$$
에서 $-6 < 3x < 9$

$$\therefore -2 < x < 3$$

-2 < x < 3에서 -15 < -5x < 10

$$\therefore -17 < -5x - 2 < 8$$

따라서 a = -17, b = 8이므로

$$a+b=-17+8=-9$$

답 -9

0516 전략 부등식의 모든 항을 좌변으로 이항하여 정리한다.

④
$$-2x-3 < 0$$
이므로 일차부등식이다.

$$(5) x^2 - x - 8 < 0$$
이므로 일차부등식이 아니다. 답 (5)

0517 전략 일차부등식이 되려면 부등식의 모든 항을 좌변으로 이항 하여 정리하였을 때, x의 계수가 0이 아니어야 한다.

$$\frac{5}{3}x - 3 \ge ax - 2 + \frac{2}{3}x$$
에서 $(1-a)x - 1 \ge 0$

이 부등식이 일차부등식이 되려면

$$1-a\neq 0$$
 $\therefore a\neq 1$

답 ④

부등식의 모든 항을 좌변으로 이항하여 정리하였을 때. (일차식)<0. (일차식)>0. (일차식)≤0. (일차식)≥0 중 어느 하나의 꼴이면 일차부 등식이다.

0518 전략 부등식의 양변에 10을 곱하여 계수를 정수로 고친다.

$$0.7x+1.6<-rac{1}{5}x+rac{5}{2}$$
의 양변에 10 을 곱하면

7x+16 < -2x+25

$$9x < 9$$
 $\therefore x < 1$

답 ①

0519 전략 부등식의 양변에 분모의 최소공배수를 곱하여 계수를 정 수로 고친다.

 $\frac{2x+1}{3}$ > $x-\frac{3x+1}{5}$ 의 양변에 15를 곱하면

5(2x+1) > 15x-3(3x+1)

10x+5>15x-9x-3

4x > -8 $\therefore x > -2$

따라서 부등식을 만족시키는 x의 값 중 가장 작은 정수는

0520 전략 수직선 위에 나타낸 부등식의 해와 각 부등식의 해를 구 하여 비교한다.

수직선 위에 나타낸 부등식의 해는 x < 2이다.

- ① -2x < 4에서 x > -2
- ② 2x-3 < 3x-5에서 -x < -2 $\therefore x > 2$
- ③ $\frac{x-2}{3} < \frac{x}{2} 1$ 의 양변에 6을 곱하면

2(x-2) < 3x-6

2x-4 < 3x-6, -x < -2 : x > 2

4(x-1)-5<2x-5에서

4x-4-5 < 2x-5

2x < 4 $\therefore x < 2$

⑤ $0.3x - 0.2 < \frac{2(x-1)}{5}$ 의 양변에 10을 곱하면

3x-2 < 4(x-1)

3x-2 < 4x-4, -x < -2

따라서 해가 주어진 그림과 같은 것은 ④이다. 답 ④

0521 전략 x의 계수가 미지수인 경우 x의 계수의 부호에 따라 부등 호의 방향을 정한다.

-3+ax < -5에서 ax < -2

이때
$$a < 0$$
이므로 $x > -\frac{2}{a}$

답 ②

0522 전략 주어진 부등식을 $x < (+), x > (+), x \le (+), x \ge (+)$ 중 어 느 하나의 꼴로 고친 후 주어진 부등식의 해와 비교한다.

x+a-1 < 2(x+1)에서 x+a-1 < 2x+2

-x < -a+3 $\therefore x > a-3$

이때 해가 x>2이므로

a-3=2 $\therefore a=5$

답 ⑤

- 0523 전략 두 부등식을 각각 풀어 그 해를 비교한다.
 - $(1)1 \frac{3}{2}x \ge 3$ 의 양변에 2를 곱하면

 $2-3x \ge 6, -3x \ge 4$ $\therefore x \le -\frac{4}{3}$ $\cdots (7)$

 $(2) 3x - 2(x+1) \le a$ 에서 $3x - 2x - 2 \le a$

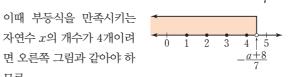
 $\therefore x \leq a+2$

(3) 두 부등식의 해가 서로 같으므로

$$a+2=-\frac{4}{3}$$
 : $a=-\frac{10}{3}$ (to

답 (1) $x \le -\frac{4}{3}$ (2) $x \le a + 2$ (3) $-\frac{10}{3}$

채점 기준	비율
(개) 부등식 $1 - \frac{3}{2}x \ge 3$ 의 해 구하기	40 %
(나) 부등식 $3x-2(x+1) \le a$ 의 해 구하기	40 %
(대상수a의 값구하기	20 %


0524 전략 주어진 부등식을 만족시키는 자연수 x의 개수가 4개가 되도록 부등식의 해를 수직선 위에 나타내어 본다.

 $\frac{2-5x}{4} - \frac{x+3}{2} > \frac{a}{4} + 1$ 의 양변에 4를 곱하면

2-5x-2(x+3)>a+4

2-5x-2x-6>a+4, -7x>a+8 $\therefore x<-\frac{a+8}{7}$

면 오른쪽 그림과 같아야 하

$$4 < -\frac{a+8}{7} \le 5, -35 \le a+8 < -28$$

 $\therefore -43 \le a < -36$

따라서 m = -43, n = -36이므로

$$m-n=-43-(-36)=-43+36=-7$$

답 ③

0525 전략 어떤 자연수를 x로 놓고 부등식을 세운다.

어떤 자연수를 x라 하면

3x - 10 < 45 $\therefore x < \frac{55}{2}$

따라서 가장 큰 자연수는 18이다.

답 ②

0526 전략 1 kg=1000 g임을 이용하여 단위를 통일시킨다.

 $(1)500+200x \le 4000$

···· (7})

 $(2)500+200x \le 4000$ 에서 $200x \le 3500$

$$\therefore x \leq \frac{35}{2}$$

따라서 물건을 최대 17개까지 넣을 수 있다.(내)

답 (1) $500+200x \le 4000$ (2) 17개

채점 기준	비율
(개) 일차부등식 세우기	40 %
(J) 문제의 뜻에 맞는 답 구하기	60 %

Lecture -

1 kg = 1000 g

0527 전략 현재로부터 x년 후의 아버지의 나이와 딸의 나이를 각각 구하여 부등식을 세운다.

현재로부터 x년 후에 아버지의 나이가 딸의 나이의 2배 이하가 된다고 하면

 $50+x \le 2(16+x)$

 $50+x \le 32+2x$: $x \ge 18$

따라서 18년 후이다.

답 18년

0528 전략 *x*개월 후의 혜원이의 예금액과 은조의 예금액을 각각 구하여 부등식을 세운다.

x개월 후부터 혜원이의 예금액이 은조의 예금액보다 많아진 다고 하면

30000 + 5000x > 50000 + 2500x $\therefore x > 8$

따라서 9개월 후부터이다.

답 ③

0529 전략 B 주차장의 주차 요금이 A 주차장의 주차 요금보다 적어 야 한다.

주차를 *x*분 동안 한다고 하면

3000+500(x-30)>6000+300(x-30)

 $\therefore x > 45$

따라서 46분 이상 주차할 때 B 주차장에 주차하는 것이 유리하다. **답** 46분

0530 전략 정가를 x원으로 놓고 (이익금)=(판매 가격)-(원가)임을 이용하여 부등식을 세운다.

정가를 x원이라 하면

$$x \times \left(1 - \frac{10}{100}\right) - 5400 \ge 5400 \times \frac{20}{100} \qquad \therefore x \ge 7200$$

따라서 정가는 7200원 이상으로 정하면 된다. 답 ④

0531 전략 1시간 $20분을 \frac{4}{3}$ 시간으로 고친 후 부등식을 세운다.

출발 지점에서 x km 떨어진 곳까지 갔다온다고 하면 1시간 20분 $=\frac{4}{3}$ 시간이므로

$$\frac{x}{6} + \frac{x}{4} \le \frac{4}{3}$$
 $\therefore x \le \frac{16}{5} = 3.2$

따라서 출발 지점에서 최대 3.2 km 떨어진 곳까지 갔다올 + 있다.

Lecture

$$(거리)=(속력)\times(시간), (속력)=\frac{(거리)}{(시간)}, (시간)=\frac{(거리)}{(속력)}$$

0532 전략 총 걸린 시간은 (왕복하여 걷는 시간) + (물건을 사는 데 걸린 시간)임을 이용한다.

터미널에서 상점까지의 거리를 x km라 하면

$$\frac{x}{4} + \frac{15}{60} + \frac{x}{4} \le 1$$
 (7)

 $\therefore x \leq \frac{3}{2}$

따라서 터미널에서 $\frac{3}{2}$ km 이내에 있는 상점을 이용할 수 있다.

답 $\frac{3}{2}$ km

채점 기준	비율
(개) 일차부등식 세우기	50 %
(내) 문제의 뜻에 맞는 답 구하기	50 %

0533 전략 모조 금반지가 진짜 금반지보다 가볍다는 사실을 이용하여 모조 금반지를 찾는다.

양팔 저울 첫 번째 사용에서 왼쪽 접시가 아래로 기울었으므로 오른쪽 접시에 담긴 3개의 금반지 D, E, F 중에 모조 금반지가 있다는 사실을 알 수 있다.

양팔 저울 두 번째 사용에서 금반지 E, F의 무게가 같으므로 접시에 올리지 않은 금반지 D가 모조 금반지라는 것을 알 수 있다. 답 ③

0534 전략 정사각형이 1개 늘어날 때마다 성냥개비가 3개씩 더 필요함을 이용한다.

정사각형이 1개 늘어날 때마다 성냥개비가 3개씩 더 필요하므로 정사각형의 개수를 x개라 하면

정사각형의 개수(개)	성냥개비의 개수(개)
1	1+3
2	1+3+3
3	1+3+3+3
:	:
\overline{x}	1+3x

이때 성냥개비가 100개이므로

 $1+3x \le 100$ $\therefore x \le 33$

따라서 정사각형은 최대 33개까지 만들수 있다. 답 33개

0535 전략 (사다리꼴의 넓이)

 $=\frac{1}{2} \times \{()$ () 선명의 길이 +() 아랫변의 길이 +() (높이)

임을 이용하여 사다리꼴 ABCD의 넓이를 구한다.

 $\overline{AP} = x \text{ cm}$ 라 하면 $\overline{BP} = (6-x) \text{ cm}$

 $\triangle DPC$

$$\begin{split} &= \frac{1}{2} \times (5+8) \times 6 - \left\{ \frac{1}{2} \times 5 \times x + \frac{1}{2} \times 8 \times (6-x) \right\} \\ &= 39 - \left(\frac{5}{2} x + 24 - 4x \right) \end{split}$$

$$=\frac{3}{2}x+15 \text{ (cm}^2)$$

이때
$$\frac{3}{2}x+15 \le 39 imes \frac{7}{13}$$
이므로 $\frac{3}{2}x \le 6$ $\therefore x \le 4$

따라서 \overline{AP} 의 길이는 4 cm 이하이어야 한다. **답** 4 cm

STEP 1 개념 마스터

p.90 ~ p.91

0536

답

0537

답

0538 *x*가 분모에 있으므로 일차방정식이 아니다.

0539 y^2 이 있으므로 일차방정식이 아니다.

답 ×

0540

x	1	2	3	4	5	6
y	12	9	6	3	0	-3

따라서 x, y가 자연수일 때, 일차방정식 3x+y=15의 해는 (1.12), (2.9), (3.6), (4.3)이다.

답 표는 풀이 참조, 해: (1, 12), (2, 9), (3, 6), (4, 3)

0541

(1)							
(1)	\boldsymbol{x}	1	2	3	4	5	6
	y	3	2	1	0	-1	-2
	\boldsymbol{x}	1	2	3	4	5	6
	y	-1	0	1	2	3	4

(2) \bigcirc , \bigcirc 을 동시에 만족시키는 해는 x=3, y=1이다.

답 (1) 풀이 참조 (2) x=3, y=1

0542 $\bigcirc x+y=6$

\boldsymbol{x}	1	2	3	4	5
y	5	4	3	2	1

 $\bigcirc 2x + y = 7$

x	1	2	3
y	5	3	1

따라서 \bigcirc , \bigcirc 을 동시에 만족시키는 해는 x=1,y=5이다.

답 x=1, y=5

0543

답 2x, 2x, 0, 2, 0

0544

$$\begin{cases} y=1-x \\ x-2y+8=0 \end{cases}$$

⑤을 Û에 대입하면

$$x-2(1-x)+8=0, 3x=-6$$
 $\therefore x=-2$

x = -2를 \bigcirc 에 대입하면 y = 1 + 2 = 3

따라서 연립방정식의 해는 x=-2, y=3

답 x = -2. y = 3

0545
$$\begin{cases} x + 2y = 21 \end{cases}$$

..... ⋽

$$1_{x=3y-4}$$

∁을 つ에 대입하면

3y-4+2y=21, 5y=25 $\therefore y=5$

y=5를 \bigcirc 에 대입하면 x=15-4=11

따라서 연립방정식의 해는 x=11, y=5

답 x=11, y=5

0546

⇒을 ⓒ에 대입하면

2x-9=1-3x, 5x=10 : x=2

x=2를 \bigcirc 에 대입하면 y=4-9=-5

따라서 연립방정식의 해는 x=2, y=-5

답 x=2, y=-5

2x+y=110547 -x+4y=8

 \bigcirc 에서 y=-2x+11

.....(L)

ⓒ을 ⓒ에 대입하면

-x+4(-2x+11)=8, -9x=-36

x=4를 ©에 대입하면 y=-8+11=3

따라서 연립방정식의 해는 x=4, y=3

답 x=4, y=3

0548

답 6, 3, 24, 10, 20, 2, 2, -4, 2, -4

 \bigcirc + \bigcirc 을 하면 3x=6 $\therefore x=2$

x=2를 ①에 대입하면 2+y=1 $\therefore y=-1$

따라서 연립방정식의 해는 x=2, y=-1

답 x=2.y=-1

0550

$$\begin{cases} x-y-2 \\ r+3y=2 \end{cases}$$

..... (L)

 \bigcirc -①을 하면 -4y=0 $\therefore y=0$

y=0을 \bigcirc 에 대입하면 x=2

따라서 연립방정식의 해는 x=2, y=0

답 x=2, y=0

0551

x+2y=20|2x-3y=5| ¬

 $\bigcirc \times 2 -$ Û을 하면 7y=35 $\therefore y=5$

y=5를 \bigcirc 에 대입하면 x+10=20 $\therefore x=10$

따라서 연립방정식의 해는 x=10, y=5

답 x=10, y=5

 $\int 2x - 3y = -8$ 0552

> \bigcirc - \bigcirc ×3을 하면 -7x=-14 $\therefore x$ =2x=2를 ①에 대입하면 6-y=2 $\therefore y=4$ 따라서 연립방정식의 해는 x=2, y=4

> > 답 x=2, y=4

STEP 2 유형 마스터

p.92 ~ p.99

- **0553** 전략 미지수가 2개인 일차방정식은 ax+by+c=0(a,b,c)는 상수. $a \neq 0$. $b \neq 0$) 꼴이다.
 - ① 3x-1=2x-5에서 x+4=0➡ 미지수가 1개인 일차방정식
 - ② 2*x*−5*y* ➡ 미지수가 2개인 일차식
 - 3y-4x-7=x➡ 미지수가 2개인 일차방정식
 - ④ $x^2-3y=6 \Rightarrow x^2$ 이 있으므로 일차방정식이 아니다.
 - $(5)\frac{1}{2}(2x-4y)=x-y+7$ 에서 -y-7=0

➡ 미지수가 1개인 일차방정식

따라서 미지수가 2개인 일차방정식은 ③이다. 답 ③

0554 미지수가 2개인 일차방정식은 ○, ②의 2개이다. 답 2개

0555 ax+2y+3=2x+y+1에서 (a-2)x+y+2=0

이 식이 x, y에 대한 일차방정식이므로

 $a-2\neq 0$ $\therefore a\neq 2$

답 ②

- **0556 전략** 주어진 상황을 x, y에 대한 등식으로 나타낸다.
 - 310000-3000x=y

답 ③

0557 3x+5y=50에서 3x+5y-50=0

답 ④

0558 (2) (시간) $=\frac{(거리)}{(쇸렴)}$ 이므로 $\frac{x}{6}+\frac{y}{8}=4$

답 (1) 500x + 700y = 4600 (2) $\frac{x}{6} + \frac{y}{8} = 4$

0559 전략 일차방정식에 각 순서쌍의 x, y의 값을 대입하여 등식이 성립하지 않는 것을 찾는다.

일차방정식에 각 순서쌍의 x, y의 값을 대입하면

- ① $3 \times 1 + 17 = 20$
- $23 \times 2 + 14 = 20$
- $3 \times 3 + 11 = 20$
- $43 \times 4 + 7 = 19 \neq 20$

 $\bigcirc 3 \times 6 + 2 = 20$

따라서 일차방정식 3x+y=20의 해가 아닌 것은 ④이다.

답 ④

- x=2, y=1을 각각의 일차방정식에 대입하면
 - $(1) 2-2 \times 1=0 \neq 3$ $(2) 2 \times 2-1=3 \neq 7$
 - $3 \times 2 + 2 \times 1 = 8 \neq 10$ $4 \times 2 2 \times 1 = 12$
 - (5) $7 \times 2 + 4 \times 1 = 18 \neq 11$

따라서 x=2, y=1을 해로 갖는 것은 ④이다.

답 ④

- **0561** x=1, y=-2를 각각의 일차방정식에 대입하면
 - (1)1+(-2)=-1
 - $(2)2\times1-3\times(-2)=8\neq1$
 - $31-2\times(-2)=5\neq-3$
 - (4) 2×1+(-2)=0
 - (5) 3×1-(-2)=5 \neq 1

따라서 (1, -2)를 해로 갖는 것은 ①, ④이다. 답 ①, ④

 $\mathbf{0562}$ 전략 $x=1, 2, 3, \cdots$ 을 차례로 대입하여 y의 값이 자연수가 되 는 것을 찾는다.

2x+y=9의 해는 (1,7),(2,5),(3,3),(4,1)의 4개

답 4개

0563 답 (1,4),(3,1)

0564 x, y가 음이 아닌 정수일 때, 3x+y=13의 해는 (4,1), (3,4), (2,7), (1,10), (0,13)이므로 x+y의 값은 5, 7, 9, 11, 13이다.

> 따라서 x+y의 값이 될 수 없는 것은 ⑤ 15이다. 답 ⑤

0565 두 자연수 x, y의 최대공약수가 4이므로 x=4a, y=4b(a, b는 서로소)라 하자.

x=4a, y=4b를 3x+5y=112에 대입하면

12a+20b=112, 3a+5b=28

3a+5b=28을 만족시키는 a, b의 값을 순서쌍 (a, b)로 나 타내면 (1,5), (6,2)이다.

그런데 a, b는 서로소이므로 a=1, b=5이다.

따라서 $x=4\times1=4, y=4\times5=20$ 이므로

x+y=4+20=24

0566 전략 x=2, y=3을 x-ay+7=0에 대입하면 등식이 성립한

x=2, y=3을 x-ay+7=0에 대입하면

2-3a+7=0, -3a=-9 : a=3

0567 x=A, y=5를 2x+y=9에 대입하면

2A+5=9, 2A=4 : A=2

x=5, y=B를 2x+y=9에 대입하면

10+B=9 : B=-1

A + B = 2 + (-1) = 1

답 1

답 24

답 3

- **0568** x=-a, y=2a를 2x-3y+8=0에 대입하면 -2a-6a+8=0, -8a=-8 : a=1답 1
- **0569** x=a, y=1을 -3x+2y=8에 대입하면 -3a+2=8, -3a=6 : a=-2···· (7}) x=-4, y=b = -3x+2y=8에 대입하면 12+2b=8, 2b=-4 : b=-2....(니) $\therefore ab = -2 \times (-2) = 4$(다)

답 4

채점 기준	비율
(개) <i>a</i> 의 값 구하기	40 %
(나) b의 값 구하기	40 %
(대) <i>ab</i> 의 값 구하기	20 %

- **0570** 전략 x=1, y=2를 각 연립방정식에 대입하여 등식이 모두 성 립하는 것을 찾는다.
 - ⑤ x=1, y=2를 $\begin{cases} x+2y=5 \\ 2x+3y=8 \end{cases}$ 에 대입하면 $1+2\times2=5$ 답 ⑤ $\lfloor 2 \times 1 + 3 \times 2 = 8 \rfloor$
- **0571** ② x=2, y=-1을 $\begin{cases} 2x+3y=1 \\ x-2y=4 \end{cases}$ 에 대입하면 $\begin{cases} 2 \times 2 + 3 \times (-1) = 1 \\ 2 - 2 \times (-1) = 4 \end{cases}$ 답 ②
- **0572** 4x+y=11의 해는 (1,7),(2,3)3*x*−*y*=3의 해는 (2, 3), (3, 6), ··· 따라서 연립방정식의 해는 (2,3)이다. 답 (2,3)
- **0573** 전략 x=2, y=1을 각 일차방정식에 대입하여 a, b의 값을 구 하다 x=2, y=1을 x-by=5에 대입하면 2-b=5 : b=-3x=2, y=1을 ax+3y=7에 대입하면 2a+3=7, 2a=4 : a=2a+b=2+(-3)=-1답 -1
- **0574** x=a, y=-3 = x-2y=4에 대입하면 a+6=4 $\therefore a=-2$ x=-2, y=-3을 2x+by=2에 대입하면 -4-3b=2 -3b=6 $\therefore b=-2$ 답 a=-2, b=-2
- **0575** y = -6 = 3x + y = 3에 대입하면 3x-6=3, 3x=9 : x=3x=3, y=-6을 x+2y=a-5에 대입하면 3-12=a-5 : a=-4답 -4

0576 전략 x=(y)에 대한 식) 또는 y=(x)에 대한 식)을 다른 일처방 정식에 대입한다.

> 5x+2y=7 ····· \bigcirc $\downarrow_{x=3y-2}$

(나)을 (기에 대입하면

5(3y-2)+2y=7,17y=17 : y=1

y=1을 ①에 대입하면 x=3-2=1

따라서 a=1, b=1이므로

a+b=1+1=2답 2

0577 \bigcirc 을 \bigcirc 에 대입하면 5x-2(3x-1)=45x-6x+2=4, -x=2

> $\therefore a = -1$ 답 -1

0578 **단** (가) - x+11 (나) 4 (다) 7

0579 (1) $\begin{cases} y = 2x + 5 \\ 3x + y = 10 \end{cases}$

①을 (L)에 대입하면

3x+2x+5=10,5x=5 : x=1

x=1을 \bigcirc 에 대입하면 y=2+5=7

따라서 연립방정식의 해는 x=1, y=7

-
 - \bigcirc 에서 x를 y에 대한 식으로 나타내면

x = 5 - 2y

©을 ①에 대입하면

2(5-2y)+3y=6, -y=-4 : y=4

y=4를 ©에 대입하면 x=5-8=-3

따라서 연립방정식의 해는 x=-3, y=4

답 (1) x=1, y=7 (2) x=-3, y=4

y=x+a(2x+3y-7a=0)

 \bigcirc 을 \bigcirc 에 대입하면 2x+3(x+a)-7a=0

5x=4a $\therefore x=\frac{4}{5}a$

 $x=\frac{4}{5}a$ 를 \bigcirc 에 대입하면 $y=\frac{4}{5}a+a=\frac{9}{5}a$

 $\therefore \frac{5x - 10y}{2a} = \left(5 \times \frac{4}{5}a - 10 \times \frac{9}{5}a\right) \div 2a$

0581 전략 x를 없애는 경우와 y를 없애는 경우를 모두 생각한다.

 $\bigcirc \times 3 - \bigcirc \times 2$ 를 하면 x가 없어지고.

 $\bigcirc \times 4 + \bigcirc \times 3$ 을 하면 y가 없어진다.

답 2.3

단 -7

0582

0583 $\bigcirc \times 3 - \bigcirc$ 을 하면 x의 계수는 3a-3 이때 x가 없어지려면 3a-3=0 답 1

0584 전략 두 일치방정식의 x의 계수 또는 y의 계수의 절댓값이 같도록 적당한 수를 곱한다.

$$\begin{cases} 4x - 3y = 10 & \cdots \\ 3x + 7y = -11 & \cdots \end{aligned}$$

x=1을 →에 대입하면

4-3y=10, -3y=6 $\therefore y=-2$

따라서 a=1, b=-2이므로

 $3a-2b=3\times 1-2\times (-2)=7$ 답 7

0585 $\begin{cases} x+y=5 & \dots & \bigcirc \\ x+3y=11 & \dots & \bigcirc \end{cases}$

 \bigcirc - \bigcirc 을 하면 -2y=-6 $\therefore y$ =3

y=3을 \bigcirc 에 대입하면 x+3=5 $\therefore x=2$

따라서 x=2, y=3을 각각의 일차방정식에 대입하여 등식이 성립하는 것을 찾으면 $4.3 \times 2+3=9$ 이다.

답 ④

답 ②

0586 $\begin{cases} 3x + 5y = 4 & \cdots & \bigcirc \\ x + 2y = -1 & \cdots & \bigcirc \\ \bigcirc - \bigcirc \times 3 \stackrel{\circ}{=} \text{ 하면 } -y = 7 & \therefore y = -7 \\ y = -7 \stackrel{\circ}{=} \bigcirc \text{에 대입하면 } x - 14 = -1 & \therefore x = 13 \\ x = 13, y = -7 \stackrel{\circ}{=} 2x + ay = 5 \text{에 대입하면} \end{cases}$

0587 (1) $\begin{cases} -3x+4y=1 & \cdots & \bigcirc \\ 4x-5y=2 & \cdots & \bigcirc \end{cases}$

 $\bigcirc \times 4 + \bigcirc \times 3$ 을 하면 y = 10y = 10을 \bigcirc 에 대입하면

26-7a=5, -7a=-21 : a=3

-3x+40=1, -3x=-39 $\therefore x=13$

따라서 연립방정식의 해는 x=13, y=10

 $(2) \begin{cases} 2x - 4y = 1 & \cdots \bigcirc \\ x + 2y = 5 & \cdots \bigcirc \bigcirc \end{cases}$

 \bigcirc -① \times 2를 하면 -8y=-9 $\therefore y=\frac{9}{8}$

 $y = \frac{9}{8}$ 를 \bigcirc 에 대입하면 $x + \frac{9}{4} = 5$ $\therefore x = \frac{11}{4}$

따라서 연립방정식의 해는 $x = \frac{11}{4}, y = \frac{9}{8}$

답 (1) x=13, y=10 (2) $x=\frac{11}{4}, y=\frac{9}{8}$

0588 전략 주어진 해를 연립방정식에 대입하여 *a*, *b*에 대한 연립방 정식을 만든다.

x=-1,y=3을 주어진 연립방정식에 대입하면 $\begin{cases} -a+3b=-9 \\ -b+3a=11 \end{cases}, 즉 \begin{cases} -a+3b=-9 \\ 3a-b=11 \end{cases} \dots \dots \bigcirc$

 $\bigcirc \times 3 + \bigcirc$ 을 하면 8b = -16 $\therefore b = -2$

 $b\!=\!-2$ 를 ①에 대입하면 $-a\!-\!6\!=\!-9$ $\therefore a\!=\!3$

 $\therefore ab=3\times(-2)=-6$

0589 x=3, y=-2를 주어진 연립방정식에 대입하면

$$\begin{cases} 3a - 2b = -7 \\ 3b + 4a = 2 \end{cases}, \, \, \stackrel{\triangleleft}{\leftrightharpoons} \, \, \begin{cases} 3a - 2b = -7 \\ 4a + 3b = 2 \end{cases} \quad \dots \dots \, \, \stackrel{\square}{\boxdot}$$

 $\bigcirc \times 3 + \bigcirc \times 2$ 를 하면 17a = -17 $\therefore a = -1$

a=-1을 \bigcirc 에 대입하면

-4+3b=2, 3b=6 : b=2

b-a=2-(-1)=3

0590 x=1, y=2를 주어진 연립방정식에 대입하면

$$\begin{cases}
-2a+3b=4 & \dots \\
-2a+b=0 & \dots
\end{cases}$$

 \bigcirc - \bigcirc 을 하면 2b=4 $\therefore b=2$

b=2를 \bigcirc 에 대입하면 -2a+2=0 $\therefore a=1$

 $3a-b=3\times 1-2=1$

0591 x=1, y=-2와 x=-2, y=3을 2ax-by=4에 각각 대

 $\begin{cases}
2a+2b=4 & \dots \\
-4a-3b=4 & \dots \\
\end{bmatrix}$

①×2+①을 하면 *b*=12

b=12를 →에 대입하면

2a+24=4, 2a=-20 : a=-10

$$b-a=12-(-10)=22$$

CF 22

답 -6

답 3

0592 전략 세 일차방정식 중 미지수가 없는 두 일차방정식으로 연립 방정식을 세워 해를 구한다.

주어진 연립방정식의 해는 세 일차방정식을 모두 만족시키

므로 연립방정식
$${2x-3y=-1 \ \cdots \ \bigcirc \atop 3x-2y=1 \ \cdots \ \bigcirc}$$
의 해와 같다.

 $\bigcirc \times 3 - \bigcirc \times 2$ 를 하면 -5y = -5 $\therefore y = 1$

y=1을 \bigcirc 에 대입하면

2x-3=-1, 2x=2 : x=1

따라서 x=1. y=1을 x+2y=a에 대입하면

$$1+2=a$$
 $\therefore a=3$

7 3 3 ---

답 3

0593 주어진 연립방정식의 해는세 일차방정식을 모두 만족시키므로

연립방정식
$$\left\{ egin{array}{ll} 3x+y=9 & \cdots & \ddots & \ddots \\ x+2y=-2 & \cdots & \ddots & \ddots & \ddots \end{array}
ight.$$
 의 해와 같다.

 $\bigcirc \times 2 - \bigcirc$ 을 하면 5x = 20 $\therefore x = 4$

x=4를 \bigcirc 에 대입하면 12+y=9 $\therefore y=-3$ $\therefore p=4, q=-3$ 한편 x=4, y=-3 = 2x-a=y에 대입하면 8-a=-3 $\therefore a=11$ $\therefore a+p+q=11+4+(-3)=12$ 답 12 0594 주어진 세 일차방정식의 해는 연립방정식 $\left\{egin{array}{lll} 2x+3y=4 & & & \cdots & \bigcirc \\ 3y-x=7 & & & \cdots & \bigcirc \end{array}
ight.$ 의 해와 같다. \bigcirc - \bigcirc 을 하면 3x=-3 $\therefore x=-1$ x=-1을 \bigcirc 에 대입하면 3y+1=7, 3y=6 : y=2따라서 x=-1, y=2를 3x-4y=a에 대입하면 -3-8=a : a=-11답 -11 **0595** 전략 y의 값이 x의 값의 3배이므로 y=3x이다. $\left\{egin{array}{lll} x+2y=14 & & & \cdots & \bigcirc \\ 4x-y=a & & & \cdots & \bigcirc \end{array}
ight.$ 를 만족시키는 y의 값이 x의 값의 3배이므로 y=3x©을 \bigcirc 에 대입하면 x+6x=14,7x=14 $\therefore x=2$ x=2를 ©에 대입하면 y=6따라서 x=2, y=6을 \bigcirc 에 대입하면 8-6=a $\therefore a=2$ 답 2 $\left\{egin{array}{lll} 2x-y=-7 & & & & \cdots & \bigcirc \\ x+2y=a-3 & & & & \cdots & \bigcirc \end{array}
ight.$ 을 만족시키는 y의 값이 0596 x의 값보다 2만큼 크므로 y=x+2 \bigcirc \bigcirc

	u 0
채점 기준	비율
⑺ 주어진 조건을 이용하여 일차방정식 세우기	30 %
(·l) 미지수가 없는 두 일차방정식을 연립하여 풀기	50 %
(rl) a O フト フカーフ	20 %

①을 ①에 대입하면 2x-(x+2)=-7 $\therefore x=-5$

x=-5를 ©에 대입하면 y=-3

-5-6=a-3 : a=-8

따라서 x = -5, y = -3을 \bigcirc 에 대입하면

0597 $\begin{cases} -4x + ay = 1 & \cdots & \bigcirc \\ 2x + y = 7 & \cdots & \bigcirc \end{cases}$ 을 만족시키는 x와 y의 값의 비가 2:3이므로 x: y = 2:3, 즉 <math>3x = 2y $\therefore y = \frac{3}{2}x$ \cdots \bigcirc

않을 않에 대입하면

$$2x + \frac{3}{2}x = 7, \frac{7}{2}x = 7 \qquad \therefore x = 2$$

x=2를 ©에 대입하면 y=3

따라서 x=2, y=3을 \bigcirc 에 대입하면

$$-8+3a=1.3a=9$$
 : $a=3$

답 3

0598 $\begin{cases} 3x - 5y = 2 & & \cdots$ 를 만족시키는 x의 값이 4x - 3y = k $& \cdots$ 을 만족시키는 x의 값이

y의 값의 2배이므로

z=2y \Box

 \Box 을 \Box 에 대입하면 6y-5y=2 $\therefore y=2$

y=2를 ©에 대입하면 x=4

따라서 x=4. y=2를 \bigcirc 에 대입하면

$$16-6=k$$
 $\therefore k=10$

답 10

0599 전략 네 일차방정식 중 미지수가 없는 두 일차방정식으로 연립 방정식을 세워 해를 구한다.

①×5+ⓒ을 하면 8*x*=16 ∴ *x*=2

x=2를 \bigcirc 에 대입하면 6-y=5 $\therefore y=1$

따라서 두 연립방정식의 해는 x=2, y=1이므로

x=2, y=1을 ①에 대입하면

8+a=7 $\therefore a=-1$

x=2, y=1을 🗐에 대입하면

2b+23=1, 2b=-22 : b=-11

답 a=-1, b=-11

①을 $\stackrel{\text{}_{\sim}}{=}$ 에 대입하면 x-3(3x-10)=-2

-8x = -32 $\therefore x = 4$

x=4를 \bigcirc 에 대입하면 2y=2 $\therefore y=1$

따라서 두 연립방정식의 해는 x=4, y=1이므로 ····· (가)

x=4,y=1을 \bigcirc 에 대입하면 4a+b=-7 \cdots \bigcirc

x=4,y=1을 ©에 대입하면 4b-a=6 ······

⑩+⑪×4를 하면 17*b*=17 ∴ *b*=1

b=1을 \oplus 에 대입하면 4-a=6 $\therefore a=-2$ ······(내)

∴ a+b=-2+1=-1 ······(□)

답 -1

채점기준	비율
(개미지수가 포함되지 않은 두 일차방정식으로 연립 방정식을 세워 해 구하기	50 %
$(\sqcup) a, b$ 의 값 각각 구하기	각 20 %
(대) a+b의 값 구하기	10 %

0601 $\begin{cases} 2x-3y=-10 & \cdots & \bigcirc \\ ax+5y=14 & \cdots & \bigcirc \\ \bigcirc \\ 2x-25y=34 & \cdots & \bigcirc \\ \bigcirc \\ \bigcirc -$ 응을 하면 $22y=-44 & \therefore y=-2$ $y=-2 \equiv \bigcirc$ 에 대입하면 $2x+6=-10, 2x=-16 & \therefore x=-8$ $x=-8, y=-2 \equiv \bigcirc$ 에 대입하면 $-8a-10=14, -8a=24 & \therefore a=-3$ $x=-8, y=-2 \equiv \bigcirc$ 에 대입하면 $-8-2b=-6, -2b=2 & \therefore b=-1$ $\therefore ab=-3\times (-1)=3$

답 3

0602 전략 채연이는 a를 잘못 보고 풀었으므로 x=2, y=-1은 2x+by=3의 해이고, 수연이는 b를 잘못 보고 풀었으므로 x=2, y=3은 ax-y=1의 해이다. x=2, y=-1은 2x+by=3의 해이므로 4-b=3 $\therefore b$ =1 x=2, y=3은 ax-y=1의 해이므로 2a-3=1, 2a=4 $\therefore a$ =2 따라서 주어진 연립방정식은

 $\begin{cases} 2x - y = 1 & \dots & \bigcirc \\ 2x + y = 3 & \dots & \bigcirc \end{cases}$

 \bigcirc + \bigcirc 을 하면 4x=4 $\therefore x=1$ x=1을 \bigcirc 에 대입하면 2+y=3 $\therefore y=1$ 따라서 연립방정식의 해는 x=1,y=1

답 x=1, y=1

0603 x+2y=10의 x의 계수를 a로 잘못 보고 풀었다고 하자. x=-2를 4x+3y=4에 대입하면 -8+3y=4, 3y=12 $\therefore y=4$ 즉 잘못 보고 푼 연립방정식의 해는 x=-2, y=4 x=-2, y=4를 ax+2y=10에 대입하면 -2a+8=10, -2a=2 $\therefore a=-1$ 따라서 x의 계수를 -1로 잘못 보았다

답 ③

0604 $\begin{cases} ax+by=4 \\ bx-ay=3 \end{cases}$ 에서 a와 b를 서로 바꾸면 $\begin{cases} bx+ay=4 \\ ax-by=3 \end{cases}$

이 연립방정식의 해가 x=2, y=1이므로

 $\begin{cases} 2b+a=4 & \cdots \bigcirc \\ 2a-b=3 & \cdots \bigcirc \end{cases}$

 \bigcirc + \bigcirc ×2를 하면 5a=10 $\therefore a$ =2 a=2를 \bigcirc 에 대입하면 4-b=3 $\therefore b$ =1

a+b=2+1=3

답 3

STEP 1 개념 마스터

p.100 ~ p.101

0605

답 2x-4y, 4x-9y, 12, $-\frac{11}{2}$

0606 $\begin{cases} 5(2x-1)+y=3 & \cdots \\ x-(y-3)=6 & \cdots \end{cases}$

 \bigcirc 을 정리하면 10x+y=8 ····· \bigcirc

 \bigcirc 을 정리하면 x-y=3 ····· ②

 $\Box+$ ②을 하면 $11x{=}11$ $\therefore x{=}1$

x=1을 @에 대입하면 1-y=3 $\therefore y=-2$

따라서 연립방정식의 해는 x=1, y=-2

답 x=1, y=-2

0607 $\begin{cases} 2(x-y)-y=5 & \cdots & \bigcirc \\ 4x=3(x-2y)+1 & \cdots & \bigcirc \end{cases}$

①을 정리하면 2*x*−3*y*=5 ······ ⓒ

①을 정리하면 x+6y=1 ····· ②

 \bigcirc -② \times 2를 하면 -15y=3 $\therefore y=-\frac{1}{5}$

 $y=-rac{1}{5}$ 을 ②에 대입하면 $x-rac{6}{5}=1$ $\therefore x=rac{11}{5}$

따라서 연립방정식의 해는 $x=\frac{11}{5}, y=-\frac{1}{5}$

답 $x = \frac{11}{5}, y = -\frac{1}{5}$

0608 $\begin{cases} \frac{1}{2}x - \frac{1}{3}y = \frac{2}{3} & \dots \\ \frac{1}{3}x + \frac{1}{6}y = \frac{5}{6} & \dots \\ & \dots \end{cases}$

①×6을 하면 3*x*−2*y*=4 ······ ⓒ

①×6을 하면 2*x*+*y*=5 ····· ②

x=2를 ②에 대입하면 4+y=5 $\therefore y=1$ 따라서 연립방정식의 해는 x=2, y=1

답 x=2,y=1

0610 $\begin{cases} 0.5x - y = 2 & \cdots \bigcirc \\ 0.3x - 1.2y = 0.6 & \cdots \bigcirc \end{cases}$

 $\bigcirc \times 10$ 을 하면 5x-10y=20 $\therefore x-2y=4$ \cdots ©

 $\bigcirc \times 10$ 을 하면 3x-12y=6 $\therefore x-4y=2$ \cdots \bigcirc

 \Box -②을 하면 2y=2 $\therefore y$ =1

y=1을 ©에 대입하면 x-2=4 $\therefore x=6$

따라서 연립방정식의 해는 x=6, y=1 답 x=6, y=1

0611 $\begin{cases} 0.1x + 0.2y = 0.3 & \cdots \\ \frac{1}{2}x + \frac{2}{3}y = -\frac{1}{6} & \cdots \\ \vdots \\ 0.1x + 0.2y = 0.3 \\ \cdots \\ 0.1x$

 $\bigcirc \times 6$ 을 하면 3x+4y=-1 ····· ②

 $\bigcirc \times 2 - \bigcirc$ 을 하면 -x=7 $\therefore x=-7$

x=-7을 ©에 대입하면

-7+2y=3, 2y=10 : y=5

따라서 연립방정식의 해는 x=-7, y=5

답 x = -7, y = 5

0612
$$\begin{cases} 0.5x - y = 2 \\ \frac{1}{2}(x - 1) = \frac{1}{3}(y + 2) \end{cases}$$

 $\bigcirc \times 10$ 을 하면 5x-10y=20 $\therefore x-2y=4$ \cdots \bigcirc

 $\bigcirc \times 6$ 을 하면 3(x-1)=2(y+2), 3x-3=2y+4

 \bigcirc - ②을 하면 -2x=-3 $\therefore x=\frac{3}{2}$

 $x=\frac{3}{2}$ 을 ©에 대입하면

 $\frac{3}{2}$ - 2y = 4, -2y = $\frac{5}{2}$: $y = -\frac{5}{4}$

따라서 연립방정식의 해는 $x = \frac{3}{2}, y = -\frac{5}{4}$

답 $x=\frac{3}{2}, y=-\frac{5}{4}$

0613

답 3x+5y-6, 3x+5y, 2, 2, $\frac{1}{5}$

0614 $\begin{cases} 2x+y=5 \\ 3x-y=5 \end{cases}$

①+ⓒ을 하면 5*x*=10 ∴ *x*=2

x=2를 \bigcirc 에 대입하면 4+y=5 $\therefore y=1$

따라서 방정식의 해는 x=2, y=1

답 x=2, y=1

 \bigcirc - \bigcirc ×3을 하면 7y = -7 $\therefore y = -1$

y=-1을 \bigcirc 에 대입하면 x+3=4 $\therefore x=1$

따라서 방정식의 해는 x=1, y=-1

0616 $\begin{cases} x + 2y = 2x + 1 \\ 5x + 4y = 2x + 1 \end{cases} \text{ only } \begin{cases} -x + 2y = 1 & \cdots & \bigcirc \\ 3x + 4y = 1 & \cdots & \bigcirc \end{cases}$

 $\bigcirc \times 2 - \bigcirc$ 을 하면 -5x=1 $\therefore x = -\frac{1}{5}$

 $x = -\frac{1}{5}$ 을 \bigcirc 에 대입하면

 $\frac{1}{5} + 2y = 1, 2y = \frac{4}{5}$ $\therefore y = \frac{2}{5}$

따라서 방정식의 해는 $x = -\frac{1}{5}, y = \frac{2}{5}$

답 $x = -\frac{1}{5}, y = \frac{2}{5}$

0617 \bigcirc $\begin{cases} 2x - 3y = 5 \\ 4x - 6y = 10 \end{cases}$ \Rightarrow $\begin{cases} 4x - 6y = 10 \\ 4x - 6y = 10 \end{cases}$

즉 x, y의 계수와 상수항이 각각 같으므로 해가 무수히 많

 $\textcircled{1} \left\{ \begin{matrix} x-3y=1 \\ -3x+9y=-3 \end{matrix} \right. \Rightarrow \left\{ \begin{matrix} -3x+9y=-3 \\ -3x+9y=-3 \end{matrix} \right.$

즉 x, y의 계수와 상수항이 각각 같으므로 해가 무수히 많 다 답 ①. 🖰

0618 \bigcirc $\begin{cases} x-2y=4 \\ -2x+4y=4 \end{cases} \Rightarrow \begin{cases} -2x+4y=-8 \\ -2x+4y=4 \end{cases}$

즉 x, y의 계수는 각각 같고 상수항은 다르므로 해가 없

 $\textcircled{2} \left\{ \begin{matrix} x-2y=4 \\ -x+2y=1 \end{matrix} \right. \Rightarrow \left\{ \begin{matrix} x-2y=4 \\ x-2y=-1 \end{matrix} \right.$

= x, y의 계수는 각각 같고 상수항은 다르므로 해가 없

즉 x, y의 계수는 각각 같고 상수항은 다르므로 해가 없 답 (2, 2, 0

0619 $\begin{cases} 4x + 2y = 8 \\ 2x + y = 4 \end{cases} \Rightarrow \begin{cases} 4x + 2y = 8 \\ 4x + 2y = 8 \end{cases}$

즉 x, y의 계수와 상수항이 각각 같으므로 해가 무수히 많다.

답 해가 무수히 많다.

0620 $\begin{cases} 2x - 3y = 4 \\ 4x - 6y = -8 \end{cases} \Rightarrow \begin{cases} 4x - 6y = 8 \\ 4x - 6y = -8 \end{cases}$

즉 x, y의 계수는 각각 같고 상수항은 다르므로 해가 없다.

답 해가 없다.

STEP 2 유형 마스터

p.102 ~ p.105

0621 전략 분배법칙을 이용하여 괄호를 푼다.

 $\begin{cases} -3(x-2y) = -8x+7 \\ 2(x+4y)-3 = 4y+3 \end{cases} \Rightarrow \begin{cases} 5x+6y=7 \\ x+2y=3 \end{cases} \qquad \cdots \cdots \bigcirc$

 \bigcirc - \bigcirc ×3을 하면 2x=-2 $\therefore x=-1$

x=-1을 \bigcirc 에 대입하면

-1+2y=3, 2y=4 $\therefore y=2$ 따라서 연립방정식의 해는 x=-1, y=2

답
$$x = -1, y = 2$$

0623
$$\begin{cases} 5(x-2y)+y=-12 \\ 2x-3(x-y)=2 \end{cases} \Rightarrow \begin{cases} 5x-9y=-12 \\ -x+3y=2 \end{cases} \dots \bigcirc$$

$$\bigcirc$$
+ⓒ \times 5를 하면 $6y = -2$ $\therefore y = -\frac{1}{3}$

$$y=-\frac{1}{3}$$
을 ©에 대입하면 $-x-1=2$ $\therefore x=-3$

따라서
$$x=-3, y=-\frac{1}{3}$$
을 $x-6y+2=a$ 에 대입하면
$$-3+2+2=a \qquad \therefore a=1$$

0624 전략 양변에 분모의 최소공배수를 곱하여 계수를 모두 정수로 고친다.

$$\begin{cases} \frac{x-1}{2} + y = 3 & \dots \\ \frac{1}{6}x + \frac{1}{4}y = 1 & \dots \end{cases}$$

 $\bigcirc \times 2$ 를 하면 x-1+2y=6

$$\therefore x+2y=7$$

$$\bigcirc \times 12$$
를 하면 $2x + 3y = 12$

©×2-②을 하면 *y*=2

$$y=2$$
를 ©에 대입하면 $x+4=7$ $\therefore x=3$

따라서 a=3, b=2이므로

$$a-b=3-2=1$$
 답 1

0625
$$\begin{cases} 4(x-2)-3(y+5)=-30 & \cdots & \bigcirc \\ \frac{x+4}{3}=\frac{y+1}{2} & \cdots & \bigcirc \\ \end{cases}$$

 \bigcirc 을 정리하면 4x-3y=-7 ····· ©

①×6을 하면 2(x+4)=3(y+1)

$$\therefore 2x-3y=-5$$

$$\bigcirc$$
 - ②을 하면 $2x = -2$ $\therefore x = -1$

x=−1을 ②에 대입하면

$$-2-3y=-5, -3y=-3$$
 : $y=1$

따라서 연립방정식의 해는 x=-1, y=1

답
$$x = -1, y = 1$$

0626
$$\begin{cases} x - \frac{y - 5}{2} = 8 & \dots \\ \frac{5}{6}x - \frac{1}{4}y = \frac{19}{4} & \dots \end{cases}$$

①
$$imes 2$$
를 하면 $2x - (y - 5) = 16$
 $\therefore 2x - y = 11$ ©
 $\mathbb{C} imes 12$ 를 하면 $10x - 3y = 57$ ②
 $\mathbb{C} imes 3 - \mathbb{Q}$ 을 하면 $-4x = -24$ $\therefore x = 6$
 $x = 6$ 을 \mathbb{C} 에 대입하면 $12 - y = 11$ $\therefore y = 1$
따라서 $x = 6, y = 1$ 을 $ax + y = 5$ 에 대입하면 $6a + 1 = 5, 6a = 4$ $\therefore a = \frac{2}{3}$ 답 $\frac{2}{3}$

0627 전략 양변에 10의 거듭제곱을 곱하여 계수를 모두 정수로 고친다.

$$a-b=4-3=1$$
 달 1

따라서 a=4, b=3이므로

0628
$$\begin{cases} \frac{1}{3}x + \frac{5}{6}y = \frac{4}{3} & \dots & \\ 0.2x + 0.3y = 0.4 & \dots & \\ \bigcirc \times 6 \\ \Rightarrow \text{ 하면 } 2x + 5y = 8 & \dots & \\ \bigcirc \times 10 \\ \Rightarrow \text{ 하면 } 2x + 3y = 4 & \dots & \\ \bigcirc \Rightarrow \text{ 하면 } 2y = 4 & \therefore y = 2 \\ y = 2 \\ \Rightarrow \text{ 열} \\ \Rightarrow \text{ 에 대입하면} \\ 2x + 6 = 4, 2x = -2 & \therefore x = -1 \\ \Rightarrow \text{ 따라서 연립방정식의 해는 } x = -1, y = 2 \end{cases}$$

0629
$$\begin{cases} \frac{3}{4}(2x-1) - \frac{1}{2}y + 3 = 1 & \cdots & \bigcirc \\ 0.4(x+2y) - 0.3x = -0.5 & \cdots & \bigcirc \\ \bigcirc \times 4 \equiv \text{하면 } 3(2x-1) - 2y + 12 = 4 \\ \therefore 6x - 2y = -5 & \cdots & \bigcirc & \cdots & \bigcirc \\ \bigcirc \times 10 \cong \text{하면 } 4(x+2y) - 3x = -5 \\ \therefore x + 8y = -5 & \cdots & \bigcirc & \cdots & \bigcirc \end{cases}$$

$$x=-1$$
을 ②에 대입하면

$$-1+8y=-5, 8y=-4$$
 $\therefore y=-\frac{1}{2}$ (c)

따라서 $x=-1, y=-\frac{1}{2} = x-ay=3$ 에 대입하면

답 8

답 x = -1, y = 2

채점 기준	비율
⑺ ○의 계수를 정수로 고친 후 간단히 정리하기	20 %
(내) 으의 계수를 정수로 고친 후 간단히 정리하기	20 %
(다) 연립방정식의 해 구하기	30 %
(라) a의 값 구하기	30 %

0630 전략 a:b=c:d이면 ad=bc임을 이용하여 비례식을 일차 방정식으로 나타낸다.

$$\begin{cases} 2x - (x-1) = 3(y-1) & \cdots & \bigcirc \\ (3-x) : (6-y) = 3 : 2 & \cdots & \bigcirc \end{cases}$$

 \bigcirc 을 정리하면 x-3y=-4 ····· \bigcirc

①에서 2(3-x)=3(6-y)

 $\therefore -2x+3y=12$

©+②을 하면 -x=8 ∴ x=-8

x=-8을 ©에 대입하면

$$-8-3y=-4, -3y=4$$
 $\therefore y=-\frac{4}{3}$

따라서 연립방정식의 해는 $x = -8, y = -\frac{4}{3}$

답
$$x = -8, y = -\frac{4}{3}$$

0631 $\begin{cases} x - (y+4) = 1 & \cdots & \bigcirc \\ (2x+y) : (y+5) = 1 : 2 & \cdots & \bigcirc \end{cases}$

 \bigcirc 을 정리하면 x-y=5

 \bigcirc 에서 2(2x+y)=y+5

 $\therefore 4x+y=5$

©+②을 하면 5*x*=10 ∴ *x*=2

x=2를 ©에 대입하면 2-y=5 $\therefore y=-3$

따라서 a=2, b=-3이므로

a+b=2+(-3)=-1

답 -1

0632 4x-5y=12의 한 해가 (a,b)이므로

(2a+4):(b+2)=5:1에서 2a+4=5(b+2)

 $\therefore 2a-5b=6$

¬—○을 하면 2a=6∴ a=3

a=3을 \bigcirc 에 대입하면 6-5b=6 $\therefore b=0$

a+b=3+0=3

답 3

 $\mathbf{0633}$ 전략 방정식 A=B=C 꼴을 연립방정식으로 바꾸어 푼다.

$$\begin{cases} 2x-2y+1=-5y-3 \\ x-4y+5=-5y-3 \end{cases} \Rightarrow \begin{cases} 2x+3y=-4 \\ x+y=-8 \end{cases} \qquad \cdots \cdots \bigcirc$$

①-①×2를 하면 y=12

y=12를 ①에 대입하면 x+12=-8 $\therefore x=-20$ 따라서 방정식의 해는 x = -20, y = 12

답 x = -20.y = 12

0634 (1) $\begin{cases} x+5y-26=-10 \\ 2x-11y=-10 \end{cases}$ \Rightarrow $\begin{cases} x+5y=16 \\ 2x-11y=-10 \end{cases}$ \bigcirc

 $\bigcirc \times 2 - \bigcirc$ 을 하면 21y=42 $\therefore y=2$

y=2를 \bigcirc 에 대입하면 x+10=16 $\therefore x=6$

따라서 방정식의 해는 x=6, y=2

$$(2) \left\{ \begin{matrix} 5x - 3y = 4(x - y) \\ 4(x - y) = 3x + 2y - 7 \end{matrix} \right. \Rightarrow \left\{ \begin{matrix} x + y = 0 & \cdots & \bigcirc \\ x - 6y = -7 & \cdots & \bigcirc \end{matrix} \right.$$

¬—○을 하면 7y=7∴ y=1

y=1을 \bigcirc 에 대입하면 x+1=0 $\therefore x=-1$

따라서 방정식의 해는 x = -1, y = 1

(3)
$$\begin{cases} \frac{2x+5}{5} = x - \frac{1}{2}y & \cdots \\ \frac{x+y}{3} = x - \frac{1}{2}y & \cdots \end{cases}$$

 $\bigcirc \times 10$ 을 하면 2(2x+5)=10x-5y

$$\therefore -6x + 5y = -10 \qquad \cdots \bigcirc$$

 $\bigcirc \times 6$ 을 하면 2(x+y)=6x-3y

 $\therefore -4x + 5y = 0 \qquad \cdots \bigcirc$

 \Box -②을 하면 -2x = -10 $\therefore x = 5$

x=5를 $\stackrel{\frown}{=}$ 에 대입하면

-20+5y=0, 5y=20 $\therefore y=4$

따라서 방정식의 해는 x=5, y=4

답 (1)
$$x=6$$
, $y=2$ (2) $x=-1$, $y=1$ (3) $x=5$, $y=4$

0635 $\begin{cases} \frac{x+3}{2} = \frac{2y+2}{3} & \cdots & \odot \\ \frac{x+3}{2} = \frac{2x+y+4}{4} & \cdots & \odot \end{cases}$

①×6을 하면 3(x+3)=2(2y+2)

 $\therefore 3x - 4y = -5 \qquad \cdots \bigcirc$

 $\bigcirc \times 4$ 를 하면 2(x+3)=2x+y+4 $\therefore y=2$

y=2를 ⓒ에 대입하면

3x-8=-5, 3x=3 : x=1

따라서 x=1, y=2를 3x-2y=k에 대입하면

$$3-4=k$$
 $\therefore k=-1$

답 -1

0636 전략 해가 무수히 많다. \rightarrow 두 일치방정식의 x, y의 계수와 상수

$${x+3y=12 \brace ax-by=-3}$$
 , 즉 ${x+3y=12 \brack -4ax+4by=12}$ 의 해가 무수히 많

$$-4a=1$$
에서 $a=-\frac{1}{4}$, $4b=3$ 에서 $b=\frac{3}{4}$

$$\therefore a-b=-\frac{1}{4}-\frac{3}{4}=-1$$

답 -1

즉 x, y의 계수와 상수항이 각각 같으므로 해가 무수히 많

0638
$$\left\{ egin{array}{l} (a+8)x-3y=-12 \\ 3x+3y=b-3 \end{array}
ight.$$
, 즉 $\left\{ egin{array}{l} (a+8)x-3y=-12 \\ -3x-3y=-b+3 \end{array}
ight.$ 의 해

가 무수히 많으므로

$$a+8=-3$$
에서 $a=-11$

$$-12 = -b + 3$$
에서 $b = 15$

$$a+b=-11+15=4$$

답 4

0639 전략 해가 없다. \Rightarrow 두 일차방정식의 x, y의 계수는 각각 같고

$$\begin{cases} 2x+y=1 \\ ax-3y=b \end{cases}$$
, 즉 $\begin{cases} -6x-3y=-3 \\ ax-3y=b \end{cases}$ 의 해가 없으므로

$$a = -6, b \neq -3$$

답 ④

0640
$$\Im$$
 $\left\{ \begin{array}{l} 4x - 6y = -2 \\ 2x - 3y = -1 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} 4x - 6y = -2 \\ 4x - 6y = -2 \end{array} \right.$

= x, y의 계수와 상수항이 각각 같으므로 해가 무수히 많

$$\textcircled{4} \begin{cases} x - 2y = 5 \\ 2x - 4y = -9 \end{cases} \Rightarrow \begin{cases} 2x - 4y = 10 \\ 2x - 4y = -9 \end{cases}$$

즉x, y의 계수는 각각 같고 상수항은 다르므로 해가 없다.

0641
$$\begin{cases} 6x - 4y = a \\ (2 - b)x - 6y = 3 \end{cases} \stackrel{\mathbf{R}}{=} \begin{cases} 9x - 6y = \frac{3}{2}a \\ (2 - b)x - 6y = 3 \end{cases}$$

(i) 해가 무수히 많은 경우

$$9=2-b, \frac{3}{2}a=3$$
 $\therefore a=2, b=-7$

(ii) 해가 없는 경우

$$9=2-b, \frac{3}{2}a \neq 3$$
 : $a \neq 2, b = -7$

(i),(ii) 이외의 경우에는 한 쌍의 해가 존재하므로 옳은 것은

0642 전 $\frac{1}{x} = X, \frac{1}{y} = Y$ 로 놓고 X, Y에 대한 연립방정식을 세운

$$\begin{cases} \frac{2}{x} + \frac{3}{y} = 10 \\ \frac{1}{x} + \frac{4}{y} = 20 \end{cases}$$
에서 $\frac{1}{x} = X$, $\frac{1}{y} = Y$ 라 하면

$$\begin{cases} 2X + 3Y = 10 & \cdots \\ X + 4Y = 20 & \cdots \end{cases}$$

$$X + 4V - 2C$$

 \bigcirc - \bigcirc ×2를 하면 -5Y=-30 $\therefore Y=6$

Y=6을 \bigcirc 에 대입하면 X+24=20 $\therefore X=-4$

$$\frac{1}{r} = -4$$
 에서 $x = -\frac{1}{4}$

$$\frac{1}{y} = 6$$
에서 $y = \frac{1}{6}$

따라서 연립방정식의 해는 $x = -\frac{1}{4}, y = \frac{1}{6}$

답
$$x = -\frac{1}{4}, y = \frac{1}{6}$$

$$\begin{cases} -\frac{1}{x} + \frac{3}{y} = 10\\ \frac{2}{x} - \frac{1}{y} = -5 \end{cases}$$
 에서 $\frac{1}{x} = X$, $\frac{1}{y} = Y$ 라 하면

$$\int -X+3Y=10$$

$${}^{1}_{2X-Y=-5}$$

$$\bigcirc \times 2 + \bigcirc$$
을 하면 $5Y = 15$ $\therefore Y = 3$

Y=3을 \bigcirc 에 대입하면

$$-X+9=10$$
 $\therefore X=-1$

$$\frac{1}{x} = -1$$
에서 $x = -1$

$$\frac{1}{y} = 3$$
에서 $y = \frac{1}{3}$

따라서 $a = -1, b = \frac{1}{3}$ 이므로

$$a+3b=-1+3\times\frac{1}{3}=0$$

답 0

0644
$$\begin{cases} \frac{2}{x} + \frac{1}{y} = \frac{3}{2} \\ \frac{1}{x} + \frac{3}{y} = 2 \end{cases}$$
에서 $\frac{1}{x} = X$, $\frac{1}{y} = Y$ 라 하면

$$\begin{cases} 2X+Y=\frac{3}{2} \\ X+3Y=2 \end{cases} \Rightarrow \begin{cases} 4X+2Y=3 \\ X+3Y=2 \end{cases} \qquad \cdots \cdots \bigcirc$$

$$\bigcirc$$
- \bigcirc ×4를 하면 $-10Y=-5$ $\therefore Y=\frac{1}{2}$

 $Y=\frac{1}{2}$ ©에 대입하면 $X+\frac{3}{2}=2$ $\therefore X=\frac{1}{2}$

$$\frac{1}{x} = \frac{1}{2}$$
에서 $x=2$

$$\frac{1}{y} = \frac{1}{2}$$
에서 $y=2$

따라서 연립방정식의 해는 x=2, y=2 **답** x=2, y=2

STEP 3 내신 마스터

p.106 ~ p.109

0645 전략 미지수가 2개인 일차방정식은 ax+by+c=0(a, b, c)는 상수. $a \neq 0$. $b \neq 0$) 꼴이다.

미지수가 2개인 일차방정식은 ② ②의 2개이다.

0646 전략 주어진 상황을 x, y에 대한 등식으로 나타낸다.

답 2x+y=13

 $x=1, 2, 3, \cdots$ 을 차례로 대입하여 y의 값이 자연수가 되 는 것을 찾는다.

2x+y=11의 해는 (1,9),(2,7),(3,5),(4,3),(5,1)의 5개

0648 전략 먼저 x, y가 자연수일 때, 주어진 일차방정식의 해를 구한

x, y가 자연수일 때, 2x-5y=16의 해는 $(13, 2), (18, 4), (23, 6), (28, 8), (33, 10), (38, 12), \cdots$ 이다

이 중 두 수 x, y의 최소공배수가 36인 것은 (18, 4)이므로

x+y=18+4=22답 ②

0649 전략 주어진 해를 일차방정식에 대입하면 등식이 성립한다.

x=a, y=1을 x+2y+9=0에 대입하면

a+2+9=0 : a=-11

x=-5, y=b를 x+2y+9=0에 대입하면

-5+2b+9=0, 2b=-4 : b=-2

a-b=-11-(-2)=-9

0650 전략 x=-1, y=4를 각 연립방정식에 대입하여 등식이 성립 하는 것을 찾는다.

②
$$x$$
=-1, y =4를 $\begin{cases} x+3y=11 \\ x=y-5 \end{cases}$ 에 대입하면

$$\begin{cases} -1+3\times 4=11 \\ -1=4-5 \end{cases}$$
 답 ②

0651 전략 x = -4를 미지수가 없는 방정식에 대입하여 y의 값을 먼 저 구한다.

x = -4를 y = 3x - 1에 대입하면

y = -12 - 1 = -13

따라서 x=-4, y=-13 = 2x-y=a에 대입하면

-8+13=a : a=5

답 5

0652 전략 \bigcirc 을 x=(y)에 대한 식)으로 나타낸 후 \bigcirc 에 대입한다.

 \bigcirc 에서 x = y에 대한 식으로 나타내면 x = 5y + 3

x=5y+3을 \bigcirc 에 대입하면

3(5y+3)-9y=5, 15y+9-9y=5 : 6y=-4

 $\therefore k=6$

답 ④

0653 전략 y의 계수의 절댓값이 같아지도록 두 일차방정식에 적당 한 수를 곱한다.

답 ④

0654 전략 가감법으로 풀 때. 없애려는 계수의 부호가 같으면 두 식 을 빼고 다르면 두 식을 더한다.

∁을 つ에 대입하면

4x+3x=7,7x=7 : x=1

x=1을 \bigcirc 에 대입하면 y=3

따라서 연립방정식의 해는 x=1, y=3

(2) $\begin{cases} 2x+y=7 \\ x-y=2 \end{cases}$

①+①을 하면 3x=9 $\therefore x=3$

x=3을 ①에 대입하면 3-y=2 $\therefore y=1$

따라서 연립방정식의 해는 x=3, y=1

답 (1) x=1, y=3 (2) x=3, y=1

채점 기준	비율
(가) 대입법을 이용하여 해 구하기	50 %
(내) 가감법을 이용하여 해 구하기	50 %

0655 전략 주어진 해를 연립방정식에 대입하여 a, b에 대한 연립방 정식을 만든다.

x=1, y=-2를 주어진 연립방정식에 대입하면

a+2b=-3

1-2a+b=-4

a=1을 \bigcirc 에 대입하면 1+2b=-3

2b=-4 $\therefore b=-2$

$$(a+b)(a-b)=(1-2)\times(1+2)=-3$$
 답 ①

0656 전략 세 일차방정식 중 미지수가 없는 두 일차방정식으로 연립 방정식을 세워 해를 구한다.

주어진 연립방정식의 해는 세 일차방정식을 모두 만족시키므

로 연립방정식 $\left\{egin{array}{ll} 2x+2y=1 & \cdots\cdots & \bigcirc \\ 3x+y=1 & \cdots\cdots & \bigcirc \end{array}
ight.$ 의 해와 같다.

 \bigcirc - $\bigcirc \times 2$ 를 하면 -4x = -1 $\therefore x = \frac{1}{4}$

 $x=\frac{1}{4}$ 을 \bigcirc 에 대입하면

$$\frac{3}{4}+y=1$$
 $\therefore y=\frac{1}{4}$

따라서 $x=\frac{1}{4}, y=\frac{1}{4}$ 을 4x+8y=a에 대입하면

$$1+2=a$$
 $\therefore a=3$

답 ①

0657 전략 y의 값이 x의 값의 2배이므로 y=2x이다.

x+y=3k1-3x+2y=6-k ······ 句 를 만족시키는 *y*의 ····· (L)

값이 *x*의 값의 2배이므로

····· (7})

©을 \bigcirc 에 대입하면 x+2x=3k, 3x=3k $\therefore x=k$

x=k를 ©에 대입하면 y=2k

....(나)

따라서 x=k, y=2k를 \bigcirc 에 대입하면

$$-3k+4k=6-k.2k=6$$
 : $k=3$

....(다)

답 3

채점기준	비율
$(\operatorname{T})y$ 의 값이 x 의 값의 2 배임을 이용하여 y 를 x 에 대한	30 %
식으로 나타내기	30 /0
$(\mathbf{i}) x, y 를 k$ 에 대한 식으로 나타내기	30 %
(대) k의 값 구하기	40 %

0658 전략 네 일차방정식 중 미지수가 없는 두 일차방정식으로 연립 방정식을 세워 해를 구한다.

$$\int ax+y=4$$

$$\cdots \bigcirc 3x-y=2$$

$$\begin{cases} 2x - y = i \end{cases}$$

$$\begin{cases} ax+y=4 & \cdots \bigcirc \\ 2x-y=4 & \cdots \bigcirc \end{cases} \begin{cases} 3x-y=2 \\ x+by=6 \end{cases}$$

①-ⓒ을 하면 -x=2 ∴ x=-2

x=-2를 ①에 대입하면 -4-y=4 $\therefore y=-8$

따라서 두 연립방정식의 해는 x = -2, y = -8이므로

x = -2, y = -8을 \bigcirc 에 대입하면

$$-2a-8=4, -2a=12$$
 $\therefore a=-6$

$$x=-2, y=-8$$
을 ②에 대입하면

$$-2-8b=6$$
 $-8b=8$ $\therefore b=-1$

$$a+b=-6+(-1)=-7$$

답 -7

두 연립방정식의 해가 서로 같을 때

- ① 미지수가 없는 두 일차방정식으로 연립방정식을 세워 해를 구
- ② ①에서 구한 해를 나머지 두 일차방정식에 각각 대입하여 미지 수의 값을 구한다.

0659 전략 $a \leftarrow b$ 로, $b \leftarrow a$ 로 바꾸어 새로운 연립방정식을 만든다.

$$\int ax+by=2$$

$$ax + by = 2$$
 에서 a 와 b 를 서로 바꾸면 $ax + ay = -10$

$$bx+ay=2$$

$$|ax+by=-10|$$

이 연립방정식의 해가 x = -4, y = 2이므로

$$(-4b+2a=2)$$

$$1-4a+2b=-10$$

 $\bigcirc \times 2 + \bigcirc =$ 하면 -6b = -6 $\therefore b = 1$

b=1을 \bigcirc 에 대입하면 -4+2a=2

2a=6 $\therefore a=3$

$$a-b=3-1=2$$

답 2

0660 전략 형진이는 c = d로 잘못 보았으므로 cx - 7y = 8을 dx-7y=8로 두고 구한 해를 대입한다.

$$x=3,y=-2$$
를 ${ax+by=2 \atop cx-7y=8}$ 에 대입하면

$$3a-2b=2$$

$$3c+14=8, 3c=-6$$
 : $c=-2$

$$x=-2,y=2$$
를 ${ax+by=2 \atop dx-7y=8}$ 에 대입하면

$$-2a+2b=2$$

$$-2d-14=8, -2d=22$$
 $\therefore d=-11$

a=4를 \bigcirc 에 대입하면

$$12-2b=2, -2b=-10$$
 : $b=5$

$$a+b+c+d=4+5+(-2)+(-11)=-4$$

답 -4

0661 전략 분배법칙을 이용하여 괄호를 풀고 동류항끼리 정리한다.

$$\begin{cases} 2(x+y) - 4x = -6 \\ 3x + 4(x-y) = 27 \end{cases} \Rightarrow \begin{cases} -2x + 2y = -6 & \dots & \bigcirc \\ 7x - 4y = 27 & \dots & \bigcirc \end{cases}$$

$$3x+4(x-y)=27$$
 $7x-4y=27$

$$\bigcirc$$
 \times 2+ \bigcirc 을 하면 $3x$ = 15 $\therefore x$ = 5 x = 5 를 \bigcirc 에 대입하면 $-10+2y$ = -6

$$2y=4$$
 $\therefore y=2$

따라서 연립방정식의 해는
$$x=5, y=2$$

답 ④

0662 전략 연립방정식의 해를 구한 후 보기의 일차방정식에 각각 대 입하여 등식이 성립하는 것을 찾는다.

$$0.2(x+y)-0.1y=0.8$$

$$\frac{1}{6}x + \frac{3}{4}y = 2$$

③×10을 하면 2(*x*+*y*)−*y*=8

$$\therefore 2x+y=8$$

$$\bigcirc \times 12$$
를 하면 $2x+9y=24$ ②

$$y=2$$
를 ©에 대입하면 $2x+2=8$, $2x=6$ $\therefore x=3$

④
$$x=3, y=2$$
를 $3x+2y=13$ 에 대입하면

$$3 \times 3 + 2 \times 2 = 13$$

따라서 주어진 연립방정식의 해를 한 해로 갖는 것은 ④이다.

답 ④

계수가 분수이면 ➡ 분모의 최소공배수를 곱한다. 계수가 소수이면 ➡ 10의 거듭제곱을 곱한다.

0663 전략 a:b=c:d이면 ad=bc임을 이용하여 비례식을 일차 방정식으로 나타낸다.

$$(x-1):(y+2)=2:3$$
 ······ \bigcirc

$$\log_{2x+y=5}$$

$$\therefore 3x - 2y = 7 \qquad \cdots \bigcirc$$

$$\bigcirc \times 2 + \bigcirc$$
을 하면 $7x = 17$ $\therefore x = \frac{17}{7}$

$$x=\frac{17}{7}$$
 을 ©에 대입하면 $\frac{34}{7}+y=5$ $\therefore y=\frac{1}{7}$ 따라서 $m=\frac{17}{7}, n=\frac{1}{7}$ 이므로
$$\frac{m}{n}=m\div n=\frac{17}{7}\div\frac{1}{7}=17$$
 답 ④

0664 전략
$$A=B=C$$
 꼴의 방정식은 ${A=B \atop A=C}$ 또는 ${A=B \atop B=C}$ 또는

 $\left\{egin{aligned} A=C \\ B=C \end{aligned}
ight.$ 의 세 연립방정식 중 가장 간단한 것을 선택하여 푼다.

$$\begin{cases} \frac{x+3}{5} = \frac{x-y}{2} & \dots \\ \frac{x+y}{3} = \frac{x-y}{2} & \dots \\ \vdots \end{cases}$$

 $\bigcirc \times 10$ 을 하면 2(x+3)=5(x-y)

- $\therefore 3x 5y = 6$

①×6을 하면 2(x+y)=3(x-y)

- $\therefore x-5y=0$
- \Box -②을 하면 2x=6 $\therefore x=3$

x=3을 ②에 대입하면 3-5y=0 $\therefore y=\frac{3}{5}$

따라서 방정식의 해는 $x=3, y=\frac{3}{5}$ **답** $x=3, y=\frac{3}{5}$

0665 전략 해가 없다. \Rightarrow 두 일차방정식의 x, y의 계수는 각각 같고 상수항은 다르다.

즉 x, y의 계수와 상수항이 각각 같으므로 해가 무수히

즉 x, y의 계수와 상수항이 각각 같으므로 해가 무수히

$$\textcircled{4} \left\{ \begin{matrix} 3x + 2y = -1 \\ 6x + 4y = 2 \end{matrix} \right. \Rightarrow \left\{ \begin{matrix} 6x + 4y = -2 \\ 6x + 4y = 2 \end{matrix} \right.$$

즉x,y의 계수는 각각 같고 상수항이 다르므로 해가 없다. 따라서 연립방정식의 해가 없는 것은 ④이다. 답 ④

0666 전략 두 방정식 중 어느 한 방정식을 변형하였을 때, 나머지 방정식과

> $\neg x, y$ 의 계수와 상수항이 각각 같다. \Rightarrow 해가 무수히 많다. └ x, y의 계수는 각각 같고 상수항은 다르다. ➡ 해가 없다.

$${x+ay=3 \choose 2x+(5-b)y=9}$$
, 독 ${2x+2ay=6 \choose 2x+(5-b)y=9}$ 의 해가 없으므로

$$2a=5-b$$
 $\therefore 2a+b=5$

$$\left\{egin{array}{ll} 2x-(a-3)y=4 \\ 3x+by=6 \end{array}
ight.$$
, 즉 $\left\{egin{array}{ll} 6x-3(a-3)y=12 \\ 6x+2by=12 \end{array}
ight.$ 의 해가 무수 히 많으므로

-3(a-3)=2b $\therefore 3a+2b=9$ $\cdots \bigcirc$

 $\bigcirc \times 2 \bigcirc$ 을 하면 a=1

a=1을 \bigcirc 에 대입하면 2+b=5 $\therefore b=3$

a-b=1-3=-2

답 -2

0667 전략 x항, y항을 모두 좌변으로 이항하여 정리한 후 두 일차방 정식을 비교한다.

$$\begin{cases} x+y=2 & \cdots \\ x+3y=-2x+6 & \cdots \end{aligned} \bigcirc$$

 \square 을 정리하면 x+y=2. 즉 \square 과 x,y의 계수와 상수항이 각 각 같으므로 이 연립방정식은 해가 무수히 많다.(가) 그런데 영주는 연립방정식의 해가 항상 하나뿐이라고 잘못 생각하였다

답 풀이 참조

채점 기준	비율
(가) 연립방정식의 해 구하기	60 %
(나) 잘못 생각한 부분 말하기	40 %

0668 전략 먼저 순환소수를 분수로 나타낸다.

$$\begin{cases} 0.0\dot{3}x + 0.1\dot{2}y = 0.2 \\ x + y = 3.\dot{3} \end{cases}$$
 에서

$$\begin{cases} \frac{3}{90}x + \frac{11}{90}y = \frac{1}{5} \\ x + y = \frac{30}{9} \end{cases} \Rightarrow \begin{cases} 3x + 11y = 18 \\ 3x + 3y = 10 \end{cases} \dots \bigcirc$$

①-①을 하면 8y=8 ∴ y=1

y=1을 \bigcirc 에 대입하면

$$3x+3=10, 3x=7$$
 $\therefore x=\frac{7}{3}$

따라서
$$a=\frac{7}{3}, b=1$$
이므로

$$3a+b=3\times\frac{7}{3}+1=8$$
 답 8

연립방정식의 활용

STEP 1 개념 마스터

p.112

0669 (3)
$$\begin{cases} x+y=10 & \cdots & \bigcirc \\ 500x+900y=7400 \end{cases}$$
 \Rightarrow $\begin{cases} x+y=10 & \cdots & \bigcirc \\ 5x+9y=74 & \cdots & \bigcirc \end{cases}$ $\bigcirc \times 5-\bigcirc \Rightarrow$ 하면 $-4y=-24$ $\therefore y=6$ $y=6$ 을 \bigcirc 에 대입하면 $x+6=10$ $\therefore x=4$ 따라서 연필은 4 자루, 볼펜은 6 자루를 샀다.

답 (1) 10, 900, 7400 (2)
$$\begin{cases} x+y=10 \\ 500x+900y=7400 \end{cases}$$

(3) 연필: 4자루, 볼펜: 6자루

0670 (3)
$$\begin{cases} x+y=17 \\ \frac{x}{3} + \frac{y}{4} = 5 \end{cases} \Rightarrow \begin{cases} x+y=17 \\ 4x+3y=60 \end{cases}$$
 ©

①×3-ⓒ을 하면 -x=-9 ∴ x=9 x=9를 \bigcirc 에 대입하면 9+y=17 $\therefore y=8$ 따라서 걸어간 거리는 9 km, 뛰어간 거리는 8 km이다.

답 (1)
$$\frac{y}{4}$$
, 17, $\frac{y}{4}$ (2) $\left\{\frac{x+y=17}{\frac{x}{3}+\frac{y}{4}=5}\right\}$

(3) 걸어간 거리: 9 km, 뛰어간 거리: 8 km

STEP 2 유형 마스터

p.113 ~ p.122

0671 전략 큰 수를 작은 수로 나누면 몫이 2이고 나머지가 3이므로 $(큰 수)=2 \times (작은 수)+30$ 다.

큰 수를 x. 작은 수를 y라 하면

$$\begin{cases} x + y = 48 \\ x = 2y + 3 \end{cases} \quad \therefore x = 33, y = 15$$

따라서 큰 수에서 작은 수를 뺀 값은

0672 큰 수를 x, 작은 수를 y라 하면

$$\int x+y=7$$

$$\begin{cases} x+y & \therefore \\ 2x=y+20 & \therefore x=9, y=-2 \end{cases}$$

따라서 두 정수의 곱은

$$9 \times (-2) = -18$$

0673 큰 수를 x. 작은 수를 y라 하면

$$\begin{cases} x = 3y + 3 \\ y + 35 = 2x + 4 \end{cases} \Rightarrow \begin{cases} x - 3y = 3 \\ 2x - y = 31 \end{cases}$$

 $\therefore x=18, y=5$

따라서 작은 수는 5이다.

답 5

0674 전략 십의 자리의 숫자가 x, 일의 자리의 숫자가 y인 두 자리 자 연수는 10x+y이다.

처음 수의 십의 자리의 숫자를 x, 일의 자리의 숫자를 y라 하

 $\therefore x=5, y=9$

따라서 처음 수는 59이다.

답 59

0675 십의 자리의 숫자를 x. 일의 자리의 숫자를 y라 하면

$$\begin{cases} y = 2x - 5 \\ 12 \end{cases}$$
 $\therefore x = 7, y = 9$

|x+y=16|

따라서 일의 자리의 숫자는 9이다. 답 9

0676 처음 수의 십의 자리의 숫자를 x. 일의 자리의 숫자를 y라 하

 $\therefore x=2, y=3$

따라서 처음 수는 23이다.

....(다) 답 23

채점 기준	비율
(가) 미지수 <i>x</i> , <i>y</i> 정하기	20 %
(나) 연립방정식 세우기	40 %
(대) 처음 수 구하기	40 %

0677 전략 A 아이스크림 한 개의 가격을 x원, B 아이스크림 한 개의 가격을 y원으로 놓고 연립방정식을 세운다.

> A 아이스크림 한 개의 가격을 x원, B 아이스크림 한 개의 가 격을 y원이라 하면

$$y = x + 500$$

$$\begin{cases} 5x + 3y = 9500 \\ 5x + 3y = 9500 \end{cases} \therefore x = 1000, y = 1500$$

따라서 B 아이스크림 한 개의 가격은 1500원이다.

답 1500원

0678 대인 1명의 요금을 x원, 소인 1명의 요금을 y원이라 하면

.....(71)

....(나)

$$\int 3x + y = 46000$$

$$12x+3y=47000$$

$$\therefore x = 13000, y = 7000$$

....(다)

답 7000원

채점 기준	비율
(가) 미지수 <i>x</i> , <i>y</i> 정하기	20 %
(나) 연립방정식 세우기	40 %
(대) 소인 1명의 요금 구하기	40 %

0679 전략 떡볶이 1인분의 가격을 x원, 튀김 1개의 가격을 y원으로 놓고 연립방정식을 세운다.

떡볶이 1인분의 가격을 x원, 튀김 1개의 가격을 y원이라 하면

x = 3200, y = 1800

따라서 떡볶이 3인분과 튀김 2개를 사고 지불해야 하는 금액 음 3200 × 3+1800 × 2=13200(원) **단** 13200원

0680 전략 입장한 어른의 수를 x명, 어린이의 수를 y명으로 놓고 연 리방정신을 세우다

입장한 어른의 수를 x명, 어린이의 수를 y명이라 하면

 $\therefore x=9, y=5$

따라서 어린이는 5명 입장하였다.

답 5명

0681 지영이가 산 치즈 케이크의 개수를 x개, 초콜릿 머핀의 개수 를 y개라 하면

따라서 지영이가 산 치즈 케이크의 개수는 4개, 초콜릿 머핀 의 개수는 8개이므로 초콜릿 머핀을 8-4=4(개) 더 샀다.

답 초콜릿 머핀을 4개 더 샀다.

0682 연주 시간이 4분인 연주곡의 수를 x곡, 연주 시간이 5분인 연 주곡의 수를 y곡이라 하면

$$\begin{cases} x + y = 13 \\ 4x + 5y + \frac{10}{60} \times 12 = 60 \end{cases} \Rightarrow \begin{cases} x + y = 13 \\ 4x + 5y = 58 \end{cases}$$

 $\therefore x=7, y=6$

따라서 연주 시간이 5분인 연주곡은 6곡이다.

답 6곡

0683 전략 현재 아버지의 나이를 x살, 아들의 나이를 y살이라 하면 10년 후 아버지의 나이는 (x+10)살. 아들의 나이는 (y+10)살 이다.

현재 아버지의 나이를 x살, 아들의 나이를 y살이라 하면

 $\therefore x=34, y=6$

따라서 현재 아버지의 나이는 34살, 아들의 나이는 6살이다.

답 아버지: 34살, 아들: 6살

0684 현재 어머니의 나이를 x살, 딸의 나이를 y살이라 하면

x = 42, y = 13

따라서 현재 어머니의 나이는 42살, 딸의 나이는 13살이므로 16년 후 어머니의 나이는 42+16=58(살), 딸의 나이는 13+16=29(살)이다.

답 어머니 : 58살, 딸 : 29살

0685 현재 삼촌의 나이를 x살, 동준이의 나이를 y살이라 하면

$$\begin{cases} x - 10 = 3(y - 10) \\ x + 4 = 2(y + 4) \end{cases} \Rightarrow \begin{cases} x - 3y = -20 \\ x - 2y = 4 \end{cases}$$

x = 52, y = 24

따라서 현재 삼촌의 나이는 52살, 동준이의 나이는 24살이 **답** 삼촌 : 52살, 동준 : 24살

0686 전략 (직사각형의 둘레의 길이)

 $=2 \times \{($ 가로의 길이)+(세로의 길이 $)\}$ 임을 이용한다.

처음 직사각형의 가로의 길이를 x cm, 세로의 길이를 y cm 라 하면

$$\begin{cases} 2(x+y) = 110 \\ x+4 = y-5 \end{cases} \Rightarrow \begin{cases} x+y = 55 \\ x-y = -9 \end{cases}$$

x = 23, y = 32

따라서 처음 직사각형의 가로의 길이는 23 cm, 세로의 길이 는 32 cm이다.

답 가로의 길이: 23 cm, 세로의 길이: 32 cm

0687 직사각형 모양의 종이 한 장의 가로의 길이를 $x \, \text{cm}$, 세로의 길이를 y cm라 하면 (단, x>y)

$$\begin{cases} 3x = 4y \\ 2(x+y) \times 6 = 84 \end{cases} \Rightarrow \begin{cases} 3x - 4y = 0 \\ x + y = 7 \end{cases}$$

 $\therefore x=4, y=3$

따라서 색칠한 부분의 넓이는

$$(4 \times 3) \times 6 = 72 \text{ (cm}^2)$$

답 72 cm²

0688 타일 한 장의 가로의 길이를 $x \, \text{cm}$. 세로의 길이를 $y \, \text{cm}$ 라 하면 (단, *x*>*y*)

 $\therefore x=5, y=3$

따라서 타일 한 장의 둘레의 길이는

$$2 \times (5+3) = 16 \text{ (cm)}$$

답 16 cm

단 15회

0689 전략 덕선이가 이긴 횟수를 x회, 진 횟수를 y회라 하면 현지가 이긴 횟수는 y회, 진 횟수는 x회이다.

> 덕선이가 이긴 횟수를 x회, 진 횟수를 y회라 하면 현지가 이 긴 횟수는 y회, 진 횟수는 x회이므로

$$\begin{cases} 3x - 2y = 19 \\ 3y - 2x = 9 \end{cases} \Rightarrow \begin{cases} 3x - 2y = 19 \\ 2x - 3y = -9 \end{cases}$$

 $\therefore x=15, y=13$

따라서 덕선이가 이긴 횟수는 15회이다.

0690 민수가 맞힌 문제 수를 x문제, 틀린 문제 수를 y문제라 하면

$$\begin{cases} x + y = 30 \\ 3x - y = 62 \end{cases} \quad \therefore x = 23, y = 7$$

따라서 민수가 틀린 문제 수는 7문제이다. **답** 7문제 **0691** 노새의 짐을 x자루, 당나귀의 짐을 y자루라 하면

 $\therefore x=7, y=5$

따라서 당나귀의 짐은 5자루이다.

답 5자루

0692 전략 작년 남학생 수를 x명, 여학생 수를 y명으로 놓고 연립방 정식을 세우다.

작년 남학생 수를 x명, 여학생 수를 y명이라 하면

$$\begin{cases} x+y=1000 \\ -\frac{2}{100}x+\frac{5}{100}y=22 \end{cases} \Rightarrow \begin{cases} x+y=1000 \\ -2x+5y=2200 \end{cases}$$

 $\therefore x = 400, y = 600$

따라서 올해 남학생 수는 $400 \times \frac{98}{100} = 392(명)$,

여학생 수는 $600 \times \frac{105}{100} = 630(명)$ 이다.

답 남학생: 392명, 여학생: 630명

0693 작년 사과의 수확량을 x상자, 배의 수확량을 y상자라 하면

 $\therefore x = 350, y = 180$

따라서 올해 배의 수확량은

$$180 \times \frac{130}{100} = 234$$
(상자)이다.

답 234상자

0694 지난달 정후와 예빈이의 휴대전화 요금을 각각 x원, y원이라 하면

$$\begin{cases} x + y = 80000 \\ -\frac{10}{100}x + \frac{30}{100}y = 80000 \times \frac{5}{100} \end{cases} \Rightarrow \begin{cases} x + y = 80000 \\ -x + 3y = 40000 \end{cases}$$

 $\therefore x = 50000, y = 30000$

따라서 이번 달 정후의 휴대전화 요금은

$$50000 \times \frac{90}{100} = 45000(1)$$
,

예빈이의 휴대전화 요금은 $30000 \times \frac{130}{100} = 39000(원)$ 이므로

그 차는 45000 - 39000 = 6000(원)이다.

답 6000원

0695 (시간)= (거리) (속력) 임을 이용하여 걸린 시간에 대한 방정식을

갈 때의 거리를 x km, 올 때의 거리를 y km라 하면

$$\begin{cases} x + y = 21 \\ \frac{x}{6} + \frac{y}{8} = 3 \end{cases} \Rightarrow \begin{cases} x + y = 21 \\ 4x + 3y = 72 \end{cases}$$

 $\therefore x=9, y=12$

따라서 갈 때의 거리는 $9~\mathrm{km}$, 올 때의 거리는 $12~\mathrm{km}$ 이다.

답 갈 때의 거리 : 9 km, 올 때의 거리 : 12 km

0696 올라간 거리를 x km, 내려온 거리를 y km라 하면

$$\begin{cases} y = x + 1 \\ \frac{x}{2} + \frac{y}{5} = 3 \end{cases} \Rightarrow \begin{cases} y = x + 1 \\ 5x + 2y = 30 \end{cases} \quad \therefore x = 4, y = 5$$

따라서 내려온 거리는 5 km이다.

답 5 km

0697 갈 때의 거리를 $x \, \text{km}$. 올 때의 거리를 $y \, \text{km}$ 라 하면

$$\begin{cases} x + y = 4.5 \\ \frac{x}{3} + \frac{1}{6} + \frac{y}{4} = \frac{3}{2} \end{cases} \Rightarrow \begin{cases} 2x + 2y = 9 \\ 4x + 3y = 16 \end{cases} \qquad \qquad \text{(L)}$$

 $\therefore x=2.5, y=2$

따라서 갈 때의 거리는 $2.5~\mathrm{km}$, 올 때의 거리는 $2~\mathrm{km}$ 이다.

....(다)

답 갈 때의 거리 : 2,5 km, 올 때의 거리 : 2 km

채점 기준	비율
(가) 미지수 x, y 정하기	20 %
(나) 연립방정식 세우기	40 %
(다) 갈 때의 거리와 올 때의 거리 구하기	40 %

0698 전략 (시간)= (거리) 임을 이용하여 걸린 시간에 대한 방정식을

해리가 달려간 거리를 x km, 걸어간 거리를 y km라 하면

따라서 해리가 달려간 거리는 $6~\mathrm{km}$, 걸어간 거리는 $4~\mathrm{km}$ 이다. 답 달려간 거리 : $6~\mathrm{km}$, 걸어간 거리 : $4~\mathrm{km}$

 $\mathbf{0699}$ 시아가 뛰어간 거리를 x km, 버스를 타고 간 거리를 y km 라 하며

따라서 시아가 뛰어간 거리는 1 km이다.

답 1 km

0700 현은이가 버스를 타고 간 거리를 x km, 걸어간 거리를 y km라 하며

$$\begin{cases} x+y=20 \\ \frac{x}{60} + \frac{20}{60} + \frac{y}{3} = \frac{50}{60} \end{cases} \Rightarrow \begin{cases} x+y=20 \\ x+20y=30 \end{cases}$$

 $\therefore x = \frac{370}{19}, y = \frac{10}{19}$

따라서 현은이가 걸어간 거리는 $\frac{10}{19}$ km이다. 답 $\frac{10}{19}$ km

0701 전략 혜성이와 민수가 이동한 거리는 같음을 이용하여 방정식을 세운다.

혜성이가 출발한 지x분, 민수가 출발한 지y분 후에 두 사람이 만난다고 하면

$$\begin{cases} x = y + 10 \\ 300x = 400y \end{cases} \Rightarrow \begin{cases} x = y + 10 \\ 3x = 4y \end{cases} \quad \therefore x = 40, y = 30$$

따라서 두 사람이 만나게 되는 것은 민수가 출발한 지 30분 후이다. **답** 30분

0702 A가 출발한 지 *x*분, B가 출발한 지 *y*분 후에 A와 B가 만났다고 하면(개

$$\begin{cases} x = y + 15 \\ 90x - 200y \end{cases}$$
(4)

$$\Rightarrow \begin{cases} x = y + 15 \\ 2x = 5y \end{cases} \quad \therefore x = 25, y = 10$$

따라서 B가 출발한 지 10분 후에 A를 만났다. \cdots \cdots \Box

답 10분

채점 기준	비율
(가) 미지수 <i>x</i> , <i>y</i> 정하기	20 %
(나) 연립방정식 세우기	40 %
따 B가 출발한 지 몇 분 후에 A를 만났는지 구하기	40 %

0703 동생이 산책을 나간 지 *x*분, 형이 산책을 나간 지 *y*분 후에 형과 동생이 만난다고 하면

$$\begin{cases} x = y + 24 \\ 40x = 100y \end{cases} \Rightarrow \begin{cases} x = y + 24 \\ 2x = 5y \end{cases} \quad \therefore x = 40, y = 16$$

따라서 형이 산책을 나간 지 16분 후에 동생을 만나게 된다.

답 16분

0704 전략 두 사람이 호수의 둘레를 같은 방향으로 돌 때와 반대 방향으로 돌 때 각각의 방정식을 세운다.

A의 속력을 시속 x km, B의 속력을 시속 y km라 하면

따라서 \mathbf{A} 의 속력은 시속 $\frac{5}{2}$ km이고, \mathbf{B} 의 속력은

시속 $\frac{3}{2}$ km이다. 답 A : 시속 $\frac{5}{2}$ km, B : 시속 $\frac{3}{2}$ km

0705 진우의 속력을 분속 x m, 서연이의 속력을 분속 y m라 하면 (5x+5y=1800) (x+y=360)

$${5x+5y=1800 \atop 60x-60y=1800} \Rightarrow {x+y=360 \atop x-y=30}$$

x = 195, y = 165

따라서 진우의 속력은 분속 195 m이다. **답** 분속 195 m

0706 동완이의 속력을 분속 x m, 소희의 속력을 분속 y m라 하면

$$\begin{cases} x: y = 600: 500 \\ 15x + 15y = 1650 \end{cases} \Rightarrow \begin{cases} 5x - 6y = 0 \\ x + y = 110 \end{cases}$$

x = 60, y = 50

따라서 소희의 속력은 분속 50 m이므로 소희가 호수를 한 바퀴 도는 데 걸리는 시간은

0707 전략 (소금의 양) $=\frac{(소금물의 농도)}{100} \times (소금물의 양)임을 이용$

하여 방정식을 세운다.

6%의 소금물의 양을 x g, 2%의 소금물의 양을 y g이라 하면

$$\begin{cases} x + y = 300 \\ \frac{6}{100}x + \frac{2}{100}y = \frac{5}{100} \times 300 \end{cases} \Rightarrow \begin{cases} x + y = 300 \\ 3x + y = 750 \end{cases}$$

x = 225, y = 75

따라서 6 %의 소금물 225 g과 2 %의 소금물 75 g을 섞으면 된다. **답** 6 %의 소금물 : 225 g, 2 %의 소금물 : 75 g

0708 12 %의 소금물의 양을 x g, 더 넣어야 하는 소금의 양을 y g 이라 하면

 $\therefore x = 300, y = 100$

따라서 더 넣어야 하는 소금의 양은 100 g이다. 답 100 g

0709 6 %의 설탕물의 양을 x g, 10 %의 설탕물의 양을 y g이라 하면

$$\begin{cases} x + y + 200 = 1200 \\ \frac{6}{100}x + \frac{10}{100}y = \frac{7}{100} \times 1200 \end{cases} \Rightarrow \begin{cases} x + y = 1000 \\ 3x + 5y = 4200 \end{cases}$$

 $\therefore x = 400, y = 600$

따라서 6%의 설탕물 400 g과 10%의 설탕물 600 g을 섞었다. 답 6%의 설탕물 : 400 g, 10%의 설탕물 : 600 g

0710 전략 소금의 양은 변하지 않으므로 소금의 양에 대한 방정식을 세우다

소금물 A의 농도를 x %, 소금물 B의 농도를 y %라 하면

$$\begin{cases}
\frac{x}{100} \times 100 + \frac{y}{100} \times 200 = \frac{6}{100} \times 300 \\
\frac{x}{100} \times 200 + \frac{y}{100} \times 100 = \frac{8}{100} \times 300
\end{cases}$$

$$\Rightarrow \begin{cases} x+2y=18 \\ 2x+y=24 \end{cases} \quad \therefore x=10, y=4$$

따라서 소금물 A의 농도는 10 %, 소금물 B의 농도는 4 %이다. 답 소금물 A: 10 %, 소금물 B: 4 %

0711 $extit{ 소금물 A의 농도를 } x\%$, $extit{ 소금물 B의 농도를 } y\%$ 라 하면

$$\begin{cases} \frac{x}{100} \times 300 + \frac{y}{100} \times 200 = \frac{8}{100} \times 500 \\ \frac{x}{100} \times 200 + \frac{y}{100} \times 300 = \frac{9}{100} \times 500 \end{cases}$$
(4)
$$\Rightarrow \begin{cases} 3x + 2y = 40 \\ 2x + 3y = 45 \end{cases} \therefore x = 6, y = 11$$

따라서 소금물 A의 농도는 6%, 소금물 B의 농도는 11%이다.

답 소금물 A:6%, 소금물 B:11%

채점 기준	비율
(가) 미지수 <i>x</i> , <i>y</i> 정하기	20 %
(나) 연립방정식 세우기	40 %
대 두 소금물 A, B의 농도 구하기	40 %

0712 설탕물 \mathbf{A} 의 농도를 x %, 설탕물 \mathbf{B} 의 농도를 y %라 하면

$$\begin{cases} \frac{x}{100} \times 400 + \frac{y}{100} \times 200 = \frac{10}{100} \times 600 \\ \frac{x}{100} \times 200 + \frac{y}{100} \times 400 = \frac{6}{100} \times 600 \end{cases}$$

$$\Rightarrow \begin{cases} 2x + y = 30 \\ x + 2y = 18 \end{cases} \quad \therefore x = 14, y = 2$$

따라서 설탕물 B의 농도는 2 %이다.

답 2 %

0713 전략 원가 a원에 x %의 이익을 붙였을 때 , 이익은 $\left(a \times \frac{x}{100}\right)$ 원이다.

판매한 A 상품의 개수를 x개, B 상품의 개수를 y개라 하면 (x+y=80

$$\left\{400 \times \frac{70}{100} x + 300 \times \frac{30}{100} y = 10240\right\}$$

$$\Rightarrow \begin{cases} x + y = 80 \\ 28x + 9y = 1024 \end{cases} \quad \therefore x = 16, y = 64$$

따라서 A 상품은 16개 팔았다.

답 16개

0714 미니 케이크 1개의 원가를 x원, 쿠키 1개의 원가를 y원이라 하면 $\cdots\cdots$ (π)

$$\Rightarrow \begin{cases} x + 11y = 25200 \\ x + 10y = 24000 \end{cases} \quad \therefore x = 12000, y = 1200$$

따라서 미니 케이크 1개의 원가는 12000원이므로 미니 케이크 1개의 정가는 $12000 \times \frac{110}{100} = 13200(원)$ 이다. · · · · · · (대)

답 13200원

채점 기준	비율
(가) 미지수 x, y 정하기	20 %
(나) 연립방정식 세우기	40 %
(대) 미니 케이크 1개의 정가 구하기	40 %

0715 A 상품의 원가를 x원, B 상품의 원가를 y원이라 하면

	A 상품	B 상품	합계
원가(원)	\boldsymbol{x}	y	6000
정가(원)	$\frac{120}{100} \times x$	$\frac{120}{100} \times y$	
판매가(원)	$\frac{120}{100}x \times \frac{80}{100}$	$\frac{120}{100}y \times \frac{90}{100}$	6390

$$\begin{cases} x + y = 6000 \\ \frac{120}{100}x \times \frac{80}{100} + \frac{120}{100}y \times \frac{90}{100} = 6390 \end{cases}$$

$$\Rightarrow \begin{cases} x + y = 6000 \\ 8x + 9y = 53250 \end{cases} \quad \therefore x = 750, y = 5250$$

따라서 A 상품의 원가는 750원, B 상품의 원가는 5250원이다. 답 A 상품 : 750원, B 상품 : 5250원

0716 전략 전체 일의 양을 1, 정민이와 혜원이가 하루에 할 수 있는 일의 양을 각각 *x. y*로 놓고 연립방정식을 세운다.

전체 일의 양을 1이라 하고, 정민이와 혜원이가 하루에 할 수 있는 일의 양을 각각 x, y라 하면

$$\begin{cases} 15x + 15y = 1 \\ 18x + 10y = 1 \end{cases} \quad \therefore x = \frac{1}{24}, y = \frac{1}{40}$$

따라서 정민이가 혼자 하면 24일이 걸린다. 답 24일

0717 전체 일의 양을 1이라 하고, 종석이와 현우가 하루에 할 수 있는 일의 양을 각각 *x*, *y*라 하면

$$\begin{cases} 4x + 10y = 1 \\ 10x + 7y = 1 \end{cases} \quad \therefore x = \frac{1}{24}, y = \frac{1}{12}$$

따라서 두 사람이 함께 일을 할 때 하루에 할 수 있는 일의 양 은 $\frac{1}{24} + \frac{1}{12} = \frac{1}{8}$ 이므로 두 사람이 함께 한다면 8일이 걸린 다. **답** 8일

0718 물탱크에 물을 가득 채웠을 때의 물의 양을 1이라 하고, A 호 스와 B 호스로 1시간 동안 채울 수 있는 물의 양을 각각 x,y 라 하며

$$\begin{cases} 4x + 9y = 1 \\ 15y = 1 \end{cases} \quad \therefore x = \frac{1}{10}, y = \frac{1}{15}$$

따라서 A 호스만 사용하면 10시간이 걸린다. **답** 10시간

0719 전략 배가 강을 거슬러 올라갈 때와 강을 따라 내려올 때의 거리에 대한 방정식을 각각 세운다.

흐르지 않는 물에서의 배의 속력을 시속 x km, 강물의 속력을 시속 y km라 하면

따라서 흐르지 않는 물에서의 배의 속력은 시속 15 km, 강물의 속력은 시속 5 km이다.

답 흐르지 않는 물에서의 배의 속력 : 시속 15 km, 강물의 속력 : 시속 5 km

0720 흐르지 않는 물에서의 유람선의 속력을 시속 x km, 강물의 속력을 시속 y km라 하면

$$\begin{cases} \frac{5}{3}(x-y) = 15 \\ x+y = 15 \end{cases} \longrightarrow \begin{cases} x-y=9 \\ x+y=15 \end{cases} \qquad \therefore x = 12, y = 3$$

따라서 흐르지 않는 물에서의 유람선의 속력은 시속 $12~\mathrm{km}$ 이다. 답 시속 $12~\mathrm{km}$

0721 강물의 속력을 분속 x m, 두 선착장 사이의 거리를 y m라 하면

$$\begin{cases} 20(10+x) = y \\ 50(10-x) = y \end{cases} \Rightarrow \begin{cases} 20x - y = -200 \\ 50x + y = 500 \end{cases}$$
$$\therefore x = \frac{30}{7}, y = \frac{2000}{7}$$

따라서 두 선착장 사이의 거리는 $\frac{2000}{7}$ m이다.

답 $\frac{2000}{7}$ m

0722 전략 기차가 터널 또는 철교를 완전히 지날 때 이동한 거리는 (기차의 길이)+(터널 또는 철교의 길이)이다.

기차의 길이를 x m, 기차의 속력을 분속 y m라 하면

$$\begin{cases} x + 1700 = y \\ x + 3500 = 2y \end{cases} \quad \therefore x = 100, y = 1800$$

따라서 기차의 길이는 $100~\mathrm{m}$, 기차의 속력은 분속 $1800~\mathrm{m}$ 이다.

답 기차의 길이 : 100 m, 기차의 속력 : 분속 1800 m

0723 기차의 길이를 x m, 기차의 속력을 초속 y m라 하면

$$\begin{cases} x + 320 = 30y \\ x + 440 = 40y \end{cases} \therefore x = 40, y = 12 \qquad \cdots (4)$$
 따라서 기차의 길이는 40 m 이다. \cdots (대) 답 40 m

채점 기준	비율
(가) 미지수 <i>x</i> , <i>y</i> 정하기	20 %
(나) 연립방정식 세우기	50 %
(대 기차의 길이 구하기	30 %

0724 화물 열차의 길이를 x m, 화물 열차의 속력을 초속 y m라 하면 일반 열차의 길이는 (x-60) m, 일반 열차의 속력은 초속 2y m이므로

$$\begin{cases} x + 570 = 50y \\ (x - 60) + 570 = 23 \times 2y \end{cases} \Rightarrow \begin{cases} x - 50y = -570 \\ x - 46y = -510 \end{cases}$$
 $\therefore x = 180, y = 15$ 따라서 화물 열차의 길이는 180 m이다. 답 180 n

0725 전략 전체 지원자 중 남녀의 수의 비가 5:3이므로 남자 지원자의 수는 $(전체 지원자 수) \times \frac{5}{8}$ 이다.

(3)
$$\begin{cases} 100 + y = x \\ 60 + \frac{7}{11}y = \frac{5}{8}x \end{cases} \Rightarrow \begin{cases} x = 100 + y \\ 55x - 56y = 5280 \end{cases}$$
$$\therefore x = 320, y = 220$$

$$(4)320 \times \frac{5}{8} = 200(명)$$

답 (1) 60, 7,
$$\frac{5}{8}$$
 (2) $\begin{cases} 100+y=x\\ 60+\frac{7}{11}y=\frac{5}{8}x \end{cases}$ (3) $x=320, y=220$ (4) 200명

0726 지원자 중 남학생 수를 x명, 여학생 수를 y명이라 하면 불합격자 중 남학생 수는 (x-50)명, 여학생 수는 (y-20) 명이므로

x = 200, y = 100

따라서 지원자 중 남학생 수는 200명, 여학생 수는 100명이 므로 전체 지원자의 수는 200+100=300(명)이다.

답 300명

0727 전략 (금속의 양)= (금속의 비율) × (합금의 양)임을 이용한다.

(2)
$$\begin{cases} \frac{30}{100}x + \frac{20}{100}y = 6\\ \frac{20}{100}x + \frac{30}{100}y = 5 \end{cases} \Rightarrow \begin{cases} 3x + 2y = 60\\ 2x + 3y = 50 \end{cases}$$

$$\therefore x=16, y=6$$

답 (1)
$$\begin{cases} \frac{30}{100}x + \frac{20}{100}y = 6\\ \frac{20}{100}x + \frac{30}{100}y = 5 \end{cases}$$
 (2) $x = 16, y = 6$

(3) 합금 A: 16 kg, 합금 B: 6 kg

0728 섭취해야 하는 식품 A의 양을 *x* g, 식품 B의 양을 *y* g이라 하면

$$\begin{cases} \frac{20}{100}x + \frac{40}{100}y = 30\\ \frac{30}{100}x + \frac{10}{100}y = 25 \end{cases} \Rightarrow \begin{cases} x + 2y = 150\\ 3x + y = 250 \end{cases}$$

 $\therefore x=70, y=40$

따라서 식품 A는 70 g 섭취해야 한다.

답 70 g

0729 A 회사 제품이 x병, B 회사 제품이 y병 필요하다고 하면 (200x + 200y = 1000)

$$\begin{cases} 200x + 200y = 1000 \\ \frac{40}{100} \times 200x + \frac{90}{100} \times 200y = \frac{70}{100} \times 1000 \\ \Rightarrow \begin{cases} x + y = 5 \\ 4x + 9y = 35 \end{cases} \quad \therefore \ x = 2, y = 3 \end{cases}$$

따라서 A 회사 제품은 2병이 필요하다. **답** 2병

STEP 3 내신 마스터

p.123 ~ p.125

0730 집의 자리의 숫자가 x, 일의 자리의 숫자가 y인 두 자리의 자연수는 10x+y이다.

처음 수의 십의 자리의 숫자를 x, 일의 자리의 숫자를 y라 하면

$$\begin{cases} y = x + 3 \\ 10y + x = 2(10x + y) + 2 \end{cases} \Rightarrow \begin{cases} y = x + 3 \\ 19x - 8y = -2 \end{cases}$$

$$\therefore x = 2, y = 5$$
 따라서 처음 수는 25이다. 답 25

0731 전략 가격에 대한 방정식을 세운다.

0732 전략 연필 1자루의 가격을 x원, 공책 1권의 가격을 y원으로 놓고 연립방정식을 세운다.

연필 1자루의 가격을 x원, 공책 1권의 가격을 y원이라 하면 $\begin{cases} 6x + 4y = 6400 \\ 8x + 2y = 5200 \end{cases} \Rightarrow \begin{cases} 3x + 2y = 3200 \\ 4x + y = 2600 \end{cases}$

 $\therefore x = 400, y = 1000$

따라서 연필 1자루의 가격은 400원이다.

답 ③

0733 전략 B팀이 전반전에 얻은 점수를 x점, 후반전에 얻은 점수를 y점이라 하면 A팀이 전반전에 얻은 점수는 2x점, 후반전에 얻은 점수는 (y-15)점이다.

B팀이 전반전에 얻은 점수를 x점, 후반전에 얻은 점수를 y점 이라 하면 A팀이 전반전에 얻은 점수는 2x점, 후반전에 얻은 점수는 (y-15)점이다.

$$\begin{cases} 2x + (y - 15) = 43 \\ x + y = 45 \end{cases} \Rightarrow \begin{cases} 2x + y = 58 \\ x + y = 45 \end{cases}$$

x=13, y=32

따라서 B팀이 후반전에 얻은 점수는 32점이다. 답 32점

0734 전략 현재 어머니의 나이를 x살, 딸의 나이를 y살이라 하면 10년 전 어머니의 나이는 (x-10)살, 딸의 나이는 (y-10)살 이다.

현재 어머니의 나이를 x살, 딸의 나이를 y살이라 하면

..... 6

ਿਸ਼ਤੀ
$$x=3y$$
 (ਪ) $x-10=4(y-10)+15$

$$\Rightarrow \begin{cases} x = 3y \\ x - 4y = -15 \end{cases} \quad \therefore x = 45, y = 15$$

따라서 현재 어머니의 나이는 45살, 딸의 나이는 15살이다.

답 어머니 : 45살, 딸 : 15살

채점기준	비율
(가) 미지수 x, y 정하기	20 %
(나) 연립방정식 세우기	40 %
(대) 현재 어머니와 딸의 나이 각각 구하기	각 20 %

0735 전략 (직사각형의 둘레의 길이)

 $=2 \times \{($ 가로의 길이)+(세로의 길이 $)\}$ 임을 이용한다.

직사각형의 가로의 길이를 x cm, 세로의 길이를 y cm라 하면

x = 18, y = 10

따라서 직사각형의 세로의 길이는 10 cm이다. 답 10 cm

0736 정삼각형의 변의 개수는 3개, 정사각형의 변의 개수는 4개 임을 이용한다.

만들 수 있는 정삼각형의 개수를 x개, 정사각형의 개수를 y개라 하면

$$\begin{cases} x + y = 8 \\ 3x + 4y = 28 \end{cases} \quad \therefore x = 4, y = 4$$

따라서 만들 수 있는 정삼각형의 개수는 4개이다. 답 ④

0737 전략 (직사각형의 둘레의 길이)

 $=2 \times \{($ 가로의 길이)+(세로의 길이 $)\}$ 임을 이용한다.

처음 직사각형의 가로의 길이를 x cm, 세로의 길이를 y cm 라 하면

$$\begin{cases} 2(x+y) = 56 \\ 2\left(\frac{150}{100}x + \frac{80}{100}y\right) = 56 \times \frac{125}{100} \\ \Rightarrow \begin{cases} x+y = 28 \\ 15x + 8y = 350 \end{cases} \quad \therefore x = 18, y = 10 \end{cases}$$

따라서 처음 직사각형의 가로의 길이는 $18~{
m cm}$, 세로의 길이는 $10~{
m cm}$ 이므로 그 넓이는 $18 \times 10 = 180~({
m cm}^2)$

답 180 cm²

0738 전략 주연이가 이긴 횟수를 x회, 진 횟수를 y회라 하면 상현이 가 이긴 횟수는 y회, 진 횟수는 x회이다.

주연이가 이긴 횟수를 x회, 진 횟수를 y회라 하면 상현이가 이긴 횟수는 y회, 진 횟수는 x회이므로

$${ \begin{cases} 4x - 2y = 16 \\ 4y - 2x = 4 \end{cases}} \Rightarrow { \begin{cases} 2x - y = 8 \\ x - 2y = -2 \end{cases}}$$

 $\therefore x=6, y=4$

따라서 주연이가 이긴 횟수는 6회이다. 답 ③

0739 작년 사과와 배의 수확량을 각각 *x*상자, *y*상자로 놓고 연 립방정식을 세운다.

작년 사과의 수확량을 x상자, 배의 수확량을 y상자라 하면

$$\begin{cases} x + y = 500 \\ -\frac{5}{100}x + \frac{10}{100}y = 500 \times \frac{4}{100} \end{cases} \dots \dots (4)$$

$$\Rightarrow \begin{cases} x + y = 500 \\ x - 2y = -400 \end{cases} \therefore x = 200, y = 300$$

따라서 올해 사과의 수확량은 $200 \times \frac{95}{100} = 190(상자)$,

답 사과: 190상자, 배: 330상자

채점 기준	비율
(가) 미지수 <i>x</i> , <i>y</i> 정하기	20 %
(내) 연립방정식 세우기	40 %
(II) 올해 사과와 배의 수확량 각각 구하기	각 20 %

0740 전략 (시간)= (거리) (속력) 임을 이용하여 걸린 시간에 대한 방정식을 세운다.

학교에서 도서관까지의 거리를 x km, 도서관에서 미술관까지의 거리를 y km라 하면

$$\begin{cases} \frac{x+y=27}{x} \\ \frac{x}{32} + \frac{y}{4} = \frac{3}{2} \end{cases} \Rightarrow \begin{cases} x+y=27 \\ x+8y=48 \end{cases} \quad \therefore x=24, y=3$$

따라서 도서관에서 미술관까지의 거리는 3 km이다.

답 3 km

Lecture
$$+$$
 (속력)= $\frac{(거리)}{(시간)}$, $(거리)=(속력)\times(시간)$, $(시간)=\frac{(거리)}{(속력)}$

0741 전략 형과 동생이 만날 때까지 이동한 거리는 같음을 이용하여 방정식을 세운다.

형과 동생이 만날 때까지 동생이 걸은 시간을 x시간, 형이 걸은 시간을 y시간이라 하면

$$\begin{cases} x = y + \frac{1}{2} \\ x = 1.5y \end{cases} \Rightarrow \begin{cases} 2x - 2y = 1 \\ 2x = 3y \end{cases} \therefore x = \frac{3}{2}, y = 1$$

따라서 형과 동생이 만날 때까지 형이 걸은 시간은 1시간이다. **답**①

0742 전략 대영이와 선화가 호수의 둘레를 같은 방향으로 돌 때와 반 때 방향으로 돌 때 각각의 방정식을 세운다.

태영이의 속력을 분속 x m, 선화의 속력을 분속 y m라 하면 $\begin{cases} 10x - 10y = 1000 \\ 2x + 2y = 1000 \end{cases} \Rightarrow \begin{cases} x - y = 100 \\ x + y = 500 \end{cases}$

x = 300, y = 200

따라서 태영이의 속력은 분속 300 m이다. 답 ③

0743 전략 (소금의 양)= $\frac{(소금물의 농도)}{100} \times (소금물의 양)임을 이용$

하여 방정식을 세운다.

4~%의 소금물의 양을 x g, 7 %의 소금물의 양을 y g이라 하면

$$\begin{cases} x + y = 1200 \\ \frac{4}{100}x + \frac{7}{100}y = \frac{5}{100} \times 1200 \end{cases} \Rightarrow \begin{cases} x + y = 1200 \\ 4x + 7y = 6000 \end{cases}$$

x = 800, y = 400

따라서 4 %의 소금물은 800 g 섞었다.

답 ③

0744 전략 전체 일의 양을 1, A와 B가 하루에 할 수 있는 일의 양을 각각 *x*, *y*로 놓고 연립방정식을 세운다.

전체 일의 양을 1이라 하고, A와 B가 하루에 할 수 있는 일의 양을 각각 x, y라 하면(가)

$$\begin{cases} 10x + 10y = 1 \\ 5x + 20y = 1 \end{cases} \dots (4)$$

$$\therefore x = \frac{1}{15}, y = \frac{1}{30}$$

따라서 B가 혼자하면 30일이 걸린다.(다

답 30일

채점 기준	비율
(개) 미지수 <i>x</i> , <i>y</i> 정하기	20 %
(나) 연립방정식 세우기	40 %
(대) B가 혼자하면 며칠이 걸리는지 구하기	40 %

0745 전략 배가 강을 거슬러 올라갈 때와 강을 따라 내려올 때의 거리에 대한 방정식을 각각 세운다.

흐르지 않는 물에서의 배의 속력을 시속 x km, 강물의 속력을 시속 y km라 하면

 $\therefore x=25, y=5$

따라서 흐르지 않는 물에서의 배의 속력은 시속 25 km이다. 답 시속 25 km

0746 전략 어른을 x명, 아이를 y명으로 놓고 연립방정식을 세운다. 어른이 x명, 아이가 y명이라 하면

 $\begin{cases} x + y = 100 \\ 3x + \frac{1}{3}y = 100 \end{cases} \Rightarrow \begin{cases} x + y = 100 \\ 9x + y = 300 \end{cases}$

 $\therefore x=25, y=75$

따라서 어른이 25명, 아이가 75명이다.

답 어른 : 25명, 아이 : 75명

0747 주 종류의 기계 A, B가 1분 동안 만들 수 있는 물건의 개수를 각각 *x*개, *y*개로 놓고 연립방정식을 세운다.

두 종류의 기계 A, B가 1분 동안 만들 수 있는 물건의 개수를 각각 x개, y개라 하면

$$\begin{pmatrix} 2 \times 5x + 3 \times 5y = 100 \\ 3 \times 4x + 4 \times 4y = 108 \end{pmatrix} \Rightarrow \begin{cases} 2x + 3y = 20 \\ 3x + 4y = 27 \end{cases}$$

 $\therefore r=1 \ u=6$

따라서 A 기계 3대와 B 기계 2대를 동시에 사용할 때 1분 동안 만들 수 있는 물건의 개수는 $3 \times 1 + 2 \times 6 = 15$ (개)이므로물건 100개를 만드는 데 걸리는 시간은

$$\frac{100}{15} = \frac{20}{3}$$
(변)이다.

답 ③

일차함수와 그래프(1)

STEP 1 개념 마스터

p.128 ~ p.131

0748 하루는 24시간이므로

\boldsymbol{x}	1	2	3	4	5	•••
y	23	22	21	20	19	•••

답 22, 21, 20, 19

- 0749 x의 값이 변함에 따라 y의 값이 하나씩 정해지므로 함수이 다. 답 함수이다.
- **0750** (낮의 길이)+(밤의 길이)=24(시간)이므로 x + y = 24

 $\therefore y=24-x$

답 y = 24 - x

- **0751** 1시간은 60분이므로 x의 값의 60배가 y의 값이 된다. 따라서 y=60x이고 x의 값이 변함에 따라 y의 값이 하나씩 정해지므로 y는 x에 대한 함수이다.
- **0752 ⓐ** 자연수 x가 3일 때 3의 약수 y는 1, 3으로 2개가 정해지므 로y는x에 대한 함수가 아니다. 답 ×
- **0753** 전체 학생이 30명인 학급에서 출석한 학생 수x가 변함에 따 라 결석한 학생 수y는 하나씩 정해지므로y는x에 대한 함수 이다. 답
- **0754** f(x) = -2x에 x = 1을 대입하면 $f(1) = -2 \times 1 = -2$

답 -2

답 8

답 5

- **0755** f(x) = -2x에 x = -4를 대입하면 $f(-4) = -2 \times (-4) = 8$
- **0756** f(1)+f(-4)=-2+8=6답 6
- **0757** $f(x) = \frac{150}{x}$ 에 x = 6을 대입하면 $f(6) = \frac{150}{6} = 25$ 답 25
- **0758** $f(x) = \frac{150}{x}$ 에 x = 30을 대입하면

 $f(30) = \frac{150}{30} = 5$

0760 f(x)=2x+5에 x=0을 대입하면

0759 f(6)-f(30)=25-5=20

 $f(0) = 2 \times 0 + 5 = 5$

0761 f(x)=2x+5에 x=7을 대입하면

 $f(7) = 2 \times 7 + 5 = 14 + 5 = 19$ 답 19

0762 f(x)=2x+5에 x=-3을 대입하면 $f(-3)=2\times(-3)+5=-6+5=-1$ 답 -1

0763 f(x)=2x+5에 $x=\frac{1}{4}$ 을 대입하면

 $f\left(\frac{1}{4}\right) = 2 \times \frac{1}{4} + 5 = \frac{1}{2} + 5 = \frac{11}{2}$

답 $\frac{11}{2}$

답 20

답 5

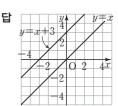
0764 답 ×

0765 답 〇

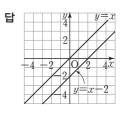
0766 답 ×

0767 답 ×

0768 **답** y = x + 8, 일차함수이다.


0769 (거리)=(속력)×(시간)이므로 y=2x

답 y=2x, 일차함수이다.


0770 xy=150이므로 $y=\frac{150}{x}$

답 $y=\frac{150}{x}$, 일차함수가 아니다.

0771

0772

0773

답 $y = -\frac{3}{4}x - 5$

0774

답 y = 2x + 4

0775
$$y = -x + 5 - 2$$
, $= y = -x + 3$

답 y = -x + 3

0776
$$y = -3(x+2)+4$$
, 즉 $y = -3x-2$ 답 $y = -3x-2$

0777

답 *x*절편 : 4, *y*절편 : 3

0778

답 x절편 : $\frac{4}{3}$, y절편 : -2

0779 y=-4x+4에 y=0을 대입하면

$$0 = -4x + 4$$
 $\therefore x = 1$

y = -4x + 4에 x = 0을 대입하면

$$y = -4 \times 0 + 4 = 4$$

답 *x*절편 : 1, *y*절편 : 4

0780 $y = \frac{1}{3}x - 1$ 에 y = 0을 대입하면 $0 = \frac{1}{3}x - 1$ $\therefore x = 3$ $y=\frac{1}{3}x-1$ 에 x=0을 대입하면 $y=\frac{1}{3}\times 0-1=-1$

답 *x*절편 : 3. *y*절편 : -1

0781 x의 값이 2만큼 증가할 때, y의 값은 3만큼 증가하므로

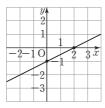
$$(7)$$
을7))= $\frac{\boxed{+3}}{+2}$ = $\boxed{\frac{3}{2}}$ 답 $+3, +3, \frac{3}{2}$

0782 x의 값이 2만큼 증가할 때, y의 값은 4만큼 감소하므로

$$(7]$$
울기)= $\frac{\boxed{-4}}{+2}$ = $\boxed{-2}$

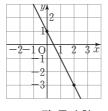
0783

답 1


0784

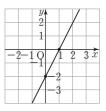
답 -2

0785


답 $\frac{1}{3}$

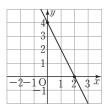
0786 $y = \frac{1}{2}x - 1$ 의 그래프는 두 점 (0, [-1]), (2, [0])을 지나는 직선 이므로 오른쪽 그림과 같다.

답 풀이 참조


0787 y = -2x + 1의 그래프는 두 점 (0, 1), (2, -3)을 지나는 직선 이므로 오른쪽 그림과 같다.

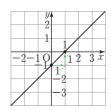
답 풀이 참조

0788 y=2x-2의 그래프의 x절편은 1, y절편은 -2이다.


> 따라서 두 점 (1,0), (0,-2)를 지 나는 직선이므로 오른쪽 그림과 같 다.

답 풀이 참조

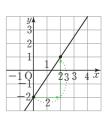
0789 y = -2x + 4의 그래프의 x절편은 2, *y*절편은 4 이다.


따라서 두 점 (2,0), (0,4)를 지나 는 직선이므로 오른쪽 그림과 같다.

답 풀이 참조

0790 y=x-1의 그래프의 y절편은 -1, 기울기는 1이다.

따라서 두 점 (0, -1), (1, 0)을 지 나는 직선이므로 오른쪽 그림과 같



답 풀이 참조

0791 $y = \frac{3}{2}x - 2$ 의 그래프의 y절편은

 $\boxed{-2}$, 기울기는 $\boxed{\frac{3}{2}}$ 이다.

따라서 두 점 (0, -2), (2, 1)을 지 나는 직선이므로 오른쪽 그림과 같

답 풀이 참조

STEP 2 유형 마스터

p.132 ~ p.141

0792 전략 x의 값이 변함에 따라 y의 값이 하나씩 정해질 때 y는 x에 대한 함수임을 알고, y가 x에 대한 함수가 아닌 것을 찾 는다.

① y=4x

- ② 2(x+y)=20에서 x+y=10 $\therefore y=10-x$
- ③ x=2일 때 2와 서로소인 수y는 1, 3, 5, 7, …이다. 즉x의 값이 2일 때 y의 값이 하나로 정해지지 않으므로 y는 x에 대한 함수가 아니다.
- ④ 자연수 x의 약수의 개수 y는 x의 값이 정해지면 y의 값이 하나로 정해지므로 *y*는 *x*의 함수이다.

따라서 y가 x의 함수가 아닌 것은 ③이다.

답 ③

- - ① x=2일 때 절댓값이 2인 정수 y는 2, -2이다. 즉 x의 값 이 2일 때 y의 값이 하나로 정해지지 않으므로 y는 x에 대한 함수가 아니다
 - $\bigcirc y = x + 3$
 - ② 몸무게가 x kg인 사람의 키 y cm가 2개 이상 정해지는 경우도 있으므로 $y \in x$ 에 대한 함수가 아니다.
 - $\bigcirc y = 6x$
- $\exists y = 100x$
- $\otimes y = 15x$

따라서 y가 x에 대한 함수인 것은 \bigcirc , \bigcirc , \bigcirc , \bigcirc , \bigcirc , \bigcirc 5개이다.

- (0.794) ① x=2일 때, 2의 2배인 4보다 작은 자연수 y는 1, 2, 3이다. 즉 x의 값이 2일 때 y의 값이 하나로 정해지지 않으므로 y는 x에 대한 함수가 아니다.
 - ② y = 20x
- 3y = 3x
- 4y = 500x
- ⑤ $y = \frac{24}{x}$

따라서 y가 x에 대한 함수가 아닌 것은 ①이다. 답 ①

0795 전략 주어진 함수의 식에 x의 값을 대입하여 함숫값을 구한다. $f(1)=3\times 1-5=-2, f(0)=3\times 0-5=-5$

$$\therefore 3f(1) + f(0) = 3 \times (-2) + (-5) = -11$$

답 -11

답 -12

- 0796 $3f(x) = \frac{10}{x}$ 에서 $f(-2) = \frac{10}{-2} = -5$ 달 3
- 0797 10 이하의 소수는 2, 3, 5, 7이므로 f(10) = 4 15 이하의 소수는 2, 3, 5, 7, 11, 13이므로 f(15) = 6 ∴ f(10) - f(15) = 4 − 6 = −2
- 0798 4=3×1+1이므로 f(4)=1 10=3×3+1이므로 f(10)=1 ∴ 2f(4)×f(10)=2×1×1=2 답 ①
- 0800 f(a)=7에서 -3a+1=7 -3a=6 $\therefore a=-2$ $\cdots (7)$ $f(-3)=-3\times (-3)+1=10$ $\therefore b=10$ $\cdots (나)$ $\therefore a-b=-2-10=-12$ $\cdots (다)$
 - 채점 기준비율(가 a의 값 구하기40 %(나 b의 값 구하기40 %(다) a b의 값 구하기20 %

0801 전략 f(2)=6임을 이용하여 a의 값을 구한다. f(2)=6에서 2a=6 $\therefore a=3, 즉 f(x)=3x$ $f(-1)=3\times (-1)=-3, f\left(\frac{1}{3}\right)=3\times \frac{1}{3}=1$

∴
$$f(-1)+f(\frac{1}{3})=-3+1=-2$$
 달②

- 0802 f(-1)=2에서 $\frac{a}{-1}=2$ $\therefore a=-2, \frac{2}{-1}f(x)=-\frac{2}{x}$ $\therefore f(-8)=-\frac{2}{-8}=\frac{1}{4}$ 답 $\frac{1}{4}$
- 0803 f(3) = -9에서 3a = -9 $\therefore a = -3$ g(4) = 3에서 $\frac{b}{4} = 3$ $\therefore b = 12$ 당 ⑤
- **0804** 전략 y항은 좌변으로, 나머지 항은 우변으로 이항하여 정리한 후 $y = ax + b(a \neq 0)$ 의 꼴인 것을 찾는다.

①
$$y = \frac{1}{2}x - \frac{1}{2}$$
 > 일차함수이다.

- ② $y = \frac{3}{x}$ ⇒ x가 분모에 있으므로 일차함수가 아니다.
- ③ $y = -x^2 + 6x$ $\Rightarrow x^2$ 항이 있으므로 일차함수가 아니다.
- ④ $y = \frac{1}{5}x$ ⇒ 일차함수이다.
- ⑤ y=-2x+1 ⇒ 일차함수이다.

따라서 일차함수가 아닌 것은 ②, ③이다.

- 답 2.3
- **0805** ② x가 분모에 있으므로 일차함수가 아니다.
 - ③ $y=x^2-2x \Rightarrow x^2$ 항이 있으므로 일차함수가 아니다.
 - $(5) y=3 \Rightarrow x$ 항이 없으므로 일차함수가 아니다.
 - 따라서 일차함수인 것은 ①, ④이다.
- 답 ①, ④
- - ① y = 5000 800x ⇒ 일차함수이다.
 - $(2)y = \frac{1}{2} \times x \times 12$, 즉 y = 6x \Rightarrow 일차함수이다.
 - ③ *y*=2(*x*+6), 즉 *y*=2*x*+12 ⇒ 일차함수이다.
 - ④ $y=x^2$ ⇒ 일차함수가 아니다.
 - ⑤ $y = \frac{x}{15}$ ⇒ 일차함수이다.

따라서 일차함수가 아닌 것은 ④이다.

- 답 ④
- **0807** ③ *y*=600*x*+1500 → 일차함수이다.
 - y=4x ⇒ 일차함수이다.
 - © xy=10 $\therefore y=\frac{10}{r}$ \Rightarrow 일차함수가 아니다.
 - ② y=80x ⇒ 일차함수이다.
 - ① xy=50 $\therefore y=\frac{50}{x}$ 의 일차함수가 아니다.

따라서 일차함수인 것은 ①, ②, ②이다. 답 ①, ②, ②

0808 전략 상수 a, b에 대하여 함수 y=ax+b가 x에 대한 일차함수 가 되려면 $a \neq 0$ 이어야 한다.

y=mx+2(4-x)에서 y=(m-2)x+8

이 함수가 일차함수가 되려면

 $m-2\neq 0$ $\therefore m\neq 2$

답 $m \neq 2$

0809 전략 상수 a, b, c에 대하여 함수 $y = ax^2 + bx + c$ 가 x에 대한 일차함수가 되려면 $a=0, b\neq 0$ 이어야 한다.

y = -3x(mx-2) + nx - 4에서

 $y = -3mx^2 + (n+6)x - 4$

이 함수가 일차함수가 되려면

 $-3m = 0, n+6 \neq 0$: $m = 0, n \neq -6$

답 $m=0, n\neq -6$

답 -2

0810 전략 f(-2) = 7임을 이용하여 a의 값을 구한다.

f(-2) = 7에서 -2a + 3 = 7, -2a = 4 $\therefore a = -2$

따라서 f(x) = -2x + 3이므로

 $f(1) = -2 + 3 = 1, f(3) = -2 \times 3 + 3 = -3$

f(1)+f(3)=1+(-3)=-2

0811 f(-3)=1에서 -(-3)+a=1 $\therefore a=-2$ 따라서 f(x) = -x - 2이므로

f(2) = -2 - 2 = -4, f(-1) = -(-1) - 2 = -1

f(2)+f(-1)=-4+(-1)=-5**답** -5

0812 $\frac{f(4)-f(1)}{2} = 2$ 에서 f(4)-f(1)=6

4a-4-(a-4)=6.3a=6 :: a=2

따라서 f(x)=2x-4이므로

 $f(-1)=2\times(-1)-4=-6$ 답 -6

0813 f(x+5)-f(x)=20에서

a(x+5)+b-(ax+b)=20

5a=20 $\therefore a=4$

따라서 f(x)=4x+b에서 f(-1)=2이므로

-4+b=2 : b=6

a+b=4+6=10

답 10

답 11

답 1

0814 전략 y = -2x + b에 x = -1, y = 5를 대입하여 b의 값을 구한다.

y = -2x + b에 x = -1, y = 5를 대입하면

5=2+b $\therefore b=3$

따라서 y = -2x + 3에 x = a, y = -1을 대입하면

-1 = -2a + 3, 2a = 4 : a = 2

 $a+3b=2+3\times3=11$

0815 y=5x-3에 x=a, y=3-a를 대입하면 3-a=5a-3, -6a=-6 : a=1

0816 y=ax+3에 x=1, y=-2를 대입하면

-2 = a + 3 : a = -5···· (7]) y=3x+b에 x=1, y=-2를 대입하면

-2=3+b : b=-5....(나)

 $ab = -5 \times (-5) = 25$(다)

답 25

채점 기준	비율
(카) a의 값 구하기	40 %
(내) <i>b</i> 의 값 구하기	40 %
(대) <i>ab</i> 의 값 구하기	20 %

0817 y=ax-5에 x=1, y=-3을 대입하면

-3=a-5 : a=2 = 2x-5

y = 2x - 5에 주어진 점의 좌표를 각각 대입하면

 $(1) -10 \neq 2 \times (-3) -5$ $(2) 7 \neq 2 \times (-1) -5$

 $(3) 9 \neq 2 \times (-2) - 5$ $(4) -1 = 2 \times 2 - 5$

 $\bigcirc 2 \neq 2 \times 3 - 5$

따라서 y=2x-5의 그래프 위에 있는 점은 ④이다. **답** ④

0818 전략 y=ax+b의 그래프를 y축의 방향으로 k만큼 평행이동 한 그래프의 식은 y = ax + b + k이다.

 $y=-\frac{1}{2}x-1$ 의 그래프를 y축의 방향으로 a만큼 평행이동

한 그래프의 식은 $y = -\frac{1}{2}x - 1 + a$

이 식과 $y = -\frac{1}{2}x + 5$ 가 같으므로

-1+a=5 $\therefore a=6$

답 6

0819 ① $y = 3x + \frac{1}{2}$ 의 그래프는 y = 3x의 그래프를 y축의 방향으 로 $\frac{1}{2}$ 만큼 평행이동한 것이다.

> ② $y=3x+\frac{5}{7}$ 의 그래프는 y=3x의 그래프를 y축의 방향으 로 $\frac{5}{7}$ 만큼 평행이동한 것이다.

- (3) y=3(2-x). 즉 y=-3x+6의 그래프는 y=-3x의 그래프를 y축의 방향으로 6만큼 평행이동한 것이다.
- ④ y=3(-2+x), 즉 y=3x-6의 그래프는 y=3x의 그래 프를 y축의 방향으로 -6만큼 평행이동한 것이다.
- (5) y=4(x+1)-x, 즉 y=3x+4의 그래프는 y=3x의 그 래프를 y축의 방향으로 4만큼 평행이동한 것이다.

따라서 y=3x의 그래프를 평행이동한 그래프와 포개지지 않는 것은 ③이다. 답 ③

0820 y = -3x - 4의 그래프를 y축의 방향으로 b만큼 평행이동한 그래프의 식은 y = -3x - 4 + b···· (7})

이 식과 y=ax+1이 같으므로

-3=a. -4+b=1에서 a=-3. b=5....(나)

a+b=-3+5=2....(다)

답 2

채점 기준	비율
(개) 조건에 따라 평행이동한 그래프의 식 구하기	40 %
(내) a, b의 값 각각 구하기	각 20 %
(대) $a+b$ 의 값 구하기	20 %

0821 y=-x+3의 그래프를 y축의 방향으로 b만큼 평행이동한 그래프의 식은 y=-x+3+b ① $y=\frac{3}{4}ax-5$ 의 그래프를 y축의 방향으로 -4만큼 평행이 동한 그래프의 식은 $y=\frac{3}{4}ax-5-4$, 즉 $y=\frac{3}{4}ax-9$ ① 이때 ①, ①이 같으므로

$$-1 = \frac{3}{4}a$$
, $3+b=-9$ ∴ $a = -\frac{4}{3}$, $b = -12$
∴ $ab = -\frac{4}{3} \times (-12) = 16$ 🖺 16

0822 전략 평행이동한 그래프의 식을 구한 후 그 식에 x=4, y=a를 대입한다.

y=3(x-2)의 그래프를 y축의 방향으로 -4만큼 평행이동 한 그래프의 식은 y=3(x-2)-4, 즉 y=3x-10 y=3x-10에 x=4, y=a를 대입하면 a=12-10=2 답 2

- $0823 \quad y=-\frac{1}{4}x$ 의 그래프를 y축의 방향으로 -7만큼 평행이동한 그래프의 식은 $y=-\frac{1}{4}x-7$ $③ -8 \neq -\frac{1}{4} \times 2 7$ 이므로 점 (2,-8)은 $y=-\frac{1}{4}x-7$
- y=2x-1의 그래프를 y축의 방향으로 k만큼 평행이동한 그래프의 식은 y=2x-1+k y=2x-1+k에 x=3, y=2를 대입하면

답 -3

의 그래프 위의 점이 아니다.

2=6-1+k : k=-3

- 0825 y=-x+a의 그래프를 y축의 방향으로 -5만큼 평행이동한 그래프의 식은 y=-x+a-5 y=-x+a-5에 x=-3,y=1을 대입하면 1=3+a-5 $\therefore a=3$ 답 3
- 0826 전략 평행이동한 그래프의 식을 구한 후 그 식에 x=1,y=6을 대입하여 b의 값을 구한다. y=4x+b의 그래프를 y축의 방향으로 3만큼 평행이동한 그래프의 식은 y=4x+b+3 y=4x+b+3에 x=1,y=6을 대입하면 $6=4+b+3 \qquad \therefore b=-1$

따라서
$$y=4x+2$$
에 $x=a,y=-2$ 를 대입하면
$$-2=4a+2,-4a=4 \qquad \therefore a=-1$$
 $\therefore ab=-1\times (-1)=1$ 답 1

0827 y=3x+b의 그래프를 y축의 방향으로 -3만큼 평행이동한 그래프의 식은 y=3x+b-3(가) y=3x+b-3에 x=-1, y=4를 대입하면 4=-3+b-3 $\therefore b=10$ (나) 따라서 y=3x+7에 x=2k, y=k+2를 대입하면 k+2=6k+7, -5k=5 $\therefore k=-1$ (다)

답 -1

채점 기준	비율
(개) 조건에 따라 평행이동한 그래프의 식 구하기	30 %
(내) <i>b</i> 의 값 구하기	30 %
(다) <i>k</i> 의 값 구하기	40 %

- y=ax-2의 그래프를 y축의 방향으로 b만큼 평행이동한 그래프의 식은 y=ax-2+b y=ax-2+b에 x=0, y=-4를 대입하면 -4=-2+b $\therefore b=-2$ 따라서 y=ax-4에 x=2, y=0을 대입하면 0=2a-4 $\therefore a=2$ $\therefore a-b=2-(-2)=4$ 답 4
- $\mathbf{0829}$ 전략 각 일차함수의 식에 y=0을 대입하여 x절편을 구한다.
 - ① y=x-2에 y=0을 대입하면 0=x-2 $\therefore x=2$, 즉 x절편은 2
 - ② y=2x-4에 y=0을 대입하면 0=2x-4 $\therefore x=2$, 즉 x절편은 2
 - ③ y=-3x+6에 y=0을 대입하면 0=-3x+6 $\therefore x=2$, 즉 x절편은 2

따라서 x절편이 나머지 넷과 다른 하나는 (5)이다. **답**

0830 $y=\frac{2}{3}x+4$ 에 y=0을 대입하면 $0=\frac{2}{3}x+4 \qquad \therefore x=-6, 즉 A(-6,0)$ $y=\frac{2}{3}x+4$ 에 x=0을 대입하면 y=4, 즉 B(0,4) 답 A(-6,0), B(0,4)

0831 $y=-\frac{1}{4}x+5$ 의 그래프를 y축의 방향으로 -2만큼 평행이 동한 그래프의 식은 $y=-\frac{1}{4}x+3$ $y=-\frac{1}{4}x+3$ 에 y=0을 대입하면 $0=-\frac{1}{4}x+3$ $\therefore x=12$ $y=-\frac{1}{4}x+3$ 에 x=0을 대입하면 y=3 따라서 x절편은 12, y절편은 3이다.

답 *x*절편: 12, *y*절편: 3

답 ①

0832 로 두 일차함수의 그래프가 x축 위에서 만나려면 두 그래프 의 x절편이 같아야 한다. y=8x-4의 그래프와 x축 위에서 만나려면 x절편이 같아야 한다. y=8x-4의 그래프의 x절편은 $\frac{1}{2}$ 이고 각 일차함수의 그래

따라서 x축 위에서 만나는 것은 ①이다.

- 0833 전략 y절편이 -3임을 이용하여 k의 값을 구한다. 그래프의 y절편이 -3이므로 k=-3 $y=-\frac{3}{4}x-3$ 에 y=0을 대입하면 $0=-\frac{3}{4}x-3$ $\therefore x=-4$ 따라서 점 A의 좌표는 (-4,0)이다. 답 A(-4,0)
- 0834 $y=\frac{2}{3}x$ 의 그래프를 y축의 방향으로 k만큼 평행이동한 그 래프의 식은 $y=\frac{2}{3}x+k$ 이때 $y=\frac{2}{3}x+k$ 의 그래프의 y절편이 2이므로 k=2 $y=\frac{2}{3}x+2$ 에 y=0을 대입하면 $0=\frac{2}{3}x+2$ $\therefore x=-3$ 따라서 x절편은 -3이다. 답 -3
- 0835 $y=\frac{3}{4}x+9$ 에 y=0을 대입하면 $0=\frac{3}{4}x+9 \qquad \therefore x=-12, \ \ \text{즉} \ x$ 절편은 -12 y=2x-2(a+1)의 그래프의 y절편은 -12이므로 $-2(a+1)=-12, a+1=6 \qquad \therefore a=5 \qquad \qquad \textbf{답 5}$

즉 y=-3x-6의 그래프의 x절편은 -2이므로 y=ax+2의 그래프의 x절편도 -2이다. 따라서 y=ax+2에 x=-2, y=0을 대입하면 0=-2a+2 $\therefore a-b=1-2=-1$ 답 -1

을 구한다. $(기울기) = \frac{-4}{2} = -2$ 이므로 a = -2 따라서 y = -2x + 1에 x = b, y = 3을 대입하면 3 = -2b + 1, 2b = -2 $\therefore b = -1$

답 -3

답 ③

0837 전략 (기울기)= (y의 값의 증가량) 임을 이용하여 상수 a의 값 (기울기)= (x의 값의 증가량) 임을 이용하여 상수 a의 값

0838 (기울기)= $\frac{(y \circ 1) \circ 3}{1 - (-5)} = -\frac{1}{3}$ ∴ $(y \circ 1) \circ 3$ 등가량)= -2 답 -2

a+b=-2+(-1)=-3

0839 $y=\frac{1}{2}x-\frac{3}{2}$ 의 그래프의 기울기는 $\frac{1}{2}$ 이고, 각 일차함수의 그래프의 기울기를 구해 보면 다음과 같다. $\underbrace{1}_{1} \underbrace{\frac{2}{1}} = 2 \qquad \underbrace{2}_{1} \underbrace{\frac{-2}{1}} = -2 \qquad \underbrace{3}_{2} \underbrace{\frac{1}{2}}$ $\underbrace{4}_{1} \underbrace{\frac{-1}{2}} = -\frac{1}{2} \qquad \underbrace{5}_{2} \underbrace{\frac{3}{2}}$

따라서 기울기가 같은 것은 ③이다.

0840
$$\frac{f(5)-f(2)}{5-2} = \frac{(y)^2}{(x)^2} \frac{(x)^2}{(x)^2} \frac{(y)^2}{(x)^2} \frac{$$

0842 네 점 A, B, C, D의 좌표는 각각 다음과 같다.

A(-3,4), B(-2,-2), C(3,-1), D(4,2)① (점B의 기울기)= $\frac{-2-4}{-2-(-3)}$ =-6
② (점C의 기울기)= $\frac{-1-4}{3-(-3)}$ =- $\frac{5}{6}$ ③ (BC의 기울기)= $\frac{-1-(-2)}{3-(-2)}$ = $\frac{1}{5}$ ④ (BD의 기울기)= $\frac{2-(-2)}{4-(-2)}$ = $\frac{4}{6}$ = $\frac{2}{3}$ ⑤ (CD의 기울기)= $\frac{2-(-1)}{4-3}$ =3 답 ⑤

$$(7]$$
술7])= $\frac{0-2}{3-0}=-\frac{2}{3}$

①은 두 점 (-1,0), (0,-3)을 지나므로

$$(7[울7]) = \frac{-3-0}{0-(-1)} = -3$$

ⓒ은 두 점 (-1,0), (0,2)를 지나므로

$$(7)$$
호기)= $\frac{2-0}{0-(-1)}$ =2

따라서 ①, 心, ②의 기울기의 합은

$$-\frac{2}{3}+(-3)+2=-\frac{5}{3}$$

답 $-\frac{5}{3}$

0844 전략 세점이 한 직선 위에 있으면 어느 두점을 택하여 기울기 를 구해도 기울기는 항상 같다.

두 점 (-1, 2), (2, 11)을 지나는 직선의 기울기는

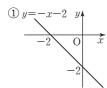
$$\frac{11-2}{2-(-1)} = \frac{9}{3} = 3$$

이때 두 점 (2,11), (a,a+1)을 지나는 직선의 기울기도 3

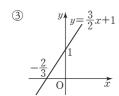
$$\frac{(a+1)-11}{a-2}$$
 = 3, a − 10 = 3 a − 6
 $-2a$ = 4 $\therefore a$ = −2

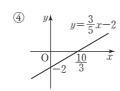
0845 두 점 A(-1, -6), B(2, 0)을 지나는 직선의 기울기는

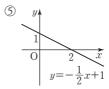
$$\frac{0-(-6)}{2-(-1)} = \frac{6}{3} = 2$$
(2)


이때 두 점 $\mathrm{B}(2,0)$, $\mathrm{C}(a,4)$ 를 지나는 직선의 기울기도 2이

$$\frac{4-0}{a-2}$$
 = 2, 4 = 2a - 4


....(나)


채점 기준	비율
(카) 두 점 A, B를 지나는 직선의 기울기 구하기	40 %
(내 a의 값 구하기	60 %


0846 전략 각 일차함수의 그래프를 좌표평면 위에 그려 본다. 각 일차함수의 그래프를 그려 보면 다음과 같다.

따라서 그래프가 제2사분면을 지나지 않는 것은 ④이다.

답 ④

0847 y=3x+6의 그래프는 x절편이 -2, y절편이 6이므로 두 점 (-2,0),(0,6)을 지난다.

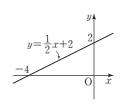
따라서
$$y=3x+6$$
의 그래프는 ③이다.

답 ③

 $0848 \ y = \frac{1}{3}x + 1$ 의 그래프를 y축의 방향으로 -2만큼 평행이동 한 그래프의 식은 $y = \frac{1}{3}x - 1$

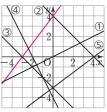
> $y=\frac{1}{3}x-1$ 의 그래프는 x절편이 3,y절편이 -1이므로 두 점 (3,0), (0,-1)을 지난다.

따라서
$$y = \frac{1}{3}x - 1$$
의 그래프는 ⑤이다. 답 ⑤


0849 $y = \frac{1}{2}x + 6$ 의 그래프를 y축의 방향으로 -4만큼 평행이동

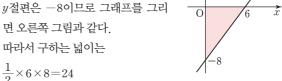
한 그래프의 식은
$$y=\frac{1}{2}x+6-4$$
, 즉 $y=\frac{1}{2}x+2$

 $y=\frac{1}{2}x+2$ 의 그래프는 x절편이


-4, y절편이 2이므로 오른쪽 그 림과 같다.

따라서 그래프는 제4사분면을 지 나지 않는다.

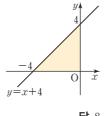
답 제4사분면


0850 각 일차함수의 그래프를 그려 보 면 오른쪽 그림과 같다. 따라서 주 어진 그래프와 제2사분면에서 만 나는 것은 ④이다.

답 ④

0851 전략 $y = \frac{4}{3}x - 8$ 의 그래프의 x절편, y절편을 각각 구한다.

 $y = \frac{4}{3}x - 8$ 의 그래프의 x절편은 6, y절편은 -8이므로 그래프를 그리 면 오른쪽 그림과 같다. 따라서 구하는 넓이는



답 24

 $0852 \quad y = -\frac{3}{4}x + 3$ 의 그래프의 x절편은 4, y절편은 3이므로 A(4,0), B(0,3)

> \therefore (삼각형 BOA의 넓이)= $\frac{1}{2} \times 4 \times 3 = 6$ 답 6

 $0853 \quad y = x + 6$ 의 그래프를 y축의 방향으로 -2만큼 평행이동한 그래프의 식은 y = x + 6 - 2, 즉 y = x + 4y=x+4의 그래프의 x절편은 -4, y절편은 4이므로 그래프를 그리면 오른쪽 그림과 같다. 따라서 구하는 삼각형의 넓이는

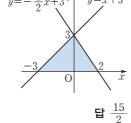
0854 y=ax-4에서 a<0이므로 그래프 를 그리면 오른쪽 그림과 같다. 이때 색칠한 부분의 넓이가 10이므로

 $\frac{1}{2} \times 4 \times 4 = 8$

$$\begin{array}{c|cccc}
y = ax - 4 & y \\
\hline
A & O & x
\end{array}$$

 $\frac{1}{2} \times \overline{OA} \times 4 = 10$ $\therefore \overline{OA} = 5$

즉 점 A의 좌표가 (-5,0)이므로 y=ax-4에 x=-5, y=0을 대입하면

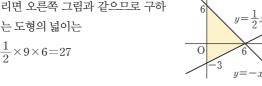

$$0 = -5a - 4$$
 : $a = -\frac{4}{5}$

0855 전략 두 일차함수의 그래프를 각각 그려 본다.

y = x + 3의 그래프의 x절편은 -3, y절편은 3이다.

또 $y = -\frac{3}{2}x + 3$ 의 그래프의 x절편은 2, y절편은 3이다.

따라서 두 일차함수의 그래프 를 그리면 오른쪽 그림과 같으 므로 구하는 삼각형의 넓이는



 $\frac{1}{2} \times 5 \times 3 = \frac{15}{2}$

0856 $y = \frac{1}{2}x - 3$ 의 그래프의 x절편은 6, y절편은 -3이다.

또 y = -x + 6의 그래프의 x절편은 6, y절편은 6이다.

따라서 두 일차함수의 그래프를 그 리면 오른쪽 그림과 같으므로 구하 는 도형의 넓이는

0857 두 점 A, B의 좌표를 각각 구하면 A(0,8), B(-4,0) 삼각형 ABC의 넓이가 28이므로

 $\frac{1}{2} \times \overline{BC} \times 8 = 28$ $\therefore \overline{BC} = 7$

즉 $\overline{OC} = \overline{BC} - \overline{OB} = 7 - 4 = 3$ 이므로 점 C의 좌표는 (3, 0)

따라서 y=ax+8에 x=3, y=0을 대입하면

$$0 = 3a + 8$$
 $\therefore a = -\frac{8}{3}$

STEP 3 내신 마스터

p.142 ~ p.145

- $\mathbf{0858}$ 전략 x의 값이 변함에 따라 y의 값이 하나씩 정해지는 것을 찾 으면 y가 x에 대한 함수인 것을 찾을 수 있다.
 - ① x=3일 때 3의 약수 y는 1, 3이므로 y는 x에 대한 함수가
 - ② x=2일 때 2보다 큰 홀수 y는 3, 5, 7, …이므로 y는 x에 대한 함수가 아니다.
 - ③ x=5일 때 5보다 작은 소수 y는 2, 3이므로 y는 x에 대한 함수가 아니다.
 - ④ x=2일 때 2와 서로소인 자연수 $y=1,3,5,7,\cdots$ 이므로 y는 x에 대한 함수가 아니다.
 - ⑤ 자연수 x를 4로 나누면 나머지 y는 0, 1, 2, 3 중 하나로 정 해지므로 y는 x에 대한 함수이다.

따라서 *y*가 *x*에 대한 함수인 것은 ⑤이다.

0859 전략 주어진 함수의 식에 x의 값을 대입하여 함숫값을 구한다.

$$f(-2) = -\frac{1}{2} \times (-2) = 1$$

$$f(1) = -\frac{1}{2} \times 1 = -\frac{1}{2}$$

$$f(4) = -\frac{1}{2} \times 4 = -2$$

$$\therefore f(-2) + f(1) + f(4) = 1 + \left(-\frac{1}{2}\right) + (-2) = -\frac{3}{2}$$

답 ①

0860 전략 먼저 $f(1), f(-\frac{1}{3})$ 의 값을 구한다.

$$f(1) = -3 \times 1 + 1 = -2$$

$$f\left(-\frac{1}{3}\right) = -3 \times \left(-\frac{1}{3}\right) + 1 = 2$$

$$\therefore 5f(1) + 4f(-\frac{1}{3}) = 5 \times (-2) + 4 \times 2$$

$$=-10+8=-2$$

답 ④

- **0861** 전략 100, 125, 204를 9로 나누었을 때의 나머지를 각각 구한다. 100=9×11+1,125=9×13+8,204=9×22+6이므로 f(100)=1, f(125)=8, f(204)=6
 - f(100)+f(125)-f(204)=1+8-6=3

0862 전략 f(-2) = -6임을 이용하여 먼저 a의 값을 구한다.

$$f(-2) = -6$$
이므로 $\frac{a}{-2} = -6$ $\therefore a = 12$

따라서
$$f(x) = \frac{12}{x}$$
이므로

0863 전략 x와 y 사이의 관계식을 구하고 $y=ax+b(a\neq 0)$ 의 꼴인 것을 찾는다

- $\bigcirc y = 2\pi x$ ⇒ 일차함수이다.
- y=200+3x ⇒ 일차함수이다.
- © $y = \frac{10}{r}$ $\Rightarrow x$ 가 분모에 있으므로 일차함수가 아니다.
- ② y=2(3+x), 즉 y=6+2x ⇒ 일차함수이다.

따라서 일차함수인 것은 ①, ②, ②이다.

답 ①. ②. ②

0864 전략 상수 a, b, c에 대하여 함수 $y = ax^2 + bx + c$ 가 x에 대한 일차함수가 되려면 a=0, $b\neq 0$ 이어야 한다.

$$y = -2x(ax+1) - bx + 1$$
에서

$$y = -2ax^2 + (-2-b)x + 1$$

이 함수가 일차함수가 되려면

$$-2a=0, -2-b\neq 0$$
 : $a=0, b\neq -2$

답 $a=0.b\neq -2$

0865 전략 f(-1) = 7임을 이용하여 <math>a의 값을 구한다.

$$f(-1)\!=\!7 \text{ and } -a\!+\!5\!=\!7 \qquad \therefore a\!=\!-2 \qquad \cdots$$

따라서 f(x) = -2x + 5이므로

$$f(2) = -2 \times 2 + 5 = 1$$
, $f(1) = -2 \times 1 + 5 = 3$

$$3f(2)-f(1)=3\times 1-3=0$$

....(니) 답 0

채점 기준	비율
(개) a의 값 구하기	40 %
(내) $3f(2) - f(1)$ 의 값 구하기	60 %

0866 전략 f(-1) = g(2)임을 이용하여 a의 값을 구한다.

$$f\!\left(-1\right)\!=\!-a\!-\!2,g\!\left(2\right)\!=\!-2\!\times\!2\!+\!1\!=\!-3$$

$$f(-1) = g(2)$$
에서 $-a-2 = -3$ $\therefore a = 1$

즉 f(x)=x-2이므로f(k)=k-2, g(k)=-2k+1

따라서 f(k) = g(k)에서 k-2 = -2k+1, 3k=3

$$\therefore k=1$$

0867 전략 y=ax-2에 x=1, y=2를 대입한다.

y=ax-2에 x=1, y=2를 대입하면

2=a-2 $\therefore a=4$

0868 전략 y=ax+b의 그래프를 y축의 방향으로 k만큼 평행이동 한 그래프의 식은 y = ax + b + k이다.

y=3x+1의 그래프를 y축의 방향으로 -2만큼 평행이동한

그래프의 식은 y=3x+1-2, 즉 y=3x-1따라서 m=3, n=-1이므로

 $mn = 3 \times (-1) = -3$

답 ②

답 ④

답 4

0869 전략 평행이동한 그래프의 식을 구한 후 y절편을 이용하여 b의 값을 구한다.

y=3x-1의 그래프를 y축의 방향으로 b만큼 평행이동한 그

래프의 식은
$$y=3x-1+b$$
 ····· (가)

이 그래프의 y절편이 2이므로

$$-1+b=2$$
 : $b=3$

따라서 y=3x+2에 x=a, y=5를 대입하면

$$5 = 3a + 2, -3a = -3$$
 : $a = 1$

$$∴ a+b=1+3=4$$
(□)

....(나)

답 4

채점 기준 비율 (개) 평행이동한 그래프의 식 구하기 30 % (내) *a*, *b*의 값 각각 구하기 각30% (대) a+b의 값 구하기 10 %

0870 전략 일차함수의 식에 y=0을 대입하여 x절편을 구하고. x=0을 대입하여 y절편을 구한다.

$$y = -\frac{3}{2}x + 6$$
에 $y = 0$ 을 대입하면

$$0 = -\frac{3}{2}x + 6$$
 : $x = 4$

$$y = -\frac{3}{2}x + 6$$
에 $x = 0$ 을 대입하면 $y = 6$

따라서 a=4. b=6이므로

$$a+b=4+6=10$$

답 ④

0871 전략 주어진 일차함수의 식에 $x = -\frac{6}{5}$, y = 0을 대입한다.

$$y=-5x+2(1-k)$$
에 $x=-\frac{6}{5}$, $y=0$ 을 대입하면

$$0 = -5 \times \left(-\frac{6}{5}\right) + 2(1-k), 0 = 6 + 2 - 2k$$

$$2k=8$$
 $\therefore k=4$

답 ④

0872 전략 $y = -\frac{1}{4}x - 5$ 의 그래프의 y절편은 -5임을 이용하여

b의 값을 구한다.

$$y=-\frac{1}{4}x-5$$
의 그래프의 y 절편은 -5 이므로 $y=ax+b$ 의

그래프의 y절편도 -5이다.

$$\therefore b = -5, \exists y = ax - 5$$

$$y = \frac{3}{2}x + 2$$
의 그래프의 x 절편은 $-\frac{4}{3}$ 이므로 $y = ax - 5$ 의

그래프의
$$x$$
절편도 $-\frac{4}{3}$ 이다.

따라서
$$y=ax-5$$
에 $x=-\frac{4}{3}, y=0$ 을 대입하면

$$0 = -\frac{4}{3}a - 5$$
 $\therefore a = -\frac{15}{4}$

$$y=bx-a$$
, 즉 $y=-5x+\frac{15}{4}$ 에 $y=0$ 을 대입하면

$$0 = -5x + \frac{15}{4}$$
 $\therefore x = \frac{3}{4}$, 즉 x 절편은 $\frac{3}{4}$

- ① 두 일차함수의 그래프가 x축 위에서 만난다.
 - ➡ 두 일차함수의 그래프의 x절편이 같다.
- ② 두 일차함수의 그래프가 y축 위에서 만난다.
 - ➡ 두 일차함수의 그래프의 y절편이 같다.
- $y = \frac{2}{3}x + a$ 의 그래프의 x절편을 이용하여 점 A의 좌표 를 구하다

$$y = \frac{2}{3}x + a$$
에 $y = 0$ 을 대입하면 $0 = \frac{2}{3}x + a$

$$\therefore x = -\frac{3}{2}a, \preceq A\left(-\frac{3}{2}a, 0\right)$$

 $y=\frac{2}{3}x+a$ 의 그래프를 y축의 방향으로 -1만큼 평행이동

한 그래프의 식은 $y = \frac{2}{3}x + a - 1$

$$y = \frac{2}{3}x + a - 1$$
에 $y = 0$ 을 대입하면 $0 = \frac{2}{3}x + a - 1$

$$\therefore x = -\frac{3}{2}a + \frac{3}{2}, \stackrel{\mathbf{Z}}{=} B\left(-\frac{3}{2}a + \frac{3}{2}, 0\right)$$

따라서 a < 0이므로 $\overline{\mathrm{AB}}$ 의 길이는

$$-\frac{3}{2}a + \frac{3}{2} - \left(-\frac{3}{2}a\right) = \frac{3}{2}$$
 🖺 ③

0874 전략 (기울기)= (y의 값의 증가량) 임을 이용한다.

$$(7)$$
할기)= $\frac{2}{1-(-2)}$ = $\frac{2}{3}$ 이므로 $a=\frac{2}{3}$ 답 ④

0875 전략 기울기가 양수인 것을 찾는다.

일차함수의 그래프에서 x의 값이 증가할 때 y의 값도 증가하면 기울기는 양수이다.

따라서 그래프의 기울기가 양수인 것은 ①, ③이다.

답 ①, ③

Lecture -

일차함수 y=ax+b의 그래프에서

- ① *x*의 값이 증가할 때, *y*의 값도 증가한다.
 - ⇒ 기울기가 양수, 즉 a > 0
- ② x의 값이 증가할 때, y의 값은 감소한다.
 - ⇒ 기울기가 음수, 즉 a < 0</p>
- $oxdot{0876}$ 전략 두 점 $(x_1,y_1),\,(x_2,y_2)$ 를 지나는 일차함수의 그래프의 기울기는 $\dfrac{y_2-y_1}{x_2-x_1}$ 임을 이용한다.

(기울기)=
$$\frac{k-(-1)}{5-2}=\frac{4}{3}$$
에서 $\frac{k+1}{3}=\frac{4}{3}$ 답 ①

사다리가 올라간 높이를 x m라 하면

$$(기울기) = \frac{(높이)}{(수평 거리)} 이므로 \frac{5}{2} = \frac{x}{10} \qquad \therefore x = 25$$

따라서 사다리가 올라간 높이는 25 m이다. 답 25 m

0878 전략 먼저 식에 자동차 A가 있는 지점의 수직 거리를 대입하여 수평 거리를 구한다.

자동차 A가 있는 지점의 수평 거리를 a m라 하면

$$\frac{5}{a} \times 100 = 20$$
 $\therefore a = 25$

자동차 B가 있는 지점의 수직 거리를 b m라 하면 자동차 B가 있는 지점의 수평 거리는 $25+20=45~(\mathrm{m})$ 이 므로

$$\frac{b}{45} \times 100 = 20$$
 : $b = 9$

따라서 자동차 B가 있는 지점의 수직 거리는 9 m이다.

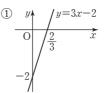
답 9 m

0879 전략 세 점이 한 직선 위에 있으면 어느 두 점을 택하여 기울기를 구해도 기울기는 항상 같다.

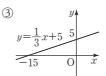
두 점 (-1, 4), (2, -5)를 지나는 직선의 기울기는

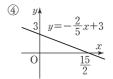
$$\frac{-5-4}{2-(-1)} = \frac{-9}{3} = -3$$

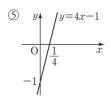
이때 두 점 (2, -5), (k, k+3)을 지나는 직선의 기울기도 -3이므로


0880 전략 평행이동한 그래프의 식을 먼저 구한다.

 $y\!=\!-2x\!-\!1$ 의 그래프를 y축의 방향으로 5만큼 평행이동한 그래프의 식은 $y\!=\!-2x\!+\!4$


y=-2x+4의 그래프는 x절편이 2, y절편이 4이므로 두 점 (2,0), (0,4)를 지난다.

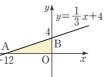

따라서
$$y = -2x + 4$$
의 그래프는 (5) 이다. 답 (5)


0881 전략 각 일차함수의 그래프를 좌표평면 위에 그려 본다. 각 일차함수의 그래프를 그려 보면 다음과 같다.

따라서 그래프가 제4사분면을 지나지 않는 것은 ③이다.

0882 전략 $y = \frac{1}{3}x + 4$ 의 그래프의 x절편, y절편을 각각 구한다.

 $y = \frac{1}{3}x + 4$ 의 그래프의 x절편은 -12, y절편은 4이므로


A(-12,0), B(0,4)

따라서 $y=\frac{1}{2}x+4$ 의 그래프는

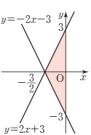
오른쪽 그림과 같다.(나)

∴ (삼각형 AOB의 넓이)

 $= \frac{1}{2} \times 12 \times 4 = 24 \quad \cdots \quad (\text{CF})$

답 24

채점 기준	비율
(개) 두 점 A, B의 좌표 각각 구하기	각 20 %
(4) 좌표평면 위에 $y = \frac{1}{3}x + 4$ 의 그래프를 그리고 삼	30 %
각형 AOB를 나타내기	
(다) 삼각형 AOB의 넓이 구하기	30 %


0883 전략 두 일차함수의 그래프를 각각 그려 본다.

y = -2x - 3의 그래프의 x절편은 $-\frac{3}{2}$, y절편은 -3이다.

또 y=2x+3의 그래프의 x절편은 $-\frac{3}{2}$, y절편은 3이다.

따라서 두 일차함수의 그래프를 그리 면 오른쪽 그림과 같으므로 구하는 삼 각형의 넓이는

0884 전략 주어진 조건을 이용하여 *a*, *b*의 값을 각각 구한다. 윤아는 b의 값, 즉 y절편을 바르게 보았으므로 b=2진영이는 a의 값, 즉 기울기를 바르게 보았으므로 $a=\frac{3}{4}$ $y = \frac{3}{4}x + 2$ 에 y = 0을 대입하면

 $0 = \frac{3}{4}x + 2$ $\therefore x = -\frac{8}{3}$, 즉 x절편은 $-\frac{8}{3}$ 답 $-\frac{8}{3}$

일차함수 y=ax+b의 그래프에서

- ① a의 값을 잘못 보았다. $\Rightarrow y$ 절편 b의 값을 바르게 보았다.
- ② b의 값을 잘못 보았다. ➡ 기울기 a의 값을 바르게 보았다.

일차함수와 그래프 (2)

STEP 1 개념 마스터

p.148 ~ p.150

0885

0886 답

0887 *y*절편은 7이다.

답 ×

답

답 ×

0888 오른쪽 아래로 향하는 직선이다.

0889 일차함수 y = -3x의 그래프를 y축의 방향으로 7만큼 평행 이동한 것이다. 답 ×

0890 y=-3x+7에 x=-2, y=1을 대입하면 $1 \neq -3 \times (-2) + 7$ 따라서 점 (-2,1)을 지나지 않는다.

답 ×

0891 오른쪽 아래로 향하는 직선이므로 a < 0y절편이 음수이므로 b < 0

답 a<0,b<0

0892 오른쪽 위로 향하는 직선이므로 *a*>0 y절편이 음수이므로 b < 0

답 a>0.b<0

0893 오른쪽 아래로 향하는 직선이므로 a < 0y절편이 양수이므로 b>0

답 a<0,b>0

0894 오른쪽 위로 향하는 직선이므로 a>0y절편이 양수이므로 b>0

답 a > 0, b > 0

0895 기울기가 같고 y절편이 다른 두 일차함수의 그래프는 서로 평행하므로 ⊙과 ②, ⓒ과 ⑭의 그래프는 서로 평행하다.

답 ③과 ②, ⓒ과 🛭

0896 서로 평행한 두 일차함수의 그래프의 기울기는 같으므로

0897 일치하는 두 일차함수의 그래프는 기울기와 y절편이 각각 같으므로 a = -2, b = 1답 a = -2, b = 1

0898

0899 기울기가 $\frac{5}{2}$ 이고 y절편이 -2이므로

일차함수의 식은 $y=\frac{5}{2}x-2$

0900 기울기가 -1이고 y 절편이 5이므로

일차함수의 식은 y = -x + 5

답 y = -x + 5

- 0901 일차함수의 식을 y=2x+b로 놓고 x=1,y=3을 대입하면 $3=2+b \qquad \therefore b=1$ 따라서 구하는 일차함수의 식은 y=2x+1 답 y=2x+1
- 0902 $(기울기)=\frac{1-6}{3-(-2)}=\frac{-5}{5}=-1$ 이므로 일차함수의 식을 y=-x+b로 놓고 x=3,y=1을 대입하면 1=-3+b $\therefore b=4$ 따라서 구하는 일차함수의 식은 y=-x+4

답 y = -x + 4

0903 (7)울기)= $\frac{-5-(-2)}{-4-2}=\frac{-3}{-6}=\frac{1}{2}$ 이므로 일차함수의 식을 $y=\frac{1}{2}x+b$ 로 놓고 x=2,y=-2를 대입하면 -2=1+b $\therefore b=-3$ 따라서 구하는 일차함수의 식은 $y=\frac{1}{2}x-3$

답 $y = \frac{1}{2}x - 3$

0904 두 점 (1,0), (0,3)을 지나므로 $(기울기) = \frac{3-0}{0-1} = -3$ 따라서 구하는 일차함수의 식은 y = -3x+3

답 y = -3x + 3

0905 두 점 (2,0), (0,-3)을 지나므로 $(기울기) = \frac{-3-0}{0-2} = \frac{3}{2}$ 따라서 구하는 일차함수의 식은 $y=\frac{3}{2}x-3$

답 $y = \frac{3}{2}x - 3$

0906

답 6,6x,20+6x,8

- ${f 0907}$ (1) 젤리를 x g 살 때 젤리의 가격은 10x원이므로 x와 y 사이의 관계식은 y = 10000 10x
 - 의 관계식은 y=10000-10x(2) y=10000-10x에 x=350을 대입하면 $y=10000-10\times350=6500$ 따라서 젤리를 350 g 샀을 때, 거스름돈은 6500원이다. 답 (1) y=10000-10x (2) 6500원

STEP 2 유형 마스터

p.151 ~ p.161

0908 작 각 일차함수의 그래프의 기울기의 절댓값을 구하여 대소를 비교한다.

기울기의 절댓값이 클수록 그래프는 y축에 가깝다.

이때 $\left|-\frac{1}{3}\right| < \left|\frac{1}{2}\right| < \left|\frac{3}{4}\right| < |-1| < \left|-\frac{4}{3}\right|$ 이므로 그래 프가 y축에 가장 가까운 것은 ④이다. 답 ④

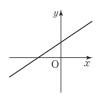
- **0909** 기울기의 절댓값이 클수록 그래프는 *y*축에 가까우므로 기울 기의 절댓값이 가장 큰 것은 Ĉ이다. **답** Ĉ
- 0910 기울기의 절댓값이 작을수록 그래프는 x축에 가깝다. 이때 $\left|\frac{1}{2}\right|<|-1|<\left|\frac{4}{3}\right|<\left|\frac{5}{2}\right|<|-3|$ 이므로 그래프가 x축에 가장 가까운 것은 ④이다. 답 ④
- **0911** 전략 일차함수의 그래프가 제1, 2, 4사분면을 지날 때 기울기와 *y* 절편의 부호를 파악한다.

y=ax+b의 그래프가 제1,2,4사분면을 지나므로 a<0,b>0

따라서 y=bx+a의 그래프는 오른쪽 위로 향하는 직선이고, y절편이 음수 이므로 오른쪽 그림과 같다. 즉 제2사분면을 지나지 않는다.

답 제2사분면

0912 a < 0, b < 0이므로 a + b < 0, ab > 0따라서 y = (a + b)x + ab의 그래프 는 오른쪽 아래로 향하는 직선이고, y절편이 양수이므로 오른쪽 그림과 같다.


즉 제3사분면을 지나지 않는다.

답 제3사분면

0913 ab < 0이므로 a > 0, b < 0 또는 a < 0, b > 0 bc < 0이므로 b > 0, c < 0 또는 b < 0, c > 0즉 a > 0, b < 0, c > 0 또는 a < 0, b > 0, c < 0이므로 $-\frac{b}{a} > 0$, $\frac{c}{a} > 0$

따라서 $y = -\frac{b}{a}x + \frac{c}{a}$ 의 그래프는 오른쪽 위로 향하는 직선이고, y절편이 양수이므로 오른쪽 그림과 같다. 즉 제1, 2, 3사분면을 지난다.

답 제1, 2, 3사분면

0914 작의 직선의 방향과 y절편을 이용하여 a, b의 부호를 각각 구한다. 그래프가 오른쪽 아래로 향하는 직선이므로 a<0 y절편이 양수이므로 -b>0, 즉 b<0 따라서 y=bx+a의 그래프는 b<0이므로 오른쪽 아래로 향하는 직선이고, a<0이므로 y절편은 음수이다. 따라서 y=bx+a의 그래프로 알맞은 것은 ①이다.

답 ①

0915 ③, ⓒ, ⓒ은 오른쪽 아래로 향하는 직선이므로 *a*<0 ②, ⑩, ⑭은 오른쪽 위로 향하는 직선이므로 *a*>0 ⓒ, ⑪은 *y*절편이 양수이므로 *b*>0

- \bigcirc , ②은 y절편이 0이므로 b=0
- (L), (H)은 y절편이 음수이므로 b < 0

따라서 ab < 0인 그래프는 \bigcirc , \bigcirc 에이므로 옳지 않은 것은

 $\mathbf{0916}$ 그래프가 오른쪽 위로 향하는 직선이므로 -a>0, 즉 a<0y절편이 양수이므로 b>0

이때
$$\frac{b}{a}$$
<0, $-b$ <0이므로

 $y = \frac{b}{a}x - b$ 의 그래프는 오른쪽 아래

로 향하는 직선이고, y절편은 음수이 다. 따라서 그래프는 오른쪽 그림과 같

이 제2, 3, 4사분면을 지난다.

0917 그래프가 오른쪽 위로 향하는 직선이므로 $\frac{a}{b} > 0$

y절편이 음수이므로 $-\frac{b}{c} < 0$, 즉 $\frac{b}{c} > 0$

이때 $\frac{a}{h} > 0$ 에서 a > 0, b > 0 또는 a < 0, b < 0

또 $\frac{b}{c} > 0$ 에서 b > 0, c > 0 또는 b < 0, c < 0

따라서 a>0, b>0, c>0 또는 a<0, b<0, c<0이다.

단(5)

답 3

0918 전략 서로 평행한 두 직선의 기울기는 같다.

두 점 (2, -1), (4, k)를 지나는 직선의 기울기가 3이므로 $\frac{k-(-1)}{4-2} = 3, k+1=6$ $\therefore k=5$ 답 5

$$-\frac{1}{4-2}$$
 -3, $k+1-6$... $k-5$

0919
$$\frac{a}{3}$$
=1이므로 a =3

0920 (카에서 a=2, (나)에서 b=-4

0921 y=ax+b의 그래프가 y=-3x+1의 그래프와 평행하므로

y=ax+b의 그래프가 y=2x-3의 그래프와 y축 위에서 만나므로 y절편이 같다. b=-3

$$∴ a-b=-3-(-3)=0$$
 답 0

0922 y = ax - 2의 그래프를 y축의 방향으로 -5만큼 평행이동한 그래프의 식은

$$y = ax - 2 - 5$$
, $= y = ax - 7$ (2)

이때 y=ax-7의 그래프와 $y=\frac{3}{5}x+b$ 의 그래프가 일치하

므로
$$a = \frac{3}{5}, b = -7$$
()

답
$$a = \frac{3}{5}, b = -7$$

채점 기준	비율
(개) 평행이동한 그래프의 식 구하기	50 %
(내) a, b의 값 각각 구하기	각 25 %

0923 전략 y=ax+b의 그래프에서 a,b의 의미를 이해한다.

① $1 = -\frac{1}{2} \times 4 + 3$ 이므로 점 (4, 1)을 지난다.

②
$$y = -\frac{1}{2}x + 3$$
에 $y = 0$ 을 대입하면

$$0=-\frac{1}{2}x+3$$
 $\therefore x=6$, 즉 x 절편은 6

- ③ 기울기가 음수. y절편이 양수이므로 그래프는 제1.2.4사 분면을 지나고 제3사분면을 지나지 않는다.
- ④ $y = \frac{1}{2}x 3$ 의 그래프와 기울기가 같지 않으므로 평행하
- ⑤ 기울기는 $-\frac{1}{2}$ 이므로 x의 값이 2만큼 증가하면 y의 값은 1만큼 감소한다.

따라서 옳지 않은 것은 ④이다.

- \bigcirc x의 값이 3만큼 증가하면 y의 값은 2만큼 증가한다.
- $\bigcirc y$ 축과 점 (0, -6)에서 만난다.
- ② 기울기가 양수이므로 오른쪽 위로 향하는 직선이다.
- n $y = \frac{2}{3}x + 6$ 의 그래프와 기울기가 같고 y 절편은 다르므로

따라서 옳은 것은 ②, 回이다.

답 ④

답 ④

0925 주어진 그래프의 기울기는 $-\frac{2}{5}$, x절편은 5, y절편은 2이다.

④ $y=-\frac{2}{5}x$ 의 그래프를 y축의 방향으로 2만큼 평행이동한

(5)y=3x-15의 그래프의 x절편도 5이므로 두 그래프의 *x*절편은 같다.

따라서 옳지 않은 것은 ④이다.

0926 ① $4=a \times 0 + 4$ 이므로 점 (0, 4)를 지난다.

- ②, ④ 기울기는 a이고, a > 0일 때 x의 값이 증가하면 y의 값 도 증가하다
- 3y=ax의 그래프와 기울기가 같고 y절편은 다르므로 평행
- ⑤ 기울기가 음수. y절편이 양수이므로 그래프는 제1.2.4사 분면을 지나고 제3사분면을 지나지 않는다.

따라서 옳지 않은 것은 ⑤이다. 답 ⑤

0927 ① 점 (1, *a*+*b*)를 지난다.

 $\Im y = -ax + b$ 의 그래프와 기울기가 같지 않으므로 평행하 지 않다.

- ④ 그래프가 오른쪽 아래로 항하므로 a < 0이고, y 절편이 양수이므로 b > 0이다.
- ⑤ 기울기가 a이므로 x의 값이 1만큼 증가할 때, y의 값은 a만큼 증가한다. **답** ②
- **0928** 전략 기울기가 a, y절편이 b인 직선을 그래프로 하는 일차함수 의 식은 y = ax + b이다.

기울기가 $\frac{1}{3}$ 이고 y절편이 5인 직선을 그래프로 하는 일차함

수의 식은 $y = \frac{1}{3}x + 5$

따라서 $y = \frac{1}{3}x + 5$ 에 x = a, y = 2를 대입하면

$$2 = \frac{1}{3}a + 5, -\frac{1}{3}a = 3$$
 $\therefore a = -9$

답 -

- 0929 기울기가 -4이고 y절편이 -5이므로 일차함수의 식은 y = -4x 5 **답** y = -4x 5
- 0930 $(기울기)=\frac{-4}{3}=-\frac{4}{3}$ 이고 y절편이 2이므로 일차함수의 식은 $y=-\frac{4}{3}x+2$ 답 $y=-\frac{4}{3}x+2$
- 0931 두 점 (0,-1), (1,2)를 지나는 일차함수의 그래프와 평행하므로 (기울기) $=\frac{2-(-1)}{1-0}=$ 3이다. 이때 y절편이 -4이므로 일차함수의 식은 y=3x-4

y=3x-4에 y=0을 대입하면

0 = 3x - 4 $\therefore x = \frac{4}{3}$

따라서 x절편은 $\frac{4}{3}$ 이다.

답 $\frac{4}{2}$

0932 $y = \frac{7}{6}x + 7$ 의 그래프의 x절편은 -6, y절편은 7이므로 A(0,7), B(-6,0)이다.

이때 △ABC의 넓이가 9이므로

 $\frac{1}{2} \times \overline{AC} \times \overline{BO} = 9, \stackrel{\leq}{=} \frac{1}{2} \times \overline{AC} \times 6 = 9$ $\therefore \overline{AC} = 3$

즉C(0,b)이므로7-b=3 $\therefore b=4$

따라서 점 C의 좌표가 (0, 4)이므로

$$a = \frac{4-0}{0-(-6)} = \frac{2}{3}, b = 4$$

 $3a+b=3\times\frac{2}{3}+4=6$

답 6

0933 전략 기울기가 a이면 일차함수의 식을 y=ax+b로 놓는다. 주어진 일차함수의 그래프와 평행하므로 기울기는 $\frac{3}{2}$ 이다. 이때 x절편이 2이므로 일차함수의 식을 $y=\frac{3}{2}x+b$ 로 놓고 x=2,y=0을 대입하면 0=3+b $\therefore b=-3$

따라서 구하는 일차함수의 식은

$$y = \frac{3}{2}x - 3$$

답 $y = \frac{3}{2}x - 3$

0934 일차함수의 식을 y=2x+b로 놓고 x=-1,y=2를 대입하면 $2=-2+b \qquad \therefore b=4$ 따라서 구하는 일차함수의 식은

$$y = 2x + 4$$

답 y = 2x + 4

0935 y=3x+5의 그래프와 평행하므로 기울기는 3이다. 일차함수의 식을y=3x+b로 놓고 x=3,y=-2를 대입하면 -2=9+b $\therefore b=-11$ 따라서 y=3x-11의 그래프의 y절편은 -11이다.

답 -11

 $y = -\frac{1}{3}x + 4$ 의 그래프와 평행하므로 기울기는 $-\frac{1}{3}$ 이고, $y = \frac{3}{2}x - 9$ 의 그래프와 x축 위에서 만나므로 x절편은 6이 다.

일차함수의 식을 $y=-\frac{1}{3}x+b$ 로 놓고 x=6, y=0을 대입하면

0=-2+b $\therefore b=2$

따라서 구하는 일차함수의 식은

$$y = -\frac{1}{3}x + 2$$

답 $y = -\frac{1}{3}x + 2$

0937 전략 먼저 두 점을 지나는 직선의 기울기를 구한다.

$$(7]$$
울기 $)=\frac{-3-1}{3-1}=\frac{-4}{2}=-2$ 이므로

일차함수의 식을 y=-2x+b로 놓고 x=1,y=1을 대입하면 1=-2+b $\therefore b=3$

따라서 구하는 일차함수의 식은

$$y = -2x + 3$$

답 y = -2x + 3

- **0938** (1) (기울기)= $\frac{-5-4}{2-(-1)}=\frac{-9}{3}=-3$ (개)
 - (2) 일차함수의 식을 y=-3x+b로 놓고 x=-1, y=4를 대입하면

4 = 3 + b : b = 1

따라서 y절편은 1이다.

····· (나)

(3) 기울기가 -3이고 y절편이 1이므로 구하는 일차함수의 식은 y = -3x + 1이다. (대

답 (1) -3 (2) 1 (3) y = -3x + 1

채점 기준	비율
/f) 두 점 A, B를 지나는 직선의 기울기 구하기	40 %
(내) y 절편 구하기	40 %
(다) 일차함수의 식 구하기	20 %

0939 (기울기)=
$$\frac{4-1}{3-(-2)}=\frac{3}{5}$$
이므로

일차함수의 식을 $y = \frac{3}{5}x + b$ 로 놓고 x = -2, y = 1을 대입하면

$$1 = -\frac{6}{5} + b$$
 : $b = \frac{11}{5}$

$$y = \frac{3}{5}x + \frac{11}{5}$$
에 $y = 0$ 을 대입하면

$$0 = \frac{3}{5}x + \frac{11}{5}$$
 $\therefore x = -\frac{11}{3}$

따라서
$$x$$
절편은 $-\frac{11}{3}$ 이다.

답
$$-\frac{11}{3}$$

0940 (기울기)=
$$\frac{-3-2}{-1-4}$$
= $\frac{-5}{-5}$ =1이므로

일차함수의 식을 y=x+b로 놓고 x=4,y=2를 대입하면 2=4+b $\therefore b=-2$

따라서 주어진 직선을 그래프로 하는 일차함수의 식은 y=x-2

- ① y = -x + 3의 그래프와 기울기가 같지 않으므로 평행하지 않다.
- ② *x*절편은 2이다.
- ④ *x*의 값이 1만큼 증가할 때, *y*의 값도 1만큼 증가한다.
- (5) $1 \neq -1-2$ 이므로 점 (-1,1)을 지나지 않는다.

답 ③

0941 y = -4x + 1의 그래프와 평행하므로 기울기는 -4이다.

$$(7] (울7) = \frac{3-2k-k}{1-(-2)} = -4 에서 \frac{3-3k}{3} = -4$$

3-3k=-12, -3k=-15 : k=5

일차함수의 식을 y=-4x+b로 놓고 x=-2,y=5를 대입하면

5=8+b $\therefore b=-3$

따라서 구하는 일차함수의 식은

$$y = -4x - 3$$

답
$$y = -4x - 3$$

0942
$$a = \frac{10-4}{2-(-1)} = \frac{6}{3} = 2$$

이때 두 점 (-1, 4), (2, 10)을 지나므로

y=2x+b에 x=-1, y=4를 대입하면

$$4 = -2 + b$$
 : $b = 6$

$$\therefore ab = 2 \times 6 = 12$$

답 12

0943 전략 x절편이 m이고 y절편이 n이면 두 점 (m, 0), (0, n)을 지난다

두점(3,0),(0,-2)를지나므로

$$(7]$$
울기)= $\frac{-2-0}{0-3}=\frac{2}{3}$

이때 y절편이 -2이므로 일차함수의 식은 $y=\frac{2}{3}x-2$

$$y = \frac{2}{3}x - 2$$
에 $x = a, y = 4$ 를 대입하면

$$4 = \frac{2}{3}a - 2, -\frac{2}{3}a = -6$$
 $\therefore a = 9$

답 9

0944 두점(-4,0),(0,3)을 지나므로

$$(7]$$
울기)= $\frac{3-0}{0-(-4)}=\frac{3}{4}$

이때 y절편이 3이므로 일차함수의 식은

$$y = \frac{3}{4}x + 3$$

답 $y = \frac{3}{4}x + 3$

0945 두점(1,0),(0,1)을 지나므로

$$(7)$$
울기)= $\frac{1-0}{0-1}$ = -1

- 이때 y절편이 1이므로 일차함수의 식은 y = -x+1
- ① $3 \neq -(-3) + 1$ 이므로 점 (-3, 3)은 y = -x + 1의 그 래프 위에 있지 않다. 답 ①

0946 $y = \frac{1}{2}x + 1$ 의 그래프와 x축 위에서 만나므로 x절편은 -2,

$$y=-\frac{2}{3}x-4$$
의 그래프와 y 축 위에서 만나므로 y 절편은 -4

이다. 즉 두 점
$$(-2,0)$$
, $(0,-4)$ 를 지나므로

$$(7]$$
울기)= $\frac{-4-0}{0-(-2)}$ =-2

이때 y절편이 -4이므로 일차함수의 식은 y = -2x - 4

$$y = -2x - 4$$
에 $x = -3$, $y = a$ 를 대입하면

$$a = 6 - 4 = 2$$

답 2

0947 전략 기온이 x °C 올랐을 때 소리의 속력은 초속 0.6x m만큼 증가한다.

기온이 x °C 오르면 소리의 속력은 초속 0.6x m만큼 증가하므로 기온이 x °C일 때의 소리의 속력을 초속 y m라 하면 y=331+0.6x

y=331+0.6x에 y=343을 대입하면

343 = 331 + 0.6x, -0.6x = -12 $\therefore x = 20$

따라서 소리의 속력이 초속 343 m일 때의 기온은 20 ℃이다. 답 20 ℃

0948 전략 100 m=0.1 km이다.

 $100 \ \mathrm{m}(=0.1 \ \mathrm{km})$ 높아질 때마다 기온이 $0.6 \ \mathbb{C}$ 씩 내려가므로 $1 \ \mathrm{km}$ 높아질 때마다 기온이 $6 \ \mathbb{C}$ 씩 내려간다.

즉 높이가 x km 높아지면 기온은 6x °C만큼 내려가므로 지면으로부터의 높이가 x km인 지점의 기온을 y °C라 하면 y=25-6x

y=25-6x에 x=5를 대입하면

$$y=25-6\times 5=25-30=-5$$

따라서 지면으로부터의 높이가 5 km인 지점의 기온은

-5 ℃이다.

답 -5 °C

0949 (1) 물의 온도가 10 °C 올라갈 때마다 물에 녹는 약품의 최대 량이 5 g씩 증가하므로 물의 온도가 1 °C 올라갈 때마다 물에 녹는 약품의 최대량은 0.5 g씩 증가한다.

물의 온도가 0 °C일 때, 물에 녹는 약품의 최대량은 30 g 이므로 y=30+0.5x ······ $\langle r \rangle$

- (2) y=30+0.5x에 x=12를 대입하면 $y=30+0.5\times12=30+6=36$ 따라서 물의 온도가 12 °C 일 때, 물에 녹는 약품의 최대량 은 36 g이다.(나)
- (3) y=30+0.5x에 y=42를 대입하면 42=30+0.5x, -0.5x=-12 $\therefore x=24$ 따라서 물에 녹는 약품의 최대량이 42 g일 때, 물의 온도 는 24 °C이다. \cdots (대

답 (1) y = 30 + 0.5x (2) 36 g (3) 24 °C

채점 기준	비율
(개) x와 y 사이의 관계식 구하기	40~%
(+) 물의 온도가 12 ℃일 때, 물에 녹는 약품의 최대량 구하기	30 %
(다)물에 녹는 약품의 최대량이 $42 \mathrm{g}$ 일 때, 물의 온도 구하기	30 %

0950 전략 리트머스 종이는 x초마다 0.5x cm씩 젖는다.

리트머스 종이는 10초마다 5 cm씩 젖으므로 1초마다 0.5 cm씩 젖는다.

즉 x초마다 0.5x cm씩 젖으므로 한쪽 끝을 물에 담근 지 x초 후에 젖지 않은 리트머스 종이의 길이를 y cm라 하면 y=25-0.5x

y=25-0.5x에 y=13을 대입하면

13=25-0.5x, 0.5x=12 $\therefore x=24$

따라서 젖지 않은 리트머스 종이의 길이가 13 cm가 되는 것 은 한쪽 끝을 물에 담근 지 24초 후이다. **답** 24초

0951 무게가 5 g인 물건을 달 때마다 용수철의 길이가 1 cm씩 늘 어나므로 무게가 1 g인 물건을 달 때마다 용수철의 길이는 $\frac{1}{5} cm$ 씩 늘어난다.

즉 무게가 x g인 물건을 달면 용수철의 길이는 $\frac{1}{5}x$ cm만큼 늘어나므로 $y=20+\frac{1}{5}x$ 답 $y=20+\frac{1}{5}x$

0952 ① 양초의 길이가 10분마다 3 cm씩 짧아지므로 1분마다 0,3 cm씩 짧아진다.

즉 불을 붙인 지 x분 후에는 길이가 $0.3x~\mathrm{cm}$ 만큼 짧아지 므로 y=27-0.3x

② y=27-0.3x에 x=20을 대입하면 $y=27-0.3\times 20=27-6=21$ (cm)

- ③ y=27-0.3x에 y=15를 대입하면 15=27-0.3x, 0.3x=12 $\therefore x=40(분)$
- ④ y=27-0.3x에 x=10을 대입하면 y=27-0.3×10=27-3=24 (cm)
- ⑤ 양초가 다 타버리면 양초의 길이는 0 cm이므로 y=27-0.3x에 y=0을 대입하면 0=27-0.3x, 0.3x=27 ∴ x=90(분) 따라서 양초가 다 타는 데 걸리는 시간은 1시간 30분이다.

답 ②

0953 전략 *x*분 동안 흘러나가는 물의 양은 3*x* L이다.

3분마다 9 L의 비율로 물이 흘러나가므로 1분마다 3 L의 물이 흘러나간다.

즉 x분 동안 흘러나가는 물의 양이 3x L이므로 물이 흘러나가기 시작한 지 x분 후에 물통에 남아 있는 물의 양을 y L라하면

y = 150 - 3x

y=150-3x에 y=75를 대입하면

75 = 150 - 3x, 3x = 75 $\therefore x = 25$

따라서 물통에 물이 75 L가 남아 있는 때는 물이 흘러나가기 시작한 지 25분 후이다. **답** 25분

0954 x분 동안 높아진 수면의 높이는 4x cm이므로 물을 넣기 시작한 지 x분 후의 수면의 높이를 y cm라 하면

y = 10 + 4x

y=10+4x에 y=26을 대입하면

26 = 10 + 4x, -4x = -16 $\therefore x = 4$

따라서 수면의 높이가 26 cm가 되는 것은 물을 더 넣기 시작한 지 4분 후이다. **답** 4분

0955 (1) 20 km를 달리는 데 1 L의 휘발유가 필요하므로 1 km를 달리는 데 필요한 휘발유의 양은 $\frac{1}{20} \text{ L}$ 이다.

즉 x km를 달릴 때 필요한 휘발유의 양은 $\frac{1}{20}x \text{ L이므로}$

$$y = 35 - \frac{1}{20}x$$
 (7)

 $(2) y = 35 - \frac{1}{20} x$ 에 x = 360을 대입하면

$$y=35-\frac{1}{20}\times360=35-18=17$$

따라서 360 km를 달린 후에 남아 있는 휘발유의 양은 17 L이다.(4)

답 (1) $y=35-\frac{1}{20}x$ (2) 17 L

채점 기준	비율
(가) <i>x</i> 와 <i>y</i> 사이의 관계식 구하기	50 %
(내) 360 km를 달린 후에 남아 있는 휘발유의 양 구하기	50 %

0956 절략 엘리베이터는 x초 동안 3x m만큼 내려온다.

엘리베이터가 x초 동안 3x m만큼 내려오므로 출발한 지x초 후에 지면으로부터 엘리베이터의 높이를 y m라 하면

y = 60 - 3x

y = 60 - 3x에 x = 5를 대입하면

 $y=60-3\times 5=60-15=45$

따라서 출발한 지 5초 후에 지면으로부터 엘리베이터의 높이는 45 m이다. **답** 45 m

0957 1시간(=60분)에 60 km를 달리므로 1분 동안 1 km를 달리다. 즉 x분 동안 x km를 달리므로

y = 200 - x

답 y = 200 - x

0958 지훈이는 1분에 150 m(=0.15 km)를 달리므로 x분 동안 달린 거리는 0.15x km이다.

지훈이가 출발한 지x분 후에 지훈이의 위치에서 결승점까지의 거리를 ykm라 하면

y = 5 - 0.15x

y=5-0.15x에 y=2를 대입하면

2=5-0.15x, 0.15x=3 $\therefore x=20$

따라서 지훈이의 위치에서 결승점까지의 거리가 2 km가 되는 것은 지훈이가 출발한 지 20분 후이다. **답** 20분

0959 전략 점 P가 점 B를 출발한 지 x초 후의 \overline{BP} 의 길이를 x에 대한 식으로 나타낸다.

점 P가 점 B를 출발한 지 x초 후의 삼각형 ABP의 넓이를 $y \text{ cm}^2$ 라 하면 $\overline{\text{BP}} = x \text{ cm}$ 이므로

$$y = \frac{1}{2} \times x \times 4$$

=2x

y=2x에 y=10을 대입하면

10=2x $\therefore x=5$

따라서 삼각형 ABP의 넓이가 10 cm²가 되는 것은 점 P가 점 B를 출발한 지 5초 후이다. **답** 5초

0960 점 P가 점 B를 출발한 지 x초 후의 사각형 ABPD의 넓이를 $y \text{ cm}^2$ 라 하면 $\overline{\text{BP}} = 0.5x \text{ cm}$ 이므로

$$y = \frac{1}{2} \times (10 + 0.5x) \times 6$$

=30+1.5x

y=30+1.5x에 y=45를 대입하면

45 = 30 + 1.5x, -1.5x = -15 $\therefore x = 10$

따라서 사각형 ABPD의 넓이가 45 cm²가 되는 것은 점 P 가 점 B를 출발한 지 10초 후이다. **답** 10초

0961 점 P가 점 A를 출발한 지 *x*초 후의 직각삼각형 CAP와 직 각삼각형 DPB의 넓이의 합을 *y* cm²라 하면 $\overline{AP} = x \text{ cm}, \overline{BP} = (20 - x) \text{ cm}$ 이므로

$$y\!=\!\!\frac{1}{2}\!\times\! x\!\times\! 5\!+\!\!\frac{1}{2}\!\times\! (20\!-\!x)\!\times\! 10$$

$$=\frac{5}{2}x+100-5x$$

$$=100-\frac{5}{2}x$$

 $y=100-\frac{5}{2}x$ 에 y=55를 대입하면

$$55 = 100 - \frac{5}{2}x, \frac{5}{2}x = 45$$
 $\therefore x = 18$

따라서 직각삼각형 CAP와 직각삼각형 DPB의 넓이의 합 이 $55~{\rm cm}^2$ 가 되는 것은 점 P가 점 ${\rm A}$ 를 출발한 지 18초 후이 다. **답** 18초

0962 전략 기울기와 y절편을 이용하여 일차함수의 식을 구한다.

그래프의 기울기가 -5, y절편이 20이므로

$$y = -5x + 20$$

y = -5x + 20에 x = 1을 대입하면

 $y = -5 \times 1 + 20 = 15$

따라서 불을 붙인 지 1시간 후에 남은 양초의 길이는 15 cm 이다. **답** 15 cm

0963 그래프의 기울기가 -25, y절편이 200이므로

$$y = -25x + 200$$

y=-25x+200에 x=3을 대입하면

 $y = -25 \times 3 + 200 = -75 + 200 = 125$

따라서 물이 흘러나가기 시작한 지 3시간 후에 물통에 남아 있는 물의 양은 125 L이다. **답** 125 L

0964 그래프의 기울기는 $-\frac{20}{40}$, 즉 $-\frac{1}{2}$ 이고 y절편은 50이므로

$$y = -\frac{1}{2}x + 50$$
 (단, $0 \le x \le 40$)

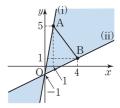
$$y = -\frac{1}{2}x + 50$$
에 $x = 16$ 을 대입하면

$$y = -\frac{1}{2} \times 16 + 50 = -8 + 50 = 42$$

따라서 물을 실온에 놓은 지 16분이 지난 후의 물의 온도는 42 °C이다. 답③

0965 전략 직선 y=ax-1은 항상 점 (0,-1)을 지나므로 이 점을 기준으로 그래프를 움직여 본다.

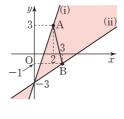
직선 y=ax-1은 y절편이 -1이므로 항상 점 (0,-1)을 지난다.


 $(i)\,A\,A(1,5)를 지날 때$

5=a-1 $\therefore a=6$

(ii) 점 B(4,1)을 지날 때

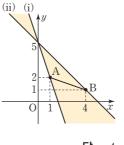
1 = 4a - 1, -4a = -2


 $\therefore a = \frac{1}{2}$

$$(i),(ii)$$
에서 $\frac{1}{2} \le a \le 6$

답
$$\frac{1}{2} \le a \le 6$$

- **0966** 직선 y=ax-3은 y절편이 -3이므로 항상 점 (0, -3)을 지난다.
 - (i) 점 A(2,3)을 지날 때 3=2a-3, -2a=-6 $\therefore a=3$
 - (ii) 점 B(3, -1)을 지날 때 -1=3a-3, -3a=-2 $\therefore a = \frac{2}{3}$
 - (i), (ii)에서 $\frac{2}{3} \le a \le 3$

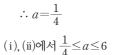

답 $\frac{2}{3} \le a \le 3$

- **0967** 직선y = ax + 5는 y절편이 5이므로 항상점 (0,5)를 지난다.
 - (i) 점 A(1, 2)를 지날 때

2 = a + 5 : a = -3

- (ii) 점 B(4, 1)을 지날 때 1 = 4a + 5, -4a = 4 $\therefore a = -1$
- (i) (ii)에서 -3≤a≤-1이므로 m = -3. n = -1

n+n=-3+(-1)=-4

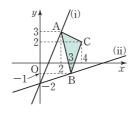


0968 전략 점 (0, 2)를 지나고 사각형의 각 꼭짓점을 지나는 직선 중 기울기가 가장 큰 것과 가장 작은 것을 찾는다.

> 직선 y=ax+2는 y절편이 2이므로 항상 점 (0,2)를 지난 다

- (i) 점 A(1,8)을 지날 때 8=a+2 $\therefore a=6$
- (ii) 점 C(4,3)을 지날 때 3=4a+2, -4a=-1

 $\therefore a = \frac{1}{4}$



답 $\frac{1}{4} \le a \le 6$

- **0969** 직선 y=ax-2는 y절편이 -2이므로 항상 점 (0,-2)를 지난다.
 - (i) 점 A(2,3)을 지날 때 3=2a-2, -2a=-5

 $\therefore a = \frac{5}{2}$

(ii) 점 B(3, −1)을 지날 때 -1=3a-2, -3a=-1 $\therefore a = \frac{1}{2}$

- (i), (ii)에서 $\frac{1}{3} \le a \le \frac{5}{2}$
- 답 $\frac{1}{3} \le a \le \frac{5}{2}$

- **0970** (1) 직선 y=2x+k가
 - (i) 점 A(4,6)을 지날 때

6 = 8 + k : k = -2···· (7})

(ii) 점 B(1, 4)를 지날 때

4=2+k $\therefore k=2$(나)

(iii) 점 C(6, 1)을 지날 때

....(다) 1 = 12 + k : k = -11

(2)(1)에서 k의 최댓값이 2, 최솟값이 -11이므로

 $-11 \le k \le 2$(라)

답 (1) -2.2.-11 (2) $-11 \le k \le 2$

채점 기준	비율
(개) 직선 $y=2x+k$ 가 점 A 를 지날 때, k 의 값 구하기	25 %
(나) 직선 $y=2x+k$ 가 점 B를 지날 때, k 의 값 구하기	25 %
(대) 직선 $y=2x+k$ 가 점 C 를 지날 때, k 의 값 구하기	25 %
(라) k의 값의 범위 구하기	25 %

0971 전략 두 일차함수의 그래프의 *x*절편을 각각 구한다.

 $(1) y = -\frac{1}{3}x - 2$ 의 그래프와 y = ax + b의 그래프가 서로

평행하므로 $a=-\frac{1}{3}$

 $(2) y = -\frac{1}{3} x - 2$ 의 그래프의 x절편이 -6이므로

 $y=-\frac{1}{2}x+b$ 의 그래프의 x절편이 3b이므로

Q(3b, 0)

이때 $\overline{\mathrm{PQ}}$ =8이므로 |3b-(-6)|=8에서

3b+6=8 또는 3b+6=-8

 $\therefore b = \frac{2}{3}$ 또는 $b = -\frac{14}{3}$

답 (1) $-\frac{1}{3}$ (2) $\frac{2}{3}$, $-\frac{14}{3}$

0972 y=3x+6의 그래프와 y=ax+b의 그래프가 서로 평행하 므로 a=3

y=3x+6의 그래프의 x절편이 -2이므로 A(-2,0)

y=3x+b의 그래프의 x절편이 $-\frac{b}{3}$ 이므로 B $\left(-\frac{b}{3},0\right)$

이때 \overline{AB} =4이므로 $\left|-\frac{b}{3}-(-2)\right|=4$ 에서

 $-\frac{b}{3}+2=4$ 또는 $-\frac{b}{3}+2=-4$

∴ b=-6 또는 b=18

그런데 b < 0이므로 b = -6

a+b=3+(-6)=-3

답 -3

0973 y=2x+6의 그래프의 x절편이 -3이므로 A(-3,0)

$$y = -\frac{1}{3}x + a$$
의 그래프의 x 절편이 $3a$ 이므로 $\mathrm{B}(3a,0)$

이때
$$\overline{AB} = 6$$
이므로 $|3a - (-3)| = 6$ 에서

$$3a+3=6$$
 또는 $3a+3=-6$

따라서 모든 상수 a의 값의 곱은

$$1 \times (-3) = -3$$

답 -3

STEP 3 내신 마스터

p.162 ~ p.165

0974 전략 각 일차함수의 그래프의 기울기의 절댓값을 구하여 대소 를 비교한다.

기울기의 절댓값이 작을수록 그래프는 x축에 가깝다.

이때
$$\left|\frac{1}{2}\right| < \left|\frac{2}{3}\right| < \left|\frac{4}{5}\right| < |-1| < \left|-\frac{12}{5}\right|$$
 이므로 그래 프가 x 축에 가장 가까운 것은 ③이다. 답 ③

Lecture |

일차함수y=ax+b의 그래프는

- (1) |a|가 클수록 y축에 가깝다.
- (2) |a|가 작을수록 x축에 가깝다.
- **0975** 일차함수의 그래프가 제1, 3, 4사분면을 지날 때의 기울기 와 *y* 절편의 부호를 파악한다.

y=ax+b의 그래프가 제1, 3, 4사분면을 지나므로 a>0, b<0

$$\frac{4}{7} - \frac{1}{b} > 0, a > 0$$

따라서 $y=-\frac{1}{b}x+a$ 의 그래프는 오 른쪽 위로 향하는 직선이고, y절편이

양수이므로 오른쪽 그림과 같다.

즉 제4사분면을 지나지 않는다.

답 제4사분면

0976 전략 직선의 방향과 *y* 절편을 이용하여 *a*, *b*의 부호를 각각 구한다.

그래프가 오른쪽 아래로 향하는 직선이므로 a < 0

y절편이 양수이므로 b>0

따라서 y=bx+a의 그래프는 b>0이므로 오른쪽 위로 향하는 직선이고, a<0이므로 y절편은 음수이다. 답③

Lecture |

일차함수 y=ax+b의 그래프가

- (1) 오른쪽 위로 향하는 직선이면 ⇒ a>0오른쪽 아래로 향하는 직선이면 ⇒ a<0
- (2) *y*절편이 양수이면 ⇒ *b* > 0

y절편이 음수이면 ⇒ b<0

원점을 지나면 \Rightarrow b=0

0977 전략 평행한 두 직선의 기울기는 같다.

주어진 일차함수의 그래프의 기울기는

$$\frac{4-3}{1-(-1)} = \frac{1}{2}$$

따라서 주어진 일차함수의 그래프와 평행한 직선을 그래프 로 하는 일차함수의 식은 ⑤이다. **답** ⑤

0978 전략 두 일차함수의 그래프가 일치하면 기울기와 y절편이 각각 같다.

y=-3ax+2의 그래프를 y축의 방향으로 3만큼 평행이동 한 그래프의 식은

y = -3ax + 2 + 3, = y = -3ax + 5

이때 y=-3ax+5의 그래프와 y=6x+2b의 그래프가 일 치하므로

$$-3a=6, 5=2b$$
 $\therefore a=-2, b=\frac{5}{2}$

$$\therefore ab = -2 \times \frac{5}{2} = -5$$

답 -5

- Lecture ⊢

두 일차함수 y=ax+b, y=cx+d의 그래프가

- (1) 평행 **⇒** a=c, b≠d
- (2) 일치 **⇒** a=c, b=d
- **0979** 전략 y=ax+b의 그래프에서 a,b의 의미를 이해한다.

② (기울기)= $-\frac{5}{2}$ <0이므로 오른쪽 아래로 향하는 직선이 다

④ $-10 = -\frac{5}{2} \times 6 + 5$ 이므로 점 (6, -10)을 지난다.

따라서 옳지 않은 것은 ②이다.

답 ②

- **0980** 전략 주어진 일차함수의 그래프 (가~(라)의 기울기, *x*절편, *y*절 편을 각각 비교해 본다.
 - ① x절편이 가장 작은 그래프는 x축과의 교점이 가장 왼쪽에 있는 (x)이다.
 - ② y절편이 양수인 그래프는 y축과 원점보다 위쪽에서 만나는 (t), (t)이다.
 - ③ 각 그래프의 기울기를 구하면 다음과 같다.

$$(7) - \frac{4}{3}$$
 $(4) - \frac{1}{3}$ $(7) \frac{1}{3}$ $(2) 1$

즉 기울기가 가장 작은 그래프는 (카)이다.

- ④ 그래프 (라)의 기울기는 1이므로 y=x의 그래프와 서로 평 했하다
- ⑤ *x*의 값이 증가할 때, *y*의 값이 감소하는 그래프는 직선이 오른쪽 아래로 향하는 (개), (내)이다.

따라서 옳지 않은 것은 ③이다.

답 ③

0981 전략 기울기가 a, y절편이 b인 직선을 그래프로 하는 일차함수 의 식은 y=ax+b이다.

y = -3x + 6의 그래프와 평행하므로 기울기는 -3이다. 이때 y절편이 k이므로 일차함수의 식은

$$y = -3x + k$$
 ······ $\langle x \rangle$

y = -3x + k에 x = 1, y = -4를 대입하면

$$-4 = -3 + k$$
 $\therefore k = -1$

답 -

채점 기준	비율
(개) 일차함수의 식 구하기	50 %
(나) <i>k</i> 의 값 구하기	50 %

0982 전략 상수 a, b의 값을 각각 구하여 일차함수 y = bx - a의 그래 프를 그려 본다.

기울기가 3이고 y절편이 6인 직선을 그래프로 하는 일차함 수의 식은 y=3x+6

 $\therefore a=3, b=6$

따라서 y=bx-a, 즉 y=6x-3의 그 래프는 오른쪽 그림과 같으므로 구하는 도형의 넓이는

$$\frac{1}{2} \times \frac{1}{2} \times 3 = \frac{3}{4}$$

 $\begin{array}{c|c}
y & & \\
\hline
O & \frac{1}{2} & x \\
\hline
y = 6x - 3 \\
\hline
-3 & & \\
\end{array}$

0983 전략 기울기가 a이면 일차함수의 식을 y=ax+b로 놓고 지나는 한 점의 좌표를 대입한다.

(기울기)= $\frac{4}{2}$ =2이므로 일차함수의 식을 y=2x+b로 놓고

x=1, y=-3을 대입하면

-3=2+b : b=-5

따라서 구하는 일차함수의 식은 y=2x-5 답 ③

0984 전략 일차함수의 그래프의 기울기와 x절편을 각각 구한다. y = -4x + 1의 그래프와 평행하므로 기울기는 -4이다.

..... (7)

 일차함수의 식을 $y\!=\!-4x\!+\!b$ 로 놓고 $x\!=\!5,y\!=\!0$ 을 대입하면 $0\!=\!-20\!+\!b$ $\therefore b\!=\!20$

따라서 구하는 일차함수의 식은

$$y = -4x + 20$$
 ······ (t)

답 y = -4x + 20

채점 기준	비율
(개) 일차함수의 그래프의 기울기 구하기	40 %
(나) 일차함수의 그래프의 <i>x</i> 절편 구하기	40 %
(다) 일차함수의 식 구하기	20 %

0985 전략 먼저 두 점을 지나는 직선의 기울기를 구한다.

그래프가 두 점 (-2,1), (3,3)을 지나므로

$$(7)$$
 설가) $=\frac{3-1}{3-(-2)}=\frac{2}{5}$

일차함수의 식을 $y=\frac{2}{5}x+b$ 로 놓고 x=-2,y=1을 대입하

면
$$1 = \frac{2}{5} \times (-2) + b$$
 $\therefore b = \frac{9}{5}$

즉 $y = \frac{2}{5}x + \frac{9}{5}$ 이므로 $y = \frac{2}{5}x + \frac{9}{5}$ 에 y = 0을 대입하면

$$0 = \frac{2}{5}x + \frac{9}{5}$$
 $\therefore x = -\frac{9}{2}$

따라서 x절편은 $-\frac{9}{2}$, y절편은 $\frac{9}{5}$ 이므로 그 곱은

$$\left(-\frac{9}{2}\right) \times \frac{9}{5} = -\frac{81}{10}$$

답 $-\frac{81}{10}$

0986 전략 먼저 두 점을 지나는 그래프의 식을 구한다.

① (기울기)= $\frac{-2-2}{3-1}=\frac{-4}{2}=-2$ 이므로

일차함수의 식을 y=-2x+b로 놓고 x=1, y=2를 대입하면

2=-2+b $\therefore b=4$

따라서 일차함수의 식은 y = -2x + 4

④ 기울기가 음수이고 y절편이 양수이므로 제1, 2, 4사분면을 지나고 제3사분면을 지나지 않는다.

따라서 옳지 않은 것은 ④이다.

답 ④

0987 전략 *x*절편이 *m*, *y*절편이 *n*이면 두 점 (*m*, 0), (0, *n*)을 지난다.

두 점 (3,0), (0,-4)를 지나므로

$$(7]$$
울기)= $\frac{-4-0}{0-3}$ = $\frac{4}{3}$

이때 y절편이 -4이므로 일차함수의 식은 $y=\frac{4}{3}x-4$

- ① $-1 \neq \frac{4}{3} \times 1 4$ 이므로 점 (1, -1)을 지나지 않는다.
- ② 기울기가 양수이고 y절편이 음수이므로 제1, 3, 4사분면을 지난다.
- ③ *x*의 값이 증가하면 *y*의 값도 증가한다.

- ④ y = -2x + 1의 그래프와 기울기가 같지 않으므로 평행하지 않다.
- **0988** 전략 일차함수 y = -3x + 1의 그래프와 y축 위에서 만나므로 y절편이 같다.

y=-3x+1의 그래프와 y축 위에서 만나므로 y절편은 1이 다

두 점 (2,0), (0,1)을 지나는 직선이므로

$$(7)$$
출기)= $\frac{1-0}{0-2}$ = $-\frac{1}{2}$

이때 y절편은 1이므로 일차함수의 식은

$$y = -\frac{1}{2}x + 1$$
 답 ③

0989 전략 두 일차함수의 그래프가 x축 위에서 만나면 x절편이 같고, y축 위에서 만나면 y절편이 같다.

 $y=\frac{1}{2}x-1$ 의 그래프와 x축 위에서 만나므로 x절편은 2,

y = -2x + 8의 그래프와y축위에서 만나므로y절편은 8이다. 즉 두 점(2,0),(0,8)을 지나므로

$$(7]$$
울기)= $\frac{8-0}{0-2}$ =-4

이때 y절편이 8이므로 일차함수의 식은 y = -4x + 8

따라서 a=-4, b=8이므로

$$a-b=-4-8=-12$$

0990 전략 회원이는 y절편을 바르게 보았고, 수경이는 기울기를 바르게 보았다.

희원이는 y절편을 바르게 보았으므로 그래프 \bigcirc 에서 y절편은 -5이다.

수경이는 기울기를 바르게 보았으므로 두 점 (0,7), (3,0)을 지나는 그래프 \bigcirc 에서

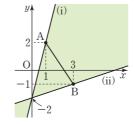
$$(7]$$
울기)= $\frac{0-7}{3-0}=-\frac{7}{3}$

따라서 처음 일차함수의 식은 $y = -\frac{7}{3}x - 5$

답
$$y = -\frac{7}{3}x - 5$$

답 ①

0991 전략 일차함수 y=ax-2의 그래프는 항상 (0,-2)를 지나므로 이 점을 기준으로 그래프를 움직여 본다.


일차함수 y=ax-2의 그래프의 y절편은 -2이므로 항상 점 (0,-2)를 지난다.

(i) 점 A(1, 2)를 지날 때

2=a-2 $\therefore a=4$

(ii) 점 B(3, -1)을 지날 때

$$-3a = -1$$
 : $a = \frac{1}{3}$

(i), (ii)에서 $\frac{1}{3} \le a \le 4$

답 $\frac{1}{3} \le a \le 4$

0992 전략 주어진 표를 이용하여 *x*와 *y* 사이의 관계식을 구한다.

양초의 길이가 10분마다 2 cm씩 짧아지므로 1분에 $\frac{1}{5}$ cm씩 짧아진다. (1)

따라서 x와 y 사이의 관계식은 $y=30-\frac{1}{5}x$ (②)

③ $y=30-\frac{1}{5}x$ 에 x=120을 대입하면

$$y=30-\frac{1}{5}\times 120=30-24=6$$

따라서 2시간 후의 양초의 길이는 6 cm이다.

④ $y = 30 - \frac{1}{5}x$ 에 y = 19를 대입하면

$$19 = 30 - \frac{1}{5}x, \frac{1}{5}x = 11$$
 $\therefore x = 55$

따라서 양초의 길이가 19 cm가 되는 것은 불을 붙인 지 55분 후이다.

⑤ 양초가 다 타버리면 양초의 길이는 0 cm이므로

$$y=30-\frac{1}{5}x$$
에 $y=0$ 을 대입하면

$$0=30-\frac{1}{5}x, \frac{1}{5}x=30$$
 $\therefore x=150$

따라서 양초가 다 타는 데 걸리는 시간은 2시간 30분이다.

답 ②

- **0993** 전략 x km를 달릴 때 필요한 경유의 양은 $\frac{1}{15}x \text{ L이다}$.
 - $^{(1)}$ 15 15 km를 달리는 데 12 L이다. 15 L이다.

즉 x km를 달릴 때 필요한 경유의 양은 $\frac{1}{15}x$ L이므로

$$y = 60 - \frac{1}{15}x$$

 $(2) y = 60 - \frac{1}{15} x$ 에 y = 10을 대입하면

$$10 = 60 - \frac{1}{15}x, \frac{1}{15}x = 50$$
 $\therefore x = 750$

따라서 남은 경유의 양이 10 L일 때, 자동차가 달린 거리는 750 km이다. (내

답 (1) $y = 60 - \frac{1}{15}x$ (2) 750 km

채점 기준	비율
(%) x 와 y 사이의 관계식 구하기	50 %
⑷ 남은 경유의 양이 10 L일 때, 자동차가 달린 거리	50 %
구하기	JU /0

0994 전략 점 P가 점 B를 출발한 지 x초 후의 \overline{PC} 의 길이를 x에 대한 식으로 나타낸다.

점 P가 점 B를 출발한 지 x초 후의 사다리꼴 APCD의 넓이 를 $y \text{ cm}^2$ 라 하면

 $\overline{\mathrm{BP}} = 2x \,\mathrm{cm}, \overline{\mathrm{PC}} = (16 - 2x) \,\mathrm{cm}$ 이므로

$$y\!=\!\!\frac{1}{2}\!\times\!\{16\!+\!(16\!-\!2x)\}\!\times\!12$$

= y = 192 - 12x

y=192−12x에 y=168을 대입하면

168 = 192 - 12x, 12x = 24 $\therefore x = 2$

따라서 사다리꼴 APCD의 넓이가 168 cm²가 되는 것은 점 P가 점 B를 출발한 지 2초 후이다. **답** 2초

- **0995** 전략 정오각형이 1개 늘어날 때마다 필요한 성냥개비의 개수를 구하다
 - (1) 정오각형이 1개 늘어날 때마다 성냥개비가 4개씩 더 필요 하므로 ①=13, ①=21
 - (2) x와 y 사이의 관계식은 y=5+4(x-1), 즉 y=4x+1이 므로 a=4, b=1

답 (1) \bigcirc =13, \bigcirc =21 (2) a=4, b=1

- 0996 전략 직선이 지나는 두 점의 좌표를 구한다.
 - (1) 두 점 (0, 100), (1000, 150)을 지나므로

$$(\operatorname{기울7}) = \frac{150 - 100}{1000 - 0} = \frac{50}{1000} = \frac{1}{20}$$

이때 y절편이 100이므로 x와 y 사이의 관계식은

$$y = \frac{1}{20}x + 100$$

 $(2) y = \frac{1}{20} x + 100$ 에 y = 500을 대입하면

$$500 = \frac{1}{20}x + 100, -\frac{1}{20}x = -400$$

x = 8000

따라서 추가로 8000원을 더 내야 한다.

답 (1) $y = \frac{1}{20}x + 100$ (2) 8000원

9

일차함수와 일차방정식

STEP 1 개념 마스터

p.168 ~ p.170

0997

답 y = -x + 3

0998

답 y = 2x + 4

0999

답 $y=\frac{3}{4}x$

1000

답 y = 2x - 3

1001 x+2y-1=0에서 y를 x에 대한 식으로 나타내면 $y=-\frac{1}{2}x+\frac{1}{2}$

x의 값이 6만큼 증가할 때, y의 값은 a만큼 증가한다고 하면

$$(\operatorname{기울기}) = \frac{(y \operatorname{의} \operatorname{잡의 증가량})}{(x \operatorname{의} \operatorname{잡의 증가량})} = \frac{a}{6} = -\frac{1}{2}$$

 $\therefore a = -3$

따라서 x의 값이 6만큼 증가할 때, y의 값은 3만큼 감소한다.

답 3

1002

답 $1, \frac{1}{2}$

1003 3x-9y=1에서 y를 x에 대한 식으로 나타내면

$$y = \frac{1}{3}x - \frac{1}{9}$$

 $y=\frac{1}{3}x-\frac{1}{9}$ 에 y=0을 대입하면 $0=\frac{1}{3}x-\frac{1}{9}$ $\therefore x=\frac{1}{3}$ 따라서 기울기는 $\frac{1}{3}$, x절편은 $\frac{1}{3}$, y절편은 $-\frac{1}{9}$ 이다.

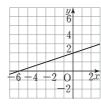
답 기울기 : $\frac{1}{2}$, x절편 : $\frac{1}{2}$, y절편 : $-\frac{1}{2}$

1004 -x+5y+4=0에서 y를 x에 대한 식으로 나타내면

$$y = \frac{1}{5}x - \frac{4}{5}$$

 $y=\frac{1}{5}x-\frac{4}{5}$ 에 y=0을 대입하면 $0=\frac{1}{5}x-\frac{4}{5}$ $\therefore x=4$ 따라서 기울기는 $\frac{1}{5}$, x절편은 4, y절편은 $-\frac{4}{5}$ 이다.

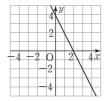
답 기울기 : $\frac{1}{5}$, x절편 : 4, y절편 : $-\frac{4}{5}$


1005 $\frac{x}{2} - \frac{y}{3} = 1$ 에서 y = x에 대한 식으로 나타내면 $y = \frac{3}{2}x - 3$ $y = \frac{3}{2}x - 3$ 에 y = 0을 대입하면 $0 = \frac{3}{2}x - 3$ $\therefore x = 2$ 따라서 기울기는 $\frac{3}{2}$, x절편은 2, y절편은 -3이다.

답 기울기 : $\frac{3}{2}$, x절편 : 2, y절편 : -3

1006 -x+3y-6=0에서 y를 x에 대한 식으로 나타내면

 $y = \frac{1}{3}x + 2$


답

1007 2x+y=4에서 y를 x에 대한 식으로 나타내면

y = -2x + 4

 $\bigcirc y = 2x + 3$

이 중에서 기울기가 음수인 것은 ⓒ, ⓒ이다.

답 🗈, 🖹

1009 기울기가 양수인 것은 ⑤, ⑥이다.

답 ①. ①

1010 기울기가 같은 것은 ②과 ②이다.

답 ©과 ②

1011

답 y=3

1012

답 x=-2

1013

답 x=-4

1014

답 y = -1

1015 두 점의 y좌표가 -3으로 같으므로 두 점을 지나는 직선은 x축에 평행한 직선이다.

 $\therefore y = -3$

답 y=-3

1016 두 점의 x좌표가 5로 같으므로 두 점을 지나는 직선은 y축에 평행한 직선이다.

 $\therefore x=5$

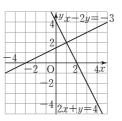
답 x=5

1017

답 x=4, y=2

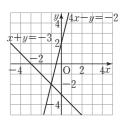
1018

답 x = -2, y = 3


1019 두 일차방정식의 그래프의 교점의 좌표가 (-2, 1)이므로

연립방정식의 해는 x=-2, y=1

답 x=-2,y=1


1020 두 일차방정식의 그래프의 교점의 좌표가 (0, -2)이므로 연립방정식의 해는 x=0, y=-2 **답** x=0, y=-2

1021 오른쪽 그림과 같이 두 일차방 정식의 그래프의 교점의 좌표 가 (1,2)이므로 연립방정식의 해는 x=1,y=2이다.

답 x=1, y=2

1022 오른쪽 그림과 같이 두 일차방정 식의 그래프의 교점의 좌표가 (-1, -2)이므로 연립방정식 의 해는 x=-1, y=-2이다.

답 x = -1, y = -2

1023 두 일차방정식의 그래프의 교점의 좌표가 (-1, 3)이므로 연립방정식의 해는 x=-1, y=3이다.

답 x = -1, y = 3

1024 3x-y=m에 x=-1, y=3을 대입하면

-3-3=m $\therefore m=-6$

답 -6

1025 nx+y=1에 x=-1, y=3을 대입하면

-n+3=1 $\therefore n=2$

답 2

 \bigcirc $\begin{cases} y = x + 3 \\ y = 1 & 1 \end{cases}$

 $\exists \begin{cases} y=2x+2 \\ y=2x+3 \end{cases}$

연립방정식의 해가 한 쌍인 것은 두 일차방정식의 그래프가 한 점에서 만나야 하므로 기울기가 다른 ⓒ이다. **답** ⓒ

1027 연립방정식의 해가 없는 것은 두 일차방정식의 그래프가 서로 평행해야 하므로 기울기가 같고 #절편이 다른 ①, ②이다.

답 🗓, 🖹

1028 연립방정식의 해가 무수히 많은 것은 두 일차방정식의 그래 프가 일치해야 하므로 기울기와 y 절편이 각각 같은 ⊙이다.

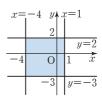
답 🗇

STEP 2 유형 마스터

p.171 ~ p.180

1029 전략 주어진 일차방정식을 y=(x에 대한 식)으로 나타낸다. 2x-3y+4=0에서 y를 x에 대한 식으로 나타내면 $y=\frac{2}{3}x+\frac{4}{3}$

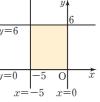
따라서
$$a=\frac{2}{3}, b=\frac{4}{3}$$
이므로
$$a+b=\frac{2}{3}+\frac{4}{3}=2$$
 답 2


- 1030 x+2y-4=0에서 y를 x에 대한 식으로 나타내면 $y=-\frac{1}{2}x+2$ 답 ②
- 1031 3x+2y=12에서 y를 x에 대한 식으로 나타내면 $y=-\frac{3}{2}x+6$ $y=-\frac{3}{2}x+6$ 그래프는 x절편이 4, y절편이 6인 직선이 므로 ①이다. 답 ①
- 1032 2x+y=8에서 y를 x에 대한 식으로 나타내면 y=-2x+8 ④ 기울기가 -2이므로 x의 값이 2만큼 증가할 때, y의 값은 4만큼 감소한다. 답 ④
- 1033 x+ay+1=0에서 y를 x에 대한 식으로 나타내면 $y=-\frac{1}{a}x-\frac{1}{a}$ 이때 기울기가 2이므로 $-\frac{1}{a}=2$ $\therefore a=-\frac{1}{2}$ $y=ax+a-1, 즉 y=-\frac{1}{2}x-\frac{3}{2}$ 에 y=0을 대입하면 $0=-\frac{1}{2}x-\frac{3}{2}$ $\therefore x=-3, 즉 x$ 절편은 -3 답 -3
- 1034 3x-2y+6=0에 y=0을 대입하면 3x+6=0 $\therefore x=-2$, 즉 x절편은 -2 2x-3y-6=0에 x=0을 대입하면 -3y-6=0 $\therefore y=-2$, 즉 y절편은 -2 따라서 직선은 두 점 (-2,0), (0,-2)를 지나므로 (7]울기)= $\frac{-2-0}{0-(-2)}=-1$ 따라서 구하는 직선의 방정식은 y=-x-2, 즉 x+y+2=0 답 ④
- 1035 전략 그래프가 지나는 점의 좌표를 주어진 일차방정식에 대입하여 a의 값을 구한다. 3x+2y=-2에 x=a+1, y=a를 대입하면 3(a+1)+2a=-2, 5a=-5 $\therefore a=-1$ 답 -1
- 1036 ⑤ 2×5+(-6)≠6이므로 점 (5, -6)은 2x+y=6의 그 래프 위의 점이 아니다. 답 ⑤
- 1037 5x+ay+1=0에 x=-2, y=3을 대입하면 -10+3a+1=0, 3a=9 ∴ a=3 답 3

1038 ax-2by+6=0의 그래프가 두 점 (2,0),(0,3)을 지나므로 ax-2by+6=0에 x=2,y=0을 대입하면 2a+6=0 $\therefore a=-3$ $\cdots (가)$ ax-2by+6=0에 x=0,y=3을 대입하면 -6b+6=0 $\therefore b=1$ $\cdots (t)$ $\therefore a+b=-3+1=-2$ $\cdots (t)$

채점 기준	비율
(개) a의 값 구하기	40 %
(H) b의 값 구하기	40 %
(대 $a+b$ 의 값 구하기	20 %

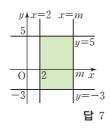
- 1039 전략 주어진 일차방정식을 x=p(p는 상수) 꼴로 나타낸다. 주어진 그래프는 점 (3,0)을 지나고 y축에 평행하므로 직선의 방정식은 x=3 이때 2x+1=a를 x에 대하여 풀면 $x=\frac{a-1}{2}$ 이므로 $\frac{a-1}{2}=3, a-1=6 \qquad \therefore a=7 \qquad \qquad \mathbf{답} \ 7$
- **1040** 점 (3,-1)을 지나고 x축에 평행한 직선의 방정식은 $y\!=\!-1$ **답** $y\!=\!-1$
- 1041 -3y=9에서 y=-3
 ① x축에 평행한 직선이다.
 ② 제3, 4사분면을 지난다.
 ② 점 (0,9)를 지나지 않는다.
 따라서 옳은 것은 ⓒ, ⓒ이다. 답 ⓒ, ⓒ
- 1042 x축에 수직인 직선은 y축에 평행하므로 직선 위의 모든 점의 x좌표가 같다. 즉 a-3=2-4a이므로 5a=5 $\therefore a=1$ 답 1
- **1043** 전략 직선의 방정식을 x=p, y=q의 꼴로 고친 후 네 직선을 좌표평면 위에 나타내어 본다.


x-1=0에서 x=1 2x+8=0에서 x=-4 y+3=0에서 y=-3 따라서 네 직선을 좌표평면 위에 나타내면 오른쪽 그림과 같으므로 구하는 넓이는 $5\times 5=25$

1044 2x+10=0에서 x=-5 y-6=0에서 y=6

따라서 네 직선을 좌표평면 위에 나타내면 오른쪽 그림과 같으므로 구하는 넓이는

 $5 \times 6 = 30$


답 30

답 25

1045 네 직선을 좌표평면 위에 나타내면 오른쪽 그림과 같으므로

$$(m-2)\times 8=40$$

$$\therefore m=7$$

1046 전략 주어진 그래프를 보고 기울기와 y절편의 부호를 각각 파 악하다.

ax+by+c=0에서 y를 x에 대한 식으로 나타내면

$$y = -\frac{a}{b}x - \frac{c}{b}$$

그래프가 오른쪽 아래로 향하는 직선이므로

$$-\frac{a}{b} < 0, \stackrel{\mathbf{Z}}{=} \frac{a}{b} > 0$$

$$y$$
절편이 양수이므로 $-\frac{c}{h} > 0$, 즉 $\frac{c}{h} < 0$

 \bigcirc 에서 a와 b의 부호는 서로 같고, \bigcirc 에서 b와 c의 부호는 서 로 다르므로 a > 0이면 b > 0, c < 0이고, a < 0이면 b < 0, c>0이다. 답 ①. ④

1047 ax+y+c=0에서 y를 x에 대한 식으로 나타내면

그래프가 오른쪽 위로 향하는 직선이고. y절편이 양수이므로 -a > 0, -c > 0 : a < 0, c < 0답 a<0,c<0

1048 전략 y축에 평행한 직선은 x=p(p)는 상수) 꼴이다.

ax+by-4=0의 그래프가 y축에 평행하므로 $a\neq 0, b=0$ ax-4=0 $\therefore x=\frac{4}{a}$

이때 그래프가 제1,4사분면을 지나려면 $\frac{4}{a}>0$ 이어야 하므

1049 ax+by+1=0에서 y를 x에 대한 식으로 나타내면 $y = -\frac{a}{h}x - \frac{1}{h}$

이때 a < 0, b > 0이므로 $-\frac{a}{b} > 0, -\frac{1}{b} < 0$

따라서 그래프는 오른쪽 위로 향하는 직선이고, y절편이 음 답 ③ 수이므로 ③이다.

1050 ax + by + c = 0에서 y = x에 대한 식으로 나타내면

$$y = -\frac{a}{b}x - \frac{c}{b}$$

ac>0, bc<0이므로 a와 c의 부호는 서로 같고, b와 c의 부 호는 서로 다르다. 즉 a와 b의 부호는 서로 다르므로

$$-\frac{a}{b} > 0, -\frac{c}{b} > 0$$

따라서 그래프는 오른쪽 위로 향하는 직 선이고, y절편이 양수이므로 오른쪽 그림 과 같다. 즉 제4사분면을 지나지 않는다.

답 제4사분면

1051 ax - by - c = 0에서 y = x에 대한 식으로 나타내면

그래프가 오른쪽 아래로 향하는 직선이므로 $\frac{a}{b} < 0$ \bigcirc

$$y$$
절편이 음수이므로 $-\frac{c}{b} < 0$ \bigcirc

cx+by-a=0을 y에 대하여 풀면 $y=-\frac{c}{b}x+\frac{a}{b}$

$$\bigcirc$$
, 이에서 $-\frac{c}{b} < 0$, $\frac{a}{b} < 0$

따라서 그래프는 오른쪽 아래로 향하는 직선이고, y절편이 음수이므로 ②이다. 답 ②

1052 전략 두 직선의 교점의 좌표는 연립방정식의 해와 같다.

연립방정식
$$\begin{cases} x+y=5 \\ 3x-y=4 \end{cases}$$
를 풀면 $x=\frac{9}{4}, y=\frac{11}{4}$

따라서 두 직선의 교점의 좌표는 $\left(\frac{9}{4}, \frac{11}{4}\right)$ 이므로

$$m = \frac{9}{4}, n = \frac{11}{4}$$

$$n - n = \frac{9}{4} - \frac{11}{4} = -\frac{1}{2}$$

답 $-\frac{1}{2}$

1053 교점의 좌표가 (3, 2)이므로 연립방정식의 해는

$$x=3, y=2$$
 답 $x=3, y=2$

1054 연립방정식
$${5x-y=1 \brace 4x+3y=16}$$
을 풀면 $x=1,y=4$ 따라서 교점의 좌표는 $(1,4)$ 이다. 답 $(1,4)$

1055 전략 직선 *l* . *m*의 방정식을 먼저 구한다.

직선
$$l$$
은 두 점 $(-2,0)$, $(0,1)$ 을 지나므로 (기울기)= $\frac{1-0}{0-(-2)}=\frac{1}{2}$

즉 직선 l의 방정식은 $y=\frac{1}{2}x+1$

직선 m은 두 점 (3,0), (0,-3)을 지나므로 y절편이 -3 (기울기)= $\frac{-3-0}{0-3}$ =1

$$(7]울7])=\frac{-3-0}{0-3}=1$$

즉 직선 m의 방정식은 y=x-3

연립방정식
$$\begin{cases} y = \frac{1}{2}x + 1 \\ y = x - 3 \end{cases}$$
 을 풀면 $x = 8, y = 5$

따라서 점 P의 좌표는 (8,5)이다.

답 (8,5)

1056 전략 두 일차방정식의 그래프의 교점의 좌표는 연립방정식의

두 직선의 교점의 좌표가 (3, 2)이므로 연립방정식의 해는 x=3, y=2이다.

$$ax-y=-5$$
에 $x=3, y=2$ 를 대입하면

$$3a-2=-5.3a=-3$$
 : $a=-1$

$$2x-by=4$$
에 $x=3, y=2$ 를 대입하면 $6-2b=4, -2b=-2$ $\therefore b=1$ 답 0

1057 두 직선의 교점의 좌표가 (2, 3)이므로 연립방정식의 해는 x=2, y=3이다.

x+2y=2a에 x=2, y=3을 대입하면

$$2+6=2a, -2a=-8$$
 : $a=4$

1058 x-2y-3=0에 y=0을 대입하면 x-3=0 $\therefore x=3$. 즉 x절편은 3 ···· (7}) 즉 두 직선은 점 (3,0)에서 만나므로 ax-y+9=0에 x=3, y=0을 대입하면

> 3a+9=0 : a=-3....(니)

> > **답** -3

답 4

채점 기준	비율
(7) 직선 $x-2y-3=0$ 의 x 절편 구하기	50 %
(내) a의 값 구하기	50 %

1059 ax+by=11에 x=1, y=3을 대입하면 a+3b=11 bx+ay=9에 x=1, y=3을 대입하면 b+3a=9

 \bigcirc . \bigcirc 을 연립하여 풀면 a=2,b=3

$$\therefore ab=2\times 3=6$$

답 6

1060 전략 두 직선의 교점의 좌표는 두 직선의 방정식을 연립하여 풀어서 구한다.

연립방정식
$${2x+3y-3=0 top 2x+1=0}$$
을 풀면 $x=0,y=1$

즉 두 직선의 교점의 좌표는 (0,1)이다.

이때 2x-y=3, 즉 y=2x-3의 그래프와 평행하므로 기울 기는 2이다.

따라서 구하는 직선의 방정식을 y=2x+b로 놓고 x=0, y=1을 대입하면 b=1

 $\therefore y=2x+1$

답 y = 2x + 1

1061 연립방정식 ${x+2y=1 \atop 2x-y=3}$ 을 풀면 $x=\frac{7}{5}, y=-\frac{1}{5}$

즉 두 직선의 교점의 좌표는 $\left(\frac{7}{5}, -\frac{1}{5}\right)$ 이다.

따라서 점 $\left(\frac{7}{5},-\frac{1}{5}\right)$ 을 지나고 y축에 평행한 직선의 방정식

$$ex=\frac{7}{5}$$

1062 연립방정식 $\begin{cases} y=-5x-3 \\ y=3x+13 \end{cases}$ 을 풀면 x=-2, y=7

즉 두 직선의 교점의 좌표는 (-2,7)이다. 두 점 (-2,7), (2,-5)를 지나는 직선의 방정식은

(7]울7 $)=\frac{-5-7}{2-(-2)}=-3$ 이<u>므로</u>

y = -3x + b로 놓고 x = 2, y = -5를 대입하면

-5 = -6 + b : b = 1

따라서 구하는 직선의 방정식은 y = -3x + 1

답 y = -3x + 1

1063 전략 미지수를 포함하지 않는 두 직선의 교점의 좌표를 구하여 그 교점의 좌표를 미지수를 포함한 직선의 방정식에 대입한다.

연립방정식
$$\begin{cases} 2x-y=3 \\ x+3y=-2 \end{cases}$$
를 풀면 $x=1,y=-1$

즉 세 직선의 교점의 좌표는 (1, -1)이므로

ax+y=1에 x=1, y=-1을 대입하면

$$a-1=1$$
 $\therefore a=2$

답 2

1064 연립방정식 $\begin{cases} 2x-5y=-1 \\ x+y-3 \end{cases}$ 을 풀면 x=2,y=1

즉 두 직선의 교점의 좌표는 (2,1)이므로

ax+5y=7에 x=2, y=1을 대입하면

2a+5=7, 2a=2 : a=1

답 1

1065 연립방정식 $\begin{cases} x-3y=-1 \\ 3x+y=2 \end{cases}$ 를 풀면 $x=\frac{1}{2}, y=\frac{1}{2}$

즉 세 직선의 교점의 좌표는 $\left(\frac{1}{2}, \frac{1}{2}\right)$ 이므로

(a-2)x+2ay=5에 $x=\frac{1}{2}, y=\frac{1}{2}$ 을 대입하면

$$(a-2) \times \frac{1}{2} + a = 5, \frac{3}{2}a = 6$$
 : $a=4$

따라서 (a-2)x+2ay=5, 즉 2x+8y=5에 주어진 점의 좌표를 각각 대입하여 등식이 성립하는 것을 찾으면

$$(5)2 \times \frac{13}{2} + 8 \times (-1) = 5$$

답 ⑤

1066 전략 연립방정식의 해가 없으려면 두 직선의 기울기가 같고 y절편이 달라야 한다.

두 일차방정식을 각각 y를 x에 대한 식으로 나타내면

$$y=2x-3, y=-\frac{a}{3}x-\frac{11}{3}$$

연립방정식의 해가 없으려면 두 직선 y=2x-3.

 $y = -\frac{a}{3}x - \frac{11}{3}$ 의 기울기가 같고 y절편이 달라야 한다.

즉
$$2 = -\frac{a}{3}$$
이므로 $a = -6$

1067 ① $\begin{cases} y = -x + 3 \\ y = -2x + 3 \end{cases}$ ② $\begin{cases} y = \frac{1}{2}x - \frac{1}{2} \\ y = 2x - 2 \end{cases}$ ③ $\begin{cases} y = 2x + 4 \\ y = 2x + 4 \end{cases}$ ④ $\begin{cases} y = 2x + 1 \\ y = -2x + 1 \end{cases}$

$$y = \frac{1}{2}x - \frac{1}{2}$$

연립방정식의 해가 무수히 많으려면 두 직선이 일치해야 하 므로 기울기와 y절편이 각각 같은 3이다. 답 ③

1068 (7)
$$\begin{cases} 3x+y-4=0 \\ ax+3y-1=0 \end{cases} \Rightarrow \begin{cases} y=-3x+4 \\ y=-\frac{a}{3}x+\frac{1}{3} \end{cases}$$

$$\text{(4)} \begin{cases} 3x - 3y - 2a = 0 \\ x - y + b = 0 \end{cases} \Rightarrow \begin{cases} y = x - \frac{2}{3}a \\ y = x + b \end{cases}$$

(개)에서 연립방정식의 해가 없으려면 두 직선 y = -3x + 4, $y=-\frac{a}{3}x+\frac{1}{3}$ 의 기울기가 같고 y절편이 달라야 하므로 $-3=-\frac{a}{3}$ $\therefore a=9$

(내)에서 연립방정식의 해가 무수히 많으려면 두 직선 y=x-6, y=x+b의 기울기와 y절편이 각각 같아야 하므

$$∴ a+b=9+(-6)=3$$
 답 3

참고 a=9를 $y=x-\frac{2}{3}a$ 에 대입하면 y=x-6

1069
$$\begin{cases} 2x - y - a = 0 \\ bx + 2y + 1 = 0 \end{cases} \Rightarrow \begin{cases} y = 2x - a \\ y = -\frac{b}{2}x - \frac{1}{2} \end{cases}$$

① $b \neq -4$ 이면 $-\frac{b}{2} \neq 2$ 이므로 해가 오직 한 쌍뿐이다.

②
$$\begin{cases} y=2x+1 \\ y=-x-rac{1}{2} \end{cases}$$
 \therefore 해가 오직 한 쌍뿐이다.

③
$$\begin{cases} y = 2x - \frac{1}{2} \\ y = 2x - \frac{1}{2} \end{cases}$$
 : 해가 무수히 많다.

④
$$\begin{cases} y=2x-1 \\ y=-2x-\frac{1}{2} \end{cases} \qquad \therefore \text{ 해가 오직 한 쌍뿐이다.}$$

⑤
$${y=2x-4 \choose y=2x-\frac{1}{2}}$$
 \therefore 해가 없다. 답 ①

1070 전략 연립방정식을 풀어 두 직선의 교점의 좌표를 구한다

연립방정식
$$\begin{cases} x-3y=-3 \\ 2x+3y=12 \end{cases}$$
를 풀면 $x=3,y=2$

즉 두 직선의 교점 A의 좌표는 (3,2)이다.

x-3y=-3에 y=0을 대입하면

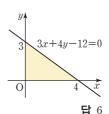
 $x = -3, \stackrel{\triangle}{=} B(-3, 0)$

2x+3y=12에 y=0을 대입하면

2x=12 ∴ $x=6, \leq C(6,0)$

따라서 구하는 삼각형 ABC의 넓이는

$$\frac{1}{2} \times (3+6) \times 2 = 9$$
 답 9

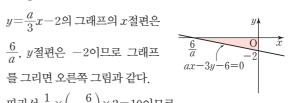

1071 3x+4y-12=0에서 y를 x에 대한 식으로 나타내면

$$y = -\frac{3}{4}x + 3$$

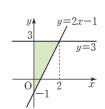
 $y = -\frac{3}{4}x + 3$ 의 그래프의 x절편은

4, y절편은 3이므로 그래프를 그리 면 오른쪽 그림과 같다. 따라서 구하는 넓이는

$$\frac{1}{2} \times 4 \times 3 = 6$$


1072 ax-3y-6=0에서 y를 x에 대한 식으로 나타내면

$$y = \frac{a}{2}x - 2$$


를 그리면 오른쪽 그림과 같다

따라서 $\frac{1}{2} \times \left(-\frac{6}{a}\right) \times 2 = 10$ 이므로

$$a = -\frac{3}{5}$$

1073 2x-1=3에서 2x=4 $\therefore x=$ 즉두 직선 y=2x-1, y=3의 교점의 $\frac{3}{y=3}$ 좌표는 (2,3)이고 직선 y=2x-1의 y절편은 -1이므로 그래프를 그리면 $\frac{3}{y=3}$

따라서 구하는 넓이는 $\frac{1}{2}$ \times $(3+1) \times 2=4$

답 4

1074 (1) 연립방정식 $\begin{cases} y=x+6 \\ y=-2x+4 \end{cases}$ 를 풀면 $x=-\frac{2}{3}, y=\frac{16}{3}$

즉점 A의 좌표는 $\left(-\frac{2}{3}, \frac{16}{3}\right)$ 이다.

(2) y = x + 6에 y = 0을 대입하면

$$0 = x + 6$$
 $\therefore x = -6, \stackrel{<}{=} B(-6, 0)$

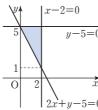
y = -2x + 4에 y = 0을 대입하면

$$0 = -2x + 4$$
 $\therefore x = 2, \leq C(2, 0)$

(3) (삼각형 ABC의 넓이)= $\frac{1}{2}$ ×(6+2)× $\frac{16}{3}$ = $\frac{64}{3}$

답 (1)
$$A\left(-\frac{2}{3},\frac{16}{3}\right)$$
 (2) $B(-6,0)$, $C(2,0)$ (3) $\frac{64}{3}$

채점 기준	비율
(가) 점 A의 좌표 구하기	30 %
(나) 두 점 B, C의 좌표 각각 구하기	각 20 %
따 삼각형 ABC의 넓이 구하기	30 %

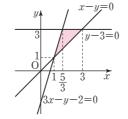

1075 두 직선 x-2=0, y-5=0의 교점의 좌표는 (2,5), 두 직선 y-5=0, 2x+y-5=0의 교점의 좌표는 (0,5), 두 직선 x-2=0, 2x+y-5=0의 교점의 좌표는 (2,1)

이므로 그래프를 그리면 오른쪽 그 림과 같다.

따라서 구하는 넓이는

$$\frac{1}{2} \times 2 \times (5-1) = 4$$

EF 4



1076 두 직선 x-y=0, y-3=0의 교점의 좌표는 (3,3),두 직선 x-y=0, 3x-y-2=0의 교점의 좌표는 (1,1),두 직선 y-3=0, 3x-y-2=0의 교점의 좌표는 $\left(\frac{5}{3},3\right)$

이므로 그래프를 그리면 오른쪽 그림과 같다.

따라서 구하는 넓이는

$$\frac{1}{2}\!\times\!\left(3\!-\!\frac{5}{3}\right)\!\times\!\left(3\!-\!1\right)\!=\!\frac{4}{3}$$

답 🧐

1077 직선 3x+5y=30의 x절편이 10, y절편이 6이므로 A(10,0), B(0,6)

점 C의 좌표를 (k, 0)이라 하면

(삼각형 ABC의 넓이)= $\frac{1}{2}$ ×(10-k)×6=15에서

30-3k=15, -3k=-15

 $\therefore k=5, \stackrel{\triangleleft}{\rightarrow} C(5,0)$

따라서 직선 BC는 기울기가 $-\frac{6}{5}$, y절편이 6이므로

직선 BC의 방정식은

$$y = -\frac{6}{5}x + 6$$

답 $y = -\frac{6}{5}x + 6$

1078 전략 (삼각형 COB의 넓이) $=\frac{1}{2}$ \times (삼각형 AOB의 넓이)임을 이용하여 점 C의 좌표를 구한다.

직선 $y=-\frac{2}{3}x+4$ 의 x절편은 6,y절편은 4이므로

A(0,4), B(6,0)

(삼각형 COB의 넓이)= $\frac{1}{2}$ ×(삼각형 AOB의 넓이)이므로

점 C의 y좌표는 $\frac{1}{2} \times 4 = 2$

 $y = -\frac{2}{3}x + 4$ 에 y = 2를 대입하면

$$2 = -\frac{2}{3}x + 4, \frac{2}{3}x = 2$$
 $\therefore x = 3, 즉 점 C(3, 2)$

따라서 y=mx에 x=3, y=2를 대입하면

2=3m $\therefore m=\frac{2}{3}$

답 $\frac{2}{3}$

1079 직선 3x-y+12=0의 x절편은 -4, y절편은 12이므로 A(-4,0), B(0,12)

(삼각형 AOC의 넓이) $=\frac{1}{2} \times$ (삼각형 AOB의 넓이)이므로

점 C의
$$y$$
좌표는 $\frac{1}{2} \times 12 = 6$

3x - y + 12 = 0에 y = 6을 대입하면

$$3x-6+12=0, 3x=-6$$
 $\therefore x=-2, \stackrel{\sim}{=} C(-2, 6)$

y = mx에 x = -2, y = 6을 대입하면

$$6=-2m$$
 ∴ $m=-3$ 답 -3

1080 연립방정식 $\begin{cases} y = 3x \\ y = -x + 8 \end{cases}$ 을 풀면 x = 2, y = 6

즉 두 직선의 교점 A의 좌표는 (2,6)이다.

직선
$$y = -x + 8$$
의 x 절편은 8이므로 B(8,0)

(삼각형 AOC의 넓이)= $\frac{1}{2}$ imes(삼각형 AOB의 넓이)이므로

점 C의
$$x$$
좌표는 $\frac{1}{2} \times 8 = 4$ \therefore C(4,0)

따라서 직선y=ax+b는 두 점 A(2,6), C(4,0)을 지난다.

(기울기)=
$$\frac{0-6}{4-2}=\frac{-6}{2}=-3$$
이므로 $a=-3$

y = -3x + b에 x = 4, y = 0을 대입하면

$$0 = -12 + b$$
 : $b = 12$

 $\therefore a+b=-3+12=9$

답 9

- 1081 전략 세 직선에 의하여 삼각형이 만들어지지 않는 경우는 세 직선 중 어느 두 직선이 평행하거나 세 직선이 한 점에서 만나는 경우이다.
 - (i) 세 직선 중 어느 두 직선이 평행한 경우 두 직선 y = -2x + 5, y = ax가 평행하면 a = -2두 직선 y = 3x + 10. y = ax가 평행하면 a = 3
 - (ii) 세 직선이 한 점에서 만나는 경우

두 직선 y=-2x+5, y=3x+10의 교점의 좌표가 (-1,7)이므로 y=ax에 x=-1, y=7을 대입하면 7=-a $\therefore a=-7$

따라서 모든 상수 a의 값의 합은

$$-2+3+(-7)=-6$$

답 -6

1082 세 직선의 방정식을 각각 y를 x에 대한 식으로 나타내면

$$y = \frac{1}{3}x + \frac{8}{3}, y = -2x + 5, y = ax + 6$$

(i) 세 직선 중 어느 두 직선이 평행한 경우

두 직선
$$y = \frac{1}{3}x + \frac{8}{3}$$
, $y = ax + 6$ 이 평행하면 $a = \frac{1}{3}$

두 직선 y = -2x + 5, y = ax + 6이 평행하면 a = -2

(ii) 세 직선이 한 점에서 만나는 경우

두 직선
$$y = \frac{1}{3}x + \frac{8}{3}, y = -2x + 5$$
의 교점의 좌표가

- (1,3)이므로y=ax+6에 x=1,y=3을 대입하면
- 3 = a + 6 : a = -3

따라서 모든 상수 a의 값의 합은

$$\frac{1}{3}$$
+(-2)+(-3)= $-\frac{14}{3}$

답 $-\frac{14}{3}$

1083 세 직선의 방정식을 각각 y를 x에 대한 식으로 나타내면

$$y = -\frac{1}{2}x + \frac{3}{2}, y = -\frac{2}{3}x + 1, y = 3x - a$$

세 직선 중 어느 두 직선도 평행하지 않으므로 세 직선이 한 점에서 만나는 경우 삼각형이 만들어지지 않는다.

이때 두 직선 $y=-\frac{1}{2}x+\frac{3}{2},y=-\frac{2}{3}x+1$ 의 교점의 좌표 가 (-3,3)이므로

y=3x-a에 x=-3, y=3을 대입하면

$$3 = -9 - a$$
 : $a = -12$

답 -12

- **1084** 전략 직선이 지나는 두 점을 이용하여 x와 y 사이의 관계를 식으로 나타낸다.
 - ① 형은 동생보다 5분 늦게 출발하였다.
 - ② 형 : y=100x-500, 동생 : y=50x 두 식을 연립하여 풀면 x=10, y=500 따라서 형과 동생은 동생이 출발한 지 10분 후에 만났다.
 - ③ y=50x에 x=10을 대입하면 y=500즉 10분 동안 동생이 이동한 거리는 <math>500 m이다.
 - ⑤ 동생이 형보다 10분 늦게 도서관에 도착하였다.

답 ④

- **1085** A 양초: $y = -\frac{4}{5}x + 24$, B 양초: $y = -\frac{1}{2}x + 20$
 - ① A 양초의 처음 길이는 24 cm이다.
 - ② $y = -\frac{4}{5}x + 24$ 에 x = 10을 대입하면 y = 16 즉 10분 후에 A 양초의 길이는 16 cm이다.
 - ③ $y=-\frac{4}{5}x+24$ 에 x=20을 대입하면 y=8 $y=-\frac{1}{2}x+20$ 에 x=20을 대입하면 y=10 즉 20분 후에 남은 양초의 길이는 B 양초가 더 길다.
 - ④ B 양초가 모두 타는 데 걸리는 시간은 40분이다.
 - ⑤ 두 직선의 방정식을 연립하여 풀면 $x=\frac{40}{3}, y=\frac{40}{3}$ 즉 두 양초의 길이가 같아지는 것은 $\frac{40}{3}$ 분 후이다. 따라서 옳은 것은 ⑤이다. 답 ⑤

1086 ax-y-6=0의 그래프가 점 (3,0)을 지나므로 3a-6=0, 3a=6 $\therefore a=2$ 2x-y-2=0, 즉 y=2x-2의 그래프의 x절편은 1, y절편은 -2이므로 구하는 사다리꼴의 넓이는

$$\frac{1}{2} \times 6 \times 3 - \frac{1}{2} \times 2 \times 1 = 8$$

답 8

1087 (사각형 OABC의 넓이)=3×5=15이므로

(사각형 POAQ의 넓이)=
$$\frac{3}{5}$$
×(사각형 OABC의 넓이)
$$=\frac{3}{5}\times15=9$$

점 P는 직선 $y=\frac{2}{3}x+k$ 가 y축과 만나는 점이므로 점 P의 좌표는 (0,k)이다.

점 Q는 직선 $y=\frac{2}{3}x+k$ 위의 점이므로 점 Q의 좌표는 (3,2+k)이다.

(사각형 POAQ의 넓이) $=\frac{1}{2} \times (\overline{OP} + \overline{AQ}) \times \overline{OA}$ 이므로

$$9 \!=\! \frac{1}{2} \! \times \! \{k \!+\! (2 \!+\! k)\} \! \times \! 3$$

$$9 = 3k + 3, -3k = -6$$

1088 문제의 조건에서

(사다리꼴 AOCD의 넓이)

한편

(사다리꼴 AOCD의 넓이)

=(사각형 AOCB의 넓이)−(△ADB의 넓이) ······①

①, ⓒ에서

(△DCE의 넓이)

=(사각형 AOCB의 넓이) $-2 \times (\triangle ADB$ 의 넓이)

점 D의 좌표를 (12, a)라 하면

$$\frac{1}{2} \times a \times \overline{\text{CE}} \!=\! 12 \times 10 - 2 \times \frac{1}{2} \times 12 \times (10 - a)$$

$$\frac{1}{2} \times a \times \overline{CE} = 12a$$
 $\therefore \overline{CE} = 24, \leq E(36, 0)$

따라서 두 점 A(0, 10), E(36, 0)을 지나는 직선의 방정식

은
$$y = -\frac{5}{18}x + 10$$
, 즉 $5x + 18y = 180$ 답 (

1089 $y=-\frac{1}{2}x-\frac{5}{2}$ 의 그래프의 x절편은 -5이므로 A(-5,0) y=-2x+2의 그래프의 x절편은 1이므로 B(1,0)

연립방정식
$$\left\{ egin{aligned} y = -rac{1}{2}x - rac{5}{2} \ y = -2x + 2 \end{aligned}
ight.$$
 의 해가 $x = 3, y = -4$ 이므로

$$C(3, -4)$$
 :: $H(3, 0)$

따라서 \triangle ACB를 x축을 회전축으로 하여 1회전하여 얻은 입체도형은 오른쪽 그림과 같다.

$$\therefore (\stackrel{\textbf{H}}{\rightarrow} \vec{\mathbf{J}}) = \frac{1}{3} \times \pi \times 4^2 \times 8$$

$$-\frac{1}{3} \times \pi \times 4^2 \times 2$$

$$=\frac{128}{3}\pi - \frac{32}{3}\pi = 32\pi$$

답 32 π

1090 직선 n은 원점과 점 (2,4)를 지나므로 직선 n의 방정식은 y=2x

직선 m은 y절편이 8이고 점 (2,4)를 지나므로 직선 m의 방 정식은 y=-2x+8

이때 점 B의 x좌표를 a라 하면 A(a, 2a), B(a, 0)

한편 \overline{AB} : \overline{BC} = 2 : 3이므로 2a : \overline{BC} = 2 : 3에서

 $2\overline{BC} = 6a$ $\therefore \overline{BC} = 3a$

 $\therefore C(4a, 0), D(4a, 2a)$

점 C는 직선 m 위의 점이므로

y = -2x + 8에 x = 4a, y = 0을 대입하면

0 = -8a + 8, 8a = 8 : a = 1

A(1,2), B(1,0), C(4,0), D(4,2)

따라서 직선 l은 두 점 E(2, 4), D(4, 2)를 지나므로

$$(7)$$
울기)= $\frac{2-4}{4-2}=\frac{-2}{2}=-1$

직선 l의 방정식을 y=-x+b로 놓고 x=2, y=4를 대입하면

4 = -2 + b : b = 6

구하는 직선 l의 방정식은 y=-x+6

답 y = -x + 6

1091 세 일차방정식을 각각 y를 x에 대한 식으로 나타내면 $y = \frac{1}{2}x - 1, y = -4x + 8, y = -x + 8$

연립방정식
$$\begin{cases} y = \frac{1}{2}x - 1 \\ y = -x + 8 \end{cases}$$
을 풀면

$$x=6, y=2, \stackrel{\triangle}{=} C(6, 2)$$

이때 A(0,8), B(2,0), D(8,0)이므로

$$S_2 = \frac{1}{2} \times (8-2) \times 2 = 6$$

 $S_1 = (\triangle ABD$ 의 넓이) $-S_2 = \frac{1}{2} \times 6 \times 8 - 6 = 18$

$$S_1: S_2=18:6=3:1$$

답 ②

STEP 3 내신 마스터

p.181 ~ p.183

1092 전략 주어진 일차방정식을 y=(x에 대한 식)으로 나타낸다. 3x+2y-10=0에서 y를 x에 대한 식으로 나타내면 $y=-\frac{3}{2}x+5$

따라서 $a = -\frac{3}{2}$, b = 5이므로

$$a+b=-\frac{3}{2}+5=\frac{7}{2}$$

답 $\frac{7}{2}$

Lecture

일차방정식 ax+by+c=0 (a,b,c는 상수, $a\neq 0,b\neq 0)$ 의 그래 프는 일차함수 $y=-\frac{a}{h}x-\frac{c}{h}$ 의 그래프와 같다.

1093 주어진 일차방정식을 y=(x에 대한 식)으로 나타낸다. x+3y-1=0에서 y를 x에 대한 식으로 나타내면

$$y = -\frac{1}{3}x + \frac{1}{3}$$

- ① x절편은 1이다.
- ② $1 \neq -\frac{1}{3} \times 0 + \frac{1}{3}$ 이므로 점 (0,1)을 지나지 않는다.
- ③ 제1, 2, 4사분면을 지나고 제3사분면을 지나지 않는다.
- ① 기울기가 음수이므로 x의 값이 증가할 때, y의 값은 감소 한다.
- ⑤ $y = -\frac{1}{3}x$ 의 그래프와 평행하다.

답 ④

답 ⑤

1094 전략 그래프가 지나는 점의 좌표를 주어진 일차방정식에 대입하여 a의 값을 구한다.

$$ax+3y-2=0$$
에 $x=1, y=-1$ 을 대입하면 $a-3-2=0$ $\therefore a=5$

1095 전략 y축에 평행한 직선의 방정식은 x=p(p)는 상수) 꼴이고, x축에 평행한 직선의 방정식은 y=q(q)는 상수) 꼴이다.

(1) 4x - 3y - 7 = 0에서 y = x에 대한 식으로 나타내면

$$y = \frac{4}{3}x - \frac{7}{3}$$

즉 기울기가 $\frac{4}{3}$ 이고 y절편이 1인 직선의 방정식은

$$y = \frac{4}{3}x + 1$$

(3) 두 점의 x좌표가 -5로 같으므로 두 점을 지나는 직선은 y축에 평행한 직선이다.

따라서 구하는 직선의 방정식은 x=-5

답 (1)
$$y = \frac{4}{3}x + 1$$
 (2) $y = 2$ (3) $x = -5$

1096 전략 y축에 평행한 직선의 방정식은 x=p(p는 상수) 꼴이다.

주어진 그래프는 점 (-4,0)을 지나고 y축에 평행하므로 직선의 방정식은 x=-4 \bigcirc

이때 3x+ay-b=2를 x에 대하여 풀면

$$x = -\frac{a}{3}y + \frac{b+2}{3} \qquad \qquad \cdots$$

⊙, ⓒ이 같으므로

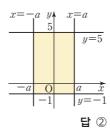
$$-\frac{a}{3} = 0, \frac{b+2}{3} = -4$$
 $\therefore a = 0, b = -14$ **답**②

1097 전략 y축에 수직인 직선은 x축에 평행하다.

y축에 수직인 직선은 x축에 평행하므로 직선 위의 모든 점의 y좌표가 같다

─ Lecture |

- (1) x축에 평행한 직선 \Rightarrow 직선 위의 모든 점의 y좌표가 같다.
- (2) y축에 평행한 직선 \Rightarrow 직선 위의 모든 점의 x좌표가 같다.


1098 전략 네 직선을 좌표평면 위에 나타내어 본다.

네 직선을 좌표평면 위에 나타내면

오른쪽 그림과 같으므로

 $2a \times 6 = 24$

 $\therefore a=2$

1099 전략 주어진 그래프를 보고 *a*, *b*의 부호를 각각 파악한다.

y=ax+b의 그래프가 오른쪽 아래로 향하는 직선이고, y절 편이 양수이므로 a < 0, b > 0

ax+by+1=0에서 y를 x에 대한 식으로 나타내면

$$y = -\frac{a}{b}x - \frac{1}{b}$$

a<0, b>0이므로 $-\frac{a}{b}>0, -\frac{1}{b}<0$

따라서 그래프는 오른쪽 위로 향하는 직선이고, y절편이 음 수이므로 ⑤이다.

1100 전략 두 일차방정식의 그래프의 교점의 좌표는 연립방정식의

두 직선의 교점의 좌표가 (2, 4)이므로 연립방정식의 해는 x=2, y=4이다.

x+ay=6에 x=2, y=4를 대입하면

$$2+4a=6, 4a=4$$
 : $a=1$ (7)

bx-3y=2에 x=2, y=4를 대입하면

$$2b-12=2, 2b=14$$
 : $b=7$ (4)

∴
$$a+b=1+7=8$$
 (다)

답 8

채점 기준	비율
(가) a의 값 구하기	40 %
(내 <i>b</i> 의 값 구하기	40 %
(대) $a+b$ 의 값 구하기	20 %

1101 전략 먼저 두 직선의 교점의 좌표를 구한다.

연립방정식
$$\begin{cases} 2x-y=4 \\ x+y=5 \end{cases}$$
를 풀면 $x=3,y=2$

즉 두 직선의 교점의 좌표는 (3, 2)이다.

따라서 점 (3,2)를 지나고 x축에 평행한 직선의 방정식은

1102 전략 미지수를 포함하지 않는 두 직선의 교점의 좌표를 구하여 그 교점의 좌표를 미지수를 포함한 직선의 방정식에 대입한다.

연립방정식
$$\begin{cases} x-y+3=0 \\ 2x+y-9=0 \end{cases}$$
을 풀면 $x=2,y=5$ ····· (개)

즉 세 직선의 교점의 좌표는 (2,5)이므로

$$ax-y-3=0$$
에 $x=2, y=5$ 를 대입하면

$$2a-5-3=0, 2a=8$$
 $\therefore a=4$ (4)

답 4

채점 기준	비율
(개) 미지수를 포함하지 않는 두 직선의 교점의 좌표 구 하기	60 %
(내) a의 값 구하기	40 %

1103 전략 연립방정식의 해가 없으려면 두 직선이 서로 평행해야 한

두 일차방정식을 각각 y를 x에 대한 식으로 나타내면

$$y = \frac{a-5}{2}x + \frac{1}{2}, y = \frac{3}{4}ax + \frac{b}{4}$$

연립방정식의 해가 없으려면 두 직선이 서로 평행해야 하므 로 기울기가 같고 y 절편이 달라야 한다.

$$=\frac{a-5}{2}=\frac{3}{4}a,\frac{1}{2}\neq\frac{b}{4}$$

$$\therefore a = -10, b \neq 2$$
 답 ③

연립방정식
$$\begin{cases} ax+by+c=0 \\ a'x+b'y+c'=0 \end{cases}$$
 즉 $\begin{cases} y=-\frac{a}{b}x-\frac{c}{b} \\ y=-\frac{a'}{b'}x-\frac{c'}{b'} \end{cases}$ 에서

(1) 해가 오직 한 쌍뿐이다. ➡ 두 직선이 한 점에서 만난다.

$$\Rightarrow -\frac{a}{b} \neq -\frac{a'}{b'}$$

(2) 해가 없다.
$$\Rightarrow$$
 두 직선이 서로 평행하다.
$$\Rightarrow -\frac{a}{b} = -\frac{a'}{b'}, -\frac{c}{b} \neq -\frac{c'}{b'}$$

$$\Rightarrow -\frac{a}{b} = -\frac{a'}{b'}, -\frac{c}{b} = -\frac{c'}{b'}$$

1104 전략 점 C의 좌표를 구한 후 삼각형의 넓이를 이용하여 점 B의 좌표를 구한다.

직선 x+y=2의 x절편이 2이므로 점 C의 좌표는 (2,0)이

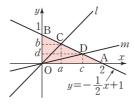
점 B의 좌표를 (k, 0)(k < 0)이라 하면

(삼각형 ABC의 넓이)=
$$\frac{1}{2}$$
× $(2-k)$ × $3=9$

 $\therefore k = -4$

따라서 두 점 A(-1,3), B(-4,0)을 지나는 직선 l의 방

정식은 (기울기)=
$$\frac{0-3}{-4-(-1)}=\frac{-3}{-3}$$
=1이므로


y=x+b로 놓고 x=-4, y=0을 대입하면

$$0 = -4 + b$$
 : $b = 4$

따라서 직선
$$l$$
의 방정식은 $y=x+4$

채점 기준	비율
(가) 점 C의 좌표 구하기	20 %
(내)점B의 좌표 구하기	40 %
(대) 직선 <i>l</i> 의 방정식 구하기	40 %

1105 직선 $y = -\frac{1}{2}x + 1$ 이x축,y축 과 만나는 점을 각각 A, B라 하면 직선 $y = -\frac{1}{2}x + 1$ 의 x절편은 2, y절편은 1이므로 A(2,0), B(0,1)

또 두 직선 l, m과 직선 $y=-\frac{1}{2}x+1$ 의 교점을 각각 $\mathbf{C}(a,b),\mathbf{D}(c,d)$ 라 하면 두 직선 l, m이 삼각형 BOA의 넓 이를 삼등분 하므로

 $(\triangle \mathrm{BOC}$ 의 넓이) $=\frac{1}{3} \times (\triangle \mathrm{BOA}$ 의 넓이)에서

$$\frac{1}{2} \times 1 \times a = \frac{1}{3} \times \left(\frac{1}{2} \times 2 \times 1\right) \qquad \therefore a = \frac{2}{3}$$

 $(\triangle \mathrm{DOA}$ 의 넓이 $)=rac{1}{3} imes(\triangle \mathrm{BOA}$ 의 넓이)에서

$$\frac{1}{2} \times 2 \times d = \frac{1}{3} \times \left(\frac{1}{2} \times 2 \times 1\right) \qquad \therefore d = \frac{1}{3}$$

이때 두 점 $\operatorname{C}\Bigl(\frac{2}{3},b\Bigr)$, $\operatorname{D}\Bigl(c,\frac{1}{3}\Bigr)$ 은 직선 $y\!=\!-\frac{1}{2}x\!+\!1$ 위의 전이므로

$$b = -\frac{1}{2} \times \frac{2}{3} + 1$$
 에서 $b = \frac{2}{3}$, $\leq C\left(\frac{2}{3}, \frac{2}{3}\right)$

 $\frac{1}{3} = -\frac{1}{2}c + 1$ 에서 $\frac{1}{2}c = \frac{2}{3}$ $\therefore c = \frac{4}{3}, \leq D\left(\frac{4}{3}, \frac{1}{3}\right)$

따라서 직선 l의 방정식은 y=x, 직선 m의 방정식은

 $y=\frac{1}{4}x$ 이므로 구하는 기울기의 곱은

1106 전략 세 직선에 의하여 삼각형이 만들어지지 않는 경우는 세 직선 중 어느 두 직선이 평행하거나 세 직선이 한 점에서 만나는 경우이다.

세 직선의 방정식을 각각 y를 x에 대한 식으로 나타내면

$$y = -\frac{1}{a}x - \frac{4}{a}, y = x + 2, y = -3x + 10$$

(i) 세 직선 중 어느 두 직선이 평행한 경우

두 직선
$$y=-\frac{1}{a}x-\frac{4}{a},y=x+2$$
가 평행하면 $a=-1$ 두 직선 $y=-\frac{1}{a}x-\frac{4}{a},y=-3x+10$ 이 평행하면 $a=\frac{1}{a}$

(ii) 세 직선이 한 점에서 만나는 경우

두 직선y=x+2,y=-3x+10의 교점의 좌표가 (2,4)이므로 x+ay+4=0에 x=2,y=4를 대입하면

$$2+4a+4=0, 4a=-6$$

∴ $a=-\frac{3}{2}$ **답** ④

1107 전략 $(\triangle ABD$ 의 넓이)= $\frac{2}{5}$ × $(\triangle ABC$ 의 넓이)임을 이용한다.

연립방정식
$$\begin{cases} y=2x+12 \\ y=-\frac{1}{2}x+2 \end{cases}$$
를 풀면 $x=-4,y=4$

즉 두 직선의 교점 A의 좌표는 (-4, 4)이다.

직선 y=2x+12의 x절편은 -6이므로 $\mathrm{B}(-6,0)$

직선
$$y = -\frac{1}{2}x + 2$$
의 x 절편은 4이므로 $C(4, 0)$

$$\therefore (\triangle ABC의 넓이) = \frac{1}{2} \times 10 \times 4 = 20$$

점 D의 좌표를 (p,0)이라 하면

 $(\triangle ABD$ 의 넓이) $=\frac{2}{5} \times (\triangle ABC$ 의 넓이)이므로

$$\frac{1}{2} \times \{p - (-6)\} \times 4 = \frac{2}{5} \times 20$$

2p+12=8, 2p=-4 : p=-2

따라서 두 점 A(-4,4), D(-2,0)을 지나는 직선 AD의

방정식은 (기울기)=
$$\frac{0-4}{-2-(-4)}=\frac{-4}{2}=-2$$
이므로

y = -2x + b로 놓고 x = -2, y = 0을 대입하면

$$0 = 4 + b$$
 : $b = -4$

따라서 직선 AD의 방정식은 y = -2x - 4

답 y = -2x - 4

1108 전략 직선이 지나는 두 점을 이용하여 x와 y 사이의 관계를 식으로 나타낸다.

누나:
$$y = \frac{3}{10}x - 6$$
, 동생: $y = \frac{1}{12}x$

두 식을 연립하여 풀면 $x=\frac{360}{13}, y=\frac{30}{13}$

따라서 동생이 출발한 지 $\frac{360}{13}$ 분 후에 누나와 만나므로

$$t = \frac{360}{13}$$

$$13t = 13 \times \frac{360}{13} = 360$$

답 360

참고 누나의 그래프는 두 점 (20,0), (60,12)를 지나므로

$$(7|울7) = \frac{12-0}{60-20} = \frac{12}{40} = \frac{3}{10}$$

그래프의 식을 $y=\frac{3}{10}x+b$ 로 놓고 x=20,y=0을 대입하면

$$0=6+b$$
 : $b=-6, = y=\frac{3}{10}x-6$

동생의 그래프는 원점과 점 (60,5)를 지나므로 그래프의 식을 y=ax로 놓고 x=60,y=5를 대입하면

$$5 = 60a$$
 : $a = \frac{1}{12}$, $= y = \frac{1}{12}x$